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Abstract: We identified urinary polyphenol metabolite patterns by a novel algorithm that combines
dimension reduction and variable selection methods to explain polyphenol-rich food intake,
and compared their respective performance with that of single biomarkers in the European
Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 475 adults from
four European countries (Germany, France, Italy, and Greece). Dietary intakes were assessed with 24-h
dietary recalls (24-HDR) and dietary questionnaires (DQ). Thirty-four polyphenols were measured
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by ultra-performance liquid chromatography–electrospray ionization-tandem mass spectrometry
(UPLC-ESI-MS-MS) in 24-h urine. Reduced rank regression-based variable importance in projection
(RRR-VIP) and least absolute shrinkage and selection operator (LASSO) methods were used to
select polyphenol metabolites. Reduced rank regression (RRR) was then used to identify patterns
in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich
foods. The performance of RRR models was evaluated using internal cross-validation to control for
over-optimistic findings from over-fitting. High performance was observed for explaining recent
intake (24-HDR) of red wine (r = 0.65; AUC = 89.1%), coffee (r = 0.51; AUC = 89.1%), and olives
(r = 0.35; AUC = 82.2%). These metabolite patterns performed better or equally well compared to
single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in
explaining habitual intake (as reported in the DQ) of polyphenol-rich foods. This proposed strategy
of biomarker pattern identification has the potential of expanding the currently still limited list of
available dietary intake biomarkers.

Keywords: dietary biomarker patterns; polyphenol metabolites; polyphenol-rich food; reduced rank
regression (RRR); EPIC

1. Introduction

In nutritional epidemiology, the accurate and precise estimation of dietary exposures is critical
for an unbiased assessment of diet–disease associations. Intakes of foods, nutrients or other bioactive
compounds related to health or diseases are often estimated using self-reported dietary assessment
methods, such as 24-h dietary recalls (24-HDR) or dietary questionnaires (DQs). However, the reliability
of traditional self-reported instruments has been challenged due to inherent and sizeable measurement
errors [1,2]. Dietary measurement errors are a serious challenge to establish reliable diet–disease
associations [3].

Over the last decades, a limited number of dietary biomarkers have been identified and
implemented in nutritional epidemiology [4,5]. They have been useful as reference measurements to
validate self-reported dietary assessment tools (i.e., doubly labeled water and urinary nitrogen),
as complementary measurements to compare with estimates of dietary intake (i.e., fatty acids,
and carotenoids in blood), or as substitute measurements for insufficient or unavailable dietary intake
data (i.e., selenium and zinc in blood) [4,6]. More recently, with the development of metabolomics,
novel dietary biomarkers are being identified that should further improve the accuracy of dietary
intake estimation [7,8].

These biomarkers have been mostly used individually for dietary exposure assessment. However,
the ‘single biomarker’ approach has some conceptual and methodological limitations. First, single
biomarkers cannot reflect complex matrices of dietary exposures with various food groups, which
consist of multiple nutrients and other food components converted to a number of metabolites through
various biological pathways, including the gut microbiota. Also, there are high inter-correlations
among biomarkers, and some biomarker levels are too low to be detected or to reach a statistically
significant performance for use in dietary intake assessment. Therefore, a ‘biomarker pattern’ approach
may provide a more comprehensive and accurate measurement of complex dietary exposures. In this
respect, some recent studies have used combinations of dietary biomarkers to improve the accuracy of
dietary exposures assessment [9,10].

Polyphenols are non-nutritive plant components widely distributed in a variety of foods including
fruits, vegetables, tea, coffee and wine [11]. Research interest in polyphenols has increased due to
their potential protective effects on non-communicable diseases including cardiovascular diseases,
diabetes and cancer, and premature mortality [12–15]. Overall results may be promising, but they
remain inconclusive, and further prospective studies assessing dietary polyphenol exposure and
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studies using other methods to evaluate exposure (i.e., markers of consumption, metabolism, excretion)
have been recommended, as concluded in a recent meta-analysis summarizing available evidence on
the association of dietary flavonoid and lignan intake with cancer risk in observational studies [15].
Polyphenol metabolites measured in biological specimens could complement traditional dietary
assessment tools to improve exposure assessment. A recent systematic review using intervention
studies confirmed that urinary polyphenol metabolites could serve as dietary biomarkers with
high recovery yields and high correlations with intakes of polyphenol-rich food [16]. Some
single urinary polyphenol metabolites, such as, for example, chlorogenic acid/caffeic acid, gallic
acid/resveratrol, caffeic acid/epicatechin, and naringenin/hesperetin have been identified as potential
biomarkers for intakes of coffee, wine, tea, and citrus fruits/juices, respectively [17–20]. However,
we hypothesized that panels or patterns of polyphenol metabolites may better explain intake of
polyphenol-containing foods.

Recently, we reported correlations of 34 individual urinary polyphenol metabolites with intake
of polyphenol-containing foods in the European Prospective Investigation into Cancer and Nutrition
(EPIC) cross-sectional study [20]. Some single polyphenols were found to be significantly correlated
to recent intake of these foods and were proposed as potential biomarkers of intake for these foods.
In the current study, the same data were used to identify patterns of urinary polyphenol metabolites
by applying a new algorithm that combines dimension reduction and variable selection methods to
maximize the explained variation in intake of specific polyphenol-rich foods. The ability of these
urinary polyphenol patterns to rank individuals according to the intake and to discriminate between
consumers and non-consumers was examined and compared with the respective performance of
single polyphenols.

2. Materials and Methods

2.1. Subjects

This study included 475 subjects randomly selected from four European countries (i.e., Germany,
France, Italy, and Greece) within the EPIC calibration study, as described in our previous study [20].
In brief, the EPIC study is an ongoing multi-center prospective cohort study with more than half a
million subjects, mostly aged 35–70 years, recruited from 23 centers in 10 European countries between
1992–2000. The study was designed to investigate relations between diet, lifestyle and environmental
factors, and the risk of cancer and other chronic disease by collecting information on diet and lifestyle
characteristics, anthropometric measurements, and medical history [21]. For the EPIC calibration
study, a single 24-HDR was collected from a random sub-sample (n = 36,900) of the entire cohort, and
a 24-h urine specimen was collected from a convenient sub-sample between 1995–1999 (n = 1386) of
the calibration study [22,23]. For the current study, all subjects with available data in the form of a
24-h urine specimen and a 24-HDR collected on the same day, and a country-specific validated DQ
collected at different time intervals (1 day–34 months) with regard to the 24-h urine collection across
centers (n = 475), were eligible [24]. These subjects were recruited from the general population residing
within defined geographical areas in Germany (Heidelberg and Potsdam), Greece (nationwide) and
Italy (Naples, Turin, and Varese). Subjects had come to the study from breast cancer screening in
Florence, a local blood donors association and their partners in Ragusa, Italy, and from an existing
cohort. The latter was the case in France, where there was a cohort based on female teachers and
school workers (Paris and surrounding areas). All subjects gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the ethical review boards of the International Agency for
Research on Cancer (IARC) and from local participating institutions (Project identification code: doc.
SC/24/6, date of approval: September 1987).
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2.2. Dietary Assessment

Dietary data were collected using a single standardized 24-HDR and a country-specific validated
DQ. The 24-HDR face-to-face interview was conducted using a standardized dietary assessment
methodology with a computerized program (EPIC-Soft) [22,25]. Dietary intake data using DQ with
158~266 items were self-administered or collected by face-to-face interviews to estimate usual intake
over the previous 12 months [22].

2.3. Urinary Polyphenol Assessment

24-h urines were used for the measurement of urinary polyphenols. For the collection, subjects
were provided two 2-L containers, each with 2 g boric acid as preservative. P-Aminobenzoic acid
(PABA) was used as a marker for completeness of 24-h urine collections. After collection, 24-h
urine samples were stored at −20 ◦C at the local center, and finally shipped within 24 h to and
stored at −20 ◦C at the IARC, where laboratory analyses were performed after about 15 years of
storage [19]. We do not expect major degradation of polyphenol metabolites during storage, and our
previous studies using the same urine samples showed expected correlations between the metabolites
and food intake [19,20]. As described previously [26], urine samples were first hydrolyzed with a
β-glucuronidase/sulfatase enzyme mixture and the resulting polyphenol aglycones were extracted
twice with ethyl acetate. Quantitative dansylation of phenolic hydroxyl groups was carried out with
either 13C-dansyl chloride (samples) or non-labeled 12C-dansyl chloride (well-characterized reference
pooled sample). Each 13C-dansylated sample was mixed with the 12C-dansylated reference sample,
and the relative concentrations in samples over the reference were then measured by ultra-performance
liquid chromatography–electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS).
A total of 37 urinary polyphenols were measured, and their excretions in urine were expressed
as µmol/24-h. Urinary polyphenol concentrations below the limit of quantification (LOQ) were
replaced with values for half the LOQ. Since 98–100% of three polyphenols (procyanidins B1 and B2,
and (+)-gallocatechin) values were below the LOQ, they were excluded from the analysis.

2.4. Statistical Analyses

Prior to the main statistical analyses, missing values of polyphenols were imputed by the
expectation-maximization (EM) algorithm [27] after log transformation. In our previous study, center
and batch were shown to explain a large part of the total variability of urinary polyphenols [20].
Urinary polyphenol measurements were therefore adjusted by taking the residuals from general
linear models (GLMs), with center and batch variables as covariates. Intakes of food groups were log
transformed and adjusted for energy intake by taking the residuals from GLMs with energy intake
variable. Partial Pearson’s correlations between 34 individual polyphenols and the intakes of 12 main
food groups and their 144 sub-groups (see Tables S1–S5) were computed conditional on sex, body
mass index (BMI) and age as covariates.

An algorithm using dimension reduction and variable selection methods were applied to identify
patterns of polyphenol metabolites and best explain the intake of polyphenol-rich foods. The procedure
of the algorithm was as follows:

(1) Selecting optimal subsets of 34 polyphenol metabolites to explain intakes of specific
polyphenol-rich food groups using two different variable selection methods: (i) variable
importance in projection based on reduced rank regression (called the RRR-VIP method) [28] and
(ii) least absolute shrinkage and selection operator (LASSO) regression [29].

(2) Identifying patterns of selected polyphenol metabolites (as predictor variables), and maximizing
the explained variability of polyphenol-rich food group intakes (as response variables) through
RRR analysis.

(3) Evaluating the performance of the RRR models for the polyphenol metabolite patterns to
discriminate between consumers and non-consumers through internal two-fold cross-validation
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analyses. This was achieved through splitting the data into two equal-sized subsets (a training
and a test set) and calculating (i) RRR scores in the test set using factor weights derived from RRR
analysis of the training set; and (ii) Pearson correlation coefficients of RRR scores with intakes
and area under the receiver operating characteristic curves (ROC AUCs) for the RRR scores of
the test set.

For variable selection using the RRR-VIP method, a VIP score of each polyphenol metabolite,
which is a weighted sum of squares of the RRR weights accounting for the explained variance of each
RRR model, was calculated, and then polyphenol metabolites with a VIP score greater than 0.85 were
selected [28,30]. Alternatively, we applied LASSO regression and its five-fold cross validation to select
subsets of polyphenol metabolites by shrinking i.e., setting to 0, some coefficients of the predictors [29].
Partial Pearson correlation coefficients of RRR scores with intakes of polyphenol-rich foods from
24-HDR or DQ were calculated conditional on covariates (sex, BMI and age), and ROC AUCs were
adjusted for these same covariates. All analyses were conducted using the Statistical Analysis Software,
release 9.4 (SAS Institute Inc., Cary, NC, USA) and R software, version R.3.1.2 (R Foundation for
Statistical Computing, Vienna, Austria).

3. Results

3.1. General Characteristics of the Study Population

The average age and BMI of the participants were 54 ± 8.5 years and 26 ± 4.3 kg/m2, respectively.
The percentage of smokers (former/current) and never smokers was 62% and 36% in men, and 36%
and 61% in women, respectively. The proportion of subjects with prevalent diabetes, hyperlipidemia
or hypertension was 2.5%, 27.2% and 23.6%, respectively (Table 1).

Table 1. General characteristics a of the total study population (n = 475).

Total Men Women p b

N (%) 475 (100) 198 (41.7) 277 (58.3)
Age (years) 53.9 (8.5) 55.4 (8.4) 52.9 (8.4) 0.017
BMI (kg/m2) 26.0 (4.3) 26.8 (3.5) 25.5 (4.7) 0.059
Energy intake (kcal/day) 2200.0 (785.5) 2562.7 (830.9) 1940.8 (636.4) <0.0001
Alcohol intake (g/day) 15.5 (21.1) 23.5 (26.3) 9.7 (13.8) <0.0001

Smoking status (%) 0.102
Never 50.7 35.9 61.4
Former 27.2 38.4 19.1
Current 19.4 23.2 16.6
Unknown 2.7 2.5 2.9

Physical activity (%) 0.712
Inactive 26.3 24.8 27.4
Moderately inactive 40.0 39.9 40.1
Moderately active 21.3 21.2 21.3
Active 12.4 14.1 11.2

Diabetes (%) c 2.5 3.5 1.8 0.213
Hyperlipidemia (%) c 27.2 33.3 22.7 0.087
Hypertension (%) c 23.6 27.8 20.7 0.720

a Mean (SD) or Percentage (%); b p-values for the difference between men and women from the regression—
center-adjusted linear regression (continuous variables) or logistic regression (categorical variables); c Self-reported
by questionnaires at recruitment into the study.

3.2. Correlations between Individual Polyphenol Metabolites and Polyphenol-Rich Food Groups

In a first step, correlations between 34 individual polyphenol metabolites and the intakes of
12 main food groups and their 144 sub-groups in the EPIC study were explored to pre-select specific
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food groups that had sufficiently high correlations with a minimum set of polyphenol metabolites.
Among the main food groups investigated, only four (‘vegetables’, ‘fruit, nuts & seeds’, ‘non-alcoholic
beverages’, and ‘alcoholic beverages’) were significantly correlated with more than five individual
polyphenol metabolites, while other main food groups were significantly correlated with less than
three individual metabolites, and all coefficients were below 0.2 (Table S1). In a subsequent step,
we examined correlations between polyphenol metabolites and food sub-groups (Tables S2–S5). Among
these sub-groups, citrus fruits, apples and pears, olives, coffee, tea, all wine, and red wine were highly
correlated with individual polyphenols (Table 2). For example, highly-correlated polyphenols were
hesperetin (r = 0.54) and naringenin (r = 0.50) for citrus fruits, caffeic acid (r = 0.49) and ferulic acid
(r = 0.42) for coffee, and gallic acid ethyl ester (r = 0.65) and resveratrol (r = 0.46) for red wine. All these
food groups were selected for our multivariate analyses as polyphenol-rich food groups. The a priori
arbitrarily defined criteria were that a given food group (or sub-group) showed a significant correlation
with at least five polyphenols, and that at least one of these correlations was r ≥ 0.3. The criteria were
chosen as a trade-off between having sufficiently informative predictor variables (i.e., polyphenols)
and a wider range of potential food groups (i.e., response variables).

Table 2. Correlation coefficients a between urinary polyphenols and intakes of polyphenol-rich foods
from 24-HDR among total subjects (n = 475).

Polyphenols (n = 34)

Food Groups (% Consumers)

Citrus
Fruits

(38.9%)

Apple &
Pear

(47.6%)

Olives
(9.3%)

Coffee
(86.3%)

Tea
(24.6%)

All Wine
(41.9%)

Red Wine
(25.5%)

Protocatechuic acid 0.020 0.018 0.055 0.373 −0.116 0.119 0.109
Hydroxytyrosol 0.020 0.010 0.360 0.010 0.100 0.430 0.336
3,5-Dihydroxybenzoic acid 0.080 0.023 0.034 −0.093 0.130 −0.016 −0.027
3,4-Dihydroxyphenylacetic acid 0.174 0.134 0.312 0.028 0.053 0.134 0.116
Genistein 0.076 0.018 −0.027 −0.093 0.067 −0.072 −0.047
Apigenin 0.088 0.055 0.014 −0.062 −0.027 −0.081 −0.064
3,4-Dihydroxyphenylpropionic acid 0.062 0.086 0.012 0.403 −0.159 0.038 0.025
3,5-Dihydroxyphenylpropionic acid 0.077 0.022 0.020 −0.043 0.142 0.050 0.055
3-Hydroxybenzoic acid 0.029 0.024 −0.013 0.162 0.077 0.052 0.091
4-Hydroxybenzoic acid 0.191 −0.031 0.071 0.094 0.008 0.009 0.010
Tyrosol −0.079 −0.084 0.117 0.045 0.037 0.429 0.317
3-Hydroxyphenylacetic acid 0.121 0.141 0.058 0.027 0.034 0.060 0.063
4-Hydroxyphenylacetic acid −0.014 −0.060 0.054 0.012 −0.011 0.220 0.164
m-Coumaric acid 0.054 −0.022 0.001 0.294 −0.092 0.113 0.128
p-Coumaric acid 0.011 0.088 0.126 0.104 0.061 0.270 0.212
Vanillic acid −0.014 0.000 0.009 0.107 −0.065 −0.017 0.024
Naringenin 0.498 0.070 0.064 0.036 −0.018 0.025 −0.043
Phloretin 0.151 0.303 −0.009 0.000 −0.005 −0.027 −0.057
Kaempferol 0.279 0.085 0.036 0.003 0.083 −0.002 −0.021
Epicatechin 0.020 0.233 −0.015 −0.126 0.193 0.135 0.123
Catechin −0.069 0.003 0.018 −0.098 0.110 0.280 0.280
Hesperetin 0.535 0.056 0.023 0.037 −0.061 0.004 −0.003
Homovanillic acid 0.126 0.117 0.241 −0.081 0.059 0.065 0.069
Isorhamnetin 0.032 0.070 0.036 −0.055 0.074 0.047 0.078
Ferulic acid 0.170 0.053 0.028 0.422 −0.113 0.036 0.003
Resveratrol 0.028 −0.049 0.007 0.012 −0.007 0.409 0.457
Quercetin 0.190 0.083 −0.008 −0.118 0.133 0.126 0.141
Caffeic acid 0.068 0.092 0.049 0.487 −0.121 0.119 0.084
Equol −0.060 −0.068 −0.040 −0.099 0.049 0.009 0.060
Daidzein 0.043 −0.037 −0.008 −0.115 0.089 −0.023 −0.029
Enterolactone 0.050 0.045 0.105 0.019 0.042 0.077 0.032
Enterodiol 0.067 0.000 0.053 −0.015 0.016 0.018 0.027
Gallic acid 0.055 0.064 0.039 −0.125 0.316 0.344 0.380
Gallic acid ethyl ester −0.016 −0.030 0.032 −0.009 0.058 0.508 0.654

a Partial Pearson correlation with sex, BMI and age as covariates. Urinary polyphenols were adjusted for center
and batch and intakes of food groups were adjusted for energy intake using residuals from general linear models
(GLMs). Positive coefficients in blue cells were significant (p < 0.05) and higher coefficients had darker color.
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3.3. Selection of Polyphenol Metabolites Using Variable Selection Methods

Out of 34 urinary polyphenol metabolites, sub-sets were selected for identifying patterns
associated with intakes of polyphenol-rich food groups using the RRR-VIP method and LASSO
regression. Selected polyphenols differed by method, but at least the first one or two polyphenols were
common in both methods (Table 3).

Table 3. Selected polyphenol metabolites a by reduced rank regression-based variable importance in
projection (RRR-VIP) or least absolute shrinkage and selection operator (LASSO) methods (n = 475).

Food Groups RRR-VIP LASSO

Polyphenol Metabolites VIP Polyphenol Metabolites Coefficients

Citrus fruits

Naringenin 2.876 Hesperetin 0.851
Hesperetin 2.701 Naringenin 0.510
3,4-Dihydroxyphenylacetic acid 2.552 3,4-Dihydroxyphenylacetic acid 0.091
Resveratrol 1.207 3-Hydroxyphenylacetic acid 0.086
3,4-Dihydroxyphenylpropionic acid 1.007 Vanillic acid −0.009
m-Coumaric acid 0.970 Apigenin −0.035
Genistein 0.927 Tyrosol −0.037
Homovanillic acid 0.894 Catechin −0.046
Catechin 0.888 4-Hydroxyphenylacetic acid −0.089
Daidzein 0.880
Hydroxytyrosol 0.855

Apples &
Pears

Phloretin 2.666 Phloretin 0.598
Epicatechin 2.463 Epicatechin 0.199
Protocatechuic acid 2.047
Gallic acid ethyl ester 1.426
3,4-Dihydroxyphenylpropionic acid 1.254
Enterolactone 1.163
Catechin 1.119
3,4-Dihydroxyphenylacetic acid 0.914
Homovanillic acid 0.913
Apigenin 0.889
Daidzein 0.883

Olives

Hydroxytyrosol 4.866 Hydroxytyrosol 0.313
Tyrosol 1.810 3,4-Dihydroxyphenylacetic acid 0.099
Quercetin 1.382 Catechin −0.003
3,4-Dihydroxyphenylacetic acid 0.945 m-Coumaric acid −0.006
Gallic acid ethyl ester 0.863 Epicatechin −0.011

3-Hydroxybenzoic acid −0.014
Gallic acid ethyl ester −0.028
Resveratrol −0.041
Tyrosol −0.054
Quercetin −0.078

Coffee

Caffeic acid 3.559 Caffeic acid 0.853
Ferulic acid 1.906 Ferulic acid 0.227
3,4-Dihydroxyphenylacetic acid 1.690 Protocatechuic acid 0.075
Gallic acid 1.493 3,4-Dihydroxyphenylpropionic acid 0.071
Apigenin 1.270 Homovanillic acid −0.013
Quercetin 1.261 Catechin −0.016
Homovanillic acid 1.149 3,5-Dihydroxyphenylpropionic acid −0.027
Protocatechuic acid 1.141 4-Hydroxyphenylacetic acid −0.041
m-Coumaric acid 1.037 Equol −0.047
Hydroxytyrosol 0.879 3,5-Dihydroxybenzoic acid −0.069
Daidzein 0.872 Daidzein −0.076

Epicatechin −0.109
Gallic acid −0.130
Apigenin −0.163
Quercetin −0.263
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Table 3. Cont.

Food Groups RRR-VIP LASSO

Polyphenol Metabolites VIP Polyphenol Metabolites Coefficients

Tea

Gallic acid 3.265 Gallic acid 0.977
Hydroxytyrosol 2.084 3-Hydroxybenzoic acid 0.328
Protocatechuic acid 1.813 Hydroxytyrosol 0.255
3,4-Dihydroxyphenylacetic acid 1.520 3,5-Dihydroxyphenylpropionic acid 0.233
3-Hydroxybenzoic acid 1.462 Kaempferol 0.177
m-Coumaric acid 1.379 Daidzein 0.140
3,5-Dihydroxyphenylpropionic acid 0.969 4-Hydroxybenzoic acid 0.072
Resveratrol 0.959 Genistein 0.057
Gallic acid ethyl ester 0.857 p-Coumaric acid 0.044

Epicatechin 0.037
Quercetin 0.021
Isorhamnetin 0.018
Enterodiol 0.006
Ferulic acid −0.001
Apigenin −0.017
Tyrosol −0.037
3,4-Dihydroxyphenylpropionic acid −0.109
3,4-Dihydroxyphenylacetic acid −0.112
Gallic acid ethyl ester −0.119
3-Hydroxyphenylacetic acid −0.133
Phloretin −0.145
Hesperetin −0.148
4-Hydroxyphenylacetic acid −0.204
m-Coumaric acid −0.260
Resveratrol −0.321
Protocatechuic acid −0.452

All wine

Hydroxytyrosol 3.547 Gallic acid ethyl ester 0.808
Gallic acid ethyl ester 3.058 Hydroxytyrosol 0.579
Homovanillic acid 1.531 Tyrosol 0.198
3-Hydroxybenzoic acid 1.201 Gallic acid 0.068
Naringenin 1.081 p-Coumaric acid 0.060
3,4-Dihydroxyphenylpropionic acid 1.010 Enterolactone 0.048
3,4-Dihydroxyphenylacetic acid 0.909 Catechin 0.023

Apigenin −0.063
3-Hydroxybenzoic acid −0.089
Vanillic acid −0.097
Homovanillic acid −0.251

Red wine
Gallic acid ethyl ester 5.388 Gallic acid ethyl ester 1.333
Resveratrol 1.315

a Polyphenols in bold were selected by both RRR-VIP and LASSO methods. The positive (blue) or negative (red)
association of selected polyphenols with intakes of food/food groups were shown in different colors.

3.4. Identification of Polyphenol Metabolite Patterns Using Reduced Rank Regression

Patterns of selected polyphenol metabolites were identified through RRR analyses. Correlation
coefficients and the AUC for the RRR scores of the polyphenol metabolite patterns were examined in
the test set for cross-validation (Table 4). The RRR scores were highly correlated, with recent intakes
of red wine (rRRR-VIP = 0.65; rLASSO = 0.66), citrus fruit (rRRR-VIP = 0.54; rLASSO = 0.54), and coffee
(rRRR-VIP = 0.51; rLASSO = 0.51) as estimated from 24-HDR (Table 4). According to the AUC for recent
intakes assessed from 24-HDR, the best discrimination between consumers and non-consumers for
RRR scores of polyphenol patterns was observed for coffee (AUCRRR-VIP = 89.1%, 95% CI = 82.9–95.4%;
AUCLASSO = 89.6%, 95% CI = 83.6–95.6%), followed by red wine (AUCRRR-VIP = 89.1%, 95%
CI = 83.5–94.7%; AUCLASSO = 89.1%, 95% CI = 83.6–94.7%), olives (AUCRRR-VIP = 82.2%,
95% CI = 72.9–91.6%; AUCLASSO = 81.0%, 95% CI = 70.9–91.2%), and citrus fruits (AUCRRR-VIP = 81.7%,
95% CI = 76.2–87.2%; AUCLASSO = 81.8%, 95% CI = 76.1–87.5%). When compared with those for single
polyphenols, the performance has been improved using polyphenol patterns identified though RRR,
especially for coffee (r = 0.51, AUC = 89.1% for PPs pattern vs. r = 0.42, AUC = 85.8% for single PP)
and olives (r = 0.35, AUC = 82.2% for PPs pattern vs. r = 0.29, AUC = 79.6% for single PP). Correlation
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coefficients and AUCs for 24-HDR data were consistently higher than those for DQ data. AUCs
for habitual dietary intake assessed with DQ were all lower than 80%, except for intake of coffee
(rRRR-VIP = 0.39; AUCRRR-VIP = 82.7%, 95% CI = 72.2–93.2% and rLASSO = 0.42; AUCLASSO = 83.4%,
95% CI = 73.0–93.7% for PPs pattern vs. r = 0.38; AUC = 80.9%, 95% CI = 68.9–92.8% for single PP)
(Table 4). Table S6 shows the correlation coefficients and AUC for the RRR scores of the polyphenol
metabolite patterns in all subjects without applying a cross-validation. These results represent thus
a potential upper limit of performance in explaining polyphenol-rich food intake, but cannot be
generalized to an independent dataset.

Table 4. Correlations coefficients and area under the receiver operating characteristic curves
(ROC AUCs) of RRR scores of selected polyphenol (PP) metabolites with polyphenol-rich foods
from 24-HDR and DQ in the test set (n = 236).

Food
Groups a Selected PPs b

24-HDR DQ

Consumers
(%) r c ROC AUC d

(95% CI)
Consumers

(%) r c ROC AUC d

(95% CI)

Citrus fruit
Single PP (Hesperetin) 40% 0.538 81.4% (75.9–86.8) 96% 0.124 66.2% (48.8–83.6)

PPs by RRR-VIP (n = 11) 0.543 81.7% (76.2–87.2) 0.139 71.6% (57.9–85.2)
PPs by LASSO (n = 11) 0.539 81.8% (76.1–87.5) 0.163 69.8% (54.9–84.7)

Apples &
Pears

Single PP (Phloretin) 48% 0.322 74.2% (68.0–80.5) 96% 0.183 70.6% (54.0–87.2)
PPs by RRR-VIP (n = 10) 0.359 73.5% (67.2–79.8) 0.242 77.7% (61.5–93.9)

PPs by LASSO (n = 2) 0.356 74.3% (68.0–80.6) 0.201 68.5% (51.7–85.3)

Olives

Single PP
(Hydroxytyrosol) 8% 0.287 79.6% (69.7–89.5) 26% 0.141 64.8% (56.7–72.9)

PPs by RRR-VIP (n = 5) 0.351 82.2% (72.9–91.6) 0.131 64.1% (55.8–72.4)
PPs by LASSO (n = 10) 0.348 81.0% (70.9–91.2) 0.125 64.2% (56.0–72.5)

Coffee
Single PP (Caffeic acid) 86% 0.416 85.8% (77.7–93.8) 94% 0.383 80.9% (68.9–92.8)

PPs by RRR-VIP (n = 11) 0.505 89.1% (82.9–95.4) 0.392 82.7% (72.2–93.2)
PPs by LASSO (n = 15) 0.510 89.6% (83.6–95.6) 0.417 83.4% (73.0–93.7)

Tea
Single PP (Gallic acid) 25% 0.304 70.5% (62.8–78.2) 64% 0.151 59.8% (52.2–67.5)

PPs by RRR-VIP (n = 9) 0.412 73.9% (66.4–81.4) 0.289 65.0% (57.9–72.1)
PPs by LASSO (n = 26) 0.370 72.4% (65.0–79.8) 0.210 63.2% (55.9–70.5)

All wine

Single PP (Gallic acid
ethyl ester) 37% 0.514 76.7% (70.1–83.4) 85% 0.406 74.8% (66.4–83.2)

PPs by RRR-VIP (n = 7) 0.529 77.8% (71.3–84.4) 0.423 76.1% (68.1–84.1)
PPs by LASSO (n = 11) 0.531 77.1% (70.8–83.4) 0.433 76.7% (68.4–84.9)

Red Wine

Single PP (Gallic acid
ethyl ester) 23% 0.656 89.1% (83.6–94.7) 24% 0.263 67.8% (59.1–76.4)

PPs by RRR-VIP (n = 2) 0.654 89.1% (83.5–94.7) 0.263 67.8% (59.1–76.4)
PPs by LASSO (n = 1) 0.656 89.1% (83.6–94.7) 0.263 67.8% (59.1–76.4)

a Intakes of food groups were adjusted for energy intake using residuals from general linear models (GLMs);
b Polyphenol metabolites were adjusted for centers and batches using residuals from GLMs; c Partial Pearson
correlation coefficients between RRR scores of selected polyphenols and food groups with sex, BMI and age as
covariates; d ROC AUCs for RRR scores of the patterns of selected polyphenols were calculated and adjusted for
sex, BMI and age using logistic regression models.

4. Discussion

We developed a novel statistical algorithm using a combination of dimension reduction and
variable selection methods to integrate high-dimensional biomarker data, with the goal to complement
self-reported dietary assessment methods and to improve dietary intake estimation in nutritional
epidemiological studies. Here, we applied this approach to a panel of polyphenol metabolites measured
in human urine and related dietary intake data. Among 34 targeted urinary polyphenol metabolites,
optimal sub-sets were selected by RRR-VIP and LASSO methods, and these patterns of polyphenol
metabolites derived by RRR models outperformed any single best polyphenol metabolite associated
with the intake of polyphenol-rich foods, especially for coffee and olives.

Polyphenols are widely distributed in plant-based foods such as fruits, vegetables, tea, coffee
and wine [11]. A previous study on dietary polyphenol intake in European countries [31] reported
an average intake range of total polyphenol of 744–1786 mg/day and 584–1626 mg/day in men and
women, respectively, and the main food sources of polyphenols were coffee (21–36%), tea (17–41%),
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fruits (9–25%), wine (10%) in Mediterranean (MED) countries, non-MED countries and the UK. In this
study, polyphenol-rich food groups were pre-selected based on the correlation between food groups
and individual polyphenol metabolites prior to the main analyses. Similar to the previous study, fruits
(citrus fruits, apples and pears, and olives), coffee, tea, and wine food groups were also selected as
polyphenol-rich food groups. Despite vegetables being regarded as a food group rich in polyphenols
generally, none of the vegetable sub-groups reached our criteria for being selected as a polyphenol-rich
food group. This might be explained by the observation that vegetables overall contributed only less
than 5% to polyphenol intake in the EPIC study [31], and different vegetable sub-groups may thus
contribute only marginally to polyphenol intake, at least in the EPIC populations.

Recently, individual polyphenol metabolites have been identified as potential biomarkers of
dietary polyphenol intake [32,33]. A number of studies examined the potential role of polyphenols as
dietary biomarkers in clinical trials or observational studies [17,18,34–40]. Previous dietary intervention
studies [34–37] have identified that flavonoids such as hesperetin, naringenin, kaempferol, phloretin,
and quercetin in 24-h urine could be specific biomarkers for intakes of fruits and vegetables. Other
clinical and observational studies [17,38–40] found that some 24-h urinary polyphenols were good
indicators of polyphenol-rich beverage consumption, such as gallic acids and resveratrol for wine,
chlorogenic acid for coffee, and epicatechin for tea. However, all these previous studies examined
individual polyphenol metabolites, and to the best of our knowledge, this is the first study using
polyphenol metabolite patterns to investigate associations with food intake.

Conceptually similar to dietary pattern analyses [41], free-living people do not consume single
polyphenols, but a combination of polyphenols coming from different food sources. Therefore,
it is meaningful from a biological point of view to examine combinations of polyphenols, which
is also a more comprehensive and efficient approach from a statistical point of view. In this
study, we applied dimension reduction and variable selection methods to identify specific urinary
polyphenol metabolite patterns associated with the intake of polyphenol-rich foods. RRR analysis is a
multivariate dimension reduction technique to determine linear combinations of a set of predictors
maximizing the explained variability in responses. RRR has been previously used along with
principal component analysis, factor analyses, or cluster analyses for dietary pattern discovery in
nutritional epidemiology [42,43]. RRR analysis is similar to partial least squares (PLS) analysis; they
are both widely used in analyses of metabolomics data, and both are supervised approaches with
regression-based models to reduce dimensions by extracting linear combinations of X-variables that
explain variability in Y-variables [44,45]. The difference between RRR and PLS is that RRR focuses on
explaining variation in Y-variables, whereas PLS seeks factors whereby the covariance between the
X- and the Y-components is maximized. Therefore, in this study, applying the RRR method enabled
the identification of patterns of polyphenol metabolites that maximized the explained variability of
intakes of specific polyphenol-rich food groups.

For RRR analyses, sub-sets of polyphenol metabolites were pre-selected using variable
selection methods: RRR-VIP and LASSO. Previous studies have already observed that most of
the selected polyphenols by the two methods here are associated with polyphenol-rich foods or
food groups. Hesperetin and naringenin are known abundant polyphenols in citrus fruits [46],
and 3,4-dihydroxyphenlylacetic acid (3,4-DHPAA) and 3-hydroxyphenlylacetic acid (3-HPAA) are two
metabolites formed from hesperetin and naringenin by the colonic microbiota [47]. Hydroxytyrosol,
thyrosol and 3,4-DHPAA are predominant polyphenols in olives [48]. Caffeic acid and chlorogenic acid
are two major polyphenols from coffee [49], which are metabolized into 3,4-DHPAA, protocatechuic
acid, m-coumaric acid, and vanillic acid by the gut microbiota [50]. Gallic acid ethyl ester and
resveratrol are the main polyphenols in red wine [48]. These selected polyphenols included all
polyphenols with high coefficients in univariate comparisons. However, selected polyphenol
metabolites differed by method, even though the first one or two metabolites were common in both
methods. The LASSO method selected more polyphenol metabolites that were negatively associated
with polyphenol-rich food intake. It seems that the variable selection using LASSO may be more
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affected by other factors, such as dietary patterns, while the RRR-VIP method may focus on explaining
polyphenol-rich food intake itself. Despite this difference in selected polyphenol metabolites, both
methods performed equally well in explaining polyphenol-rich food intake, and both methods were
overall equally efficient. Future studies may again compare the performance of both methods in
different study settings.

The patterns of urinary polyphenol metabolites in this study better explained acute intake assessed
by 24-HDR than habitual intake assessed by DQ, and performed equally bad as any single polyphenol
metabolite (Table 4). A review paper [32] suggested that urinary polyphenol metabolites were useful
as biomarkers for recent intake (12–72 h) based on results of some clinical trials and on knowledge on
their pharmacokinetic properties (median half-life of 2.8 h) [51]. However, relatively high stability over
time has been observed for a number of polyphenol metabolites, and this is most likely explained by the
frequent consumption of their main food sources [33]. This is what is observed here for coffee and wine,
and this also explains the correlations observed with DQ data. For other polyphenol metabolites less
frequently consumed, reproducibility in urine may be lower, and this should largely explain the lower
correlation of metabolite patterns with DQ data when compared to 24-HDR data. Therefore, polyphenol
metabolite patterns could be used as biomarkers for acute dietary intake of polyphenol-containing foods,
or for the regular intake of more frequently consumed foods, such as coffee or wine.

The strength of this study includes, first, its statistical design/strategy, which can be easily applied
to other “-omics” datasets to identify potential biomarker patterns that can serve as dietary exposure
markers. Second, the availability of 24-h urine samples offered additional advantages for the accurate
assessment of polyphenol metabolites over spot urine or plasma samples, which are mainly available
in most other cohort studies. However, our study had also some limitations. The study design or
urinary polyphenol metabolites used in this study did not allow the identification of biomarkers for
habitual dietary intake, except for frequently consumed foods (coffee or wine), hence, further research
is needed to identify longer-term biomarkers. In addition, this study was carried out in European
populations, so the statistical algorithm for identifying polyphenol metabolite patterns should be
adapted to other populations as well.

5. Conclusions

Urinary polyphenol metabolite patterns performed better or equally well as compared to any
single best polyphenol metabolite biomarker for intakes of specific polyphenol-rich foods, especially
for acute dietary intake or regular intake of frequently consumed foods. The algorithm developed
using dimension reduction and variable selection could be easily extended to other metabolites, foods,
and food constituents.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/8/796/s1,
Table S1: Correlation coefficients between urinary polyphenols and intakes of whole main food groups from
24-HDR among total subjects (n = 475), Table S2: Correlation coefficients between urinary polyphenols and intakes
of vegetable groups from 24-HDR among total subjects (n = 475). Table S3: Correlation coefficients between
urinary polyphenols and intakes of fruit groups from 24-HDR among total subjects (n = 475). Table S4: Correlation
coefficients between urinary polyphenols and intakes of non-alcoholic beverage groups from 24-HDR among
total subjects (n = 475). Table S5: Correlation coefficients between urinary polyphenols and intakes of alcoholic
beverage groups from 24-HDR among total subjects (n = 475). Table S6: Correlations coefficients and ROC AUCs
of RRR scores of selected polyphenol (PP) metabolites with polyphenol-rich foods from 24-HDR and DQ in total
subjects (n = 475).
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