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Background. Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism. Although
numerous studies have studied the subject, the predictive value of gene biomarkers nevertheless remains low. Methods. In this
study, we performed genomic analysis of abnormal DNA methylation in parathyroid tumors. After data preprocessing, dif-
ferentially methylated genes were extracted from patients with parathyroid tumors by using t-tests. Results. After refinement of the
basic differential methylation, 28241 unique CpGs (634 genes) were identified to be methylated. +e methylated genes were
primarily involved in 7 GO terms, and the top 3 terms were associated with cyst morphogenesis, ion transport, and GTPase signal.
Following pathway enrichment analyses, a total of 10 significant pathways were enriched; notably, the top 3 pathways were
cholinergic synapses, glutamatergic synapses, and oxytocin signaling pathways. Based on PPIN and ego-net analysis, 67 ego genes
were found which could completely separate the diseased group from the normal group. +e 10 most prominent genes included
POLA1, FAM155 B, AMMECR1, THOC2, CCND1, CLDN11, IDS, TST, RBPJ, and GNA11. SVM analysis confirmed that this
grouping approach was precise. Conclusions. +is research provides useful data to further explore novel genes and pathways as
therapeutic targets for parathyroid tumors.

1. Introduction

Parathyroid cancer is a common endocrine disease char-
acterized by excessive secretion of the parathyroid hormone
[1]. +e molecular pathogenesis of parathyroid tumors has
already been partly elucidated; Heppner and Carling have
reported that inactivating somatic mutations of tumor
suppressor genes multiple endocrine neoplasia type 1
(MEN1), RET, and HRPT2/CDC73 have been identified in
parathyroid tumors [2, 3]. Loss of menin, the protein
encoded by the oncosuppressor geneMEN1, is characterized
by a genetic background of parathyroid tumors [4]. +is is
called MEN1 syndrome [4].

It has been demonstrated that epigenetic modifications
are not only involved in embryogenesis but also in cell fate
reprogramming [5–7]. As epigenetic modifications are
present in all human cancers, they cooperate with genetic

alterations to drive given cancer phenotypes [8]. Further-
more, the abnormal methylation of cytosine phosphate
guanine (CpG) in gene-promoter islands has been investi-
gated in MEN1 syndrome cancer [9]. In benign and ma-
lignant parathyroid tumors, despite the clear usefulness in
performing large-scale DNA methylation analysis, few
studies have been published that describe abnormal global
methylation on CpG gene-promoter islands. Global pro-
moter methylation by LINE-1 does not differ from levels
detected in normal glands. +is differs from most other
cancers, which display global DNA hypomethylation
[10, 11].

Different CpG sites located near promoter regions of
more than 14,000 genes have been screened by Starker and
Collaborators, using a model composed of normal, benign,
and malignant parathyroid tissues (3 normal parathyroid
tissues, 14 adenomas, and 7 carcinomas) [12]. A gradient of
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CpG hypermethylation levels, ranging from normal tissues
to adenomas and carcinomas, was identified in a subset of
the genes [12]. +ese genes were involved in key pathways
linked to parathyroid tumors. Specific genes such as RIZ1,
APC, RASSF1A, CDKN2A/p16 and CDKN2B/p15, RB1,
WT1, GATA4, PYCARD, SFRP1, SFRP2, and SFRP4 were
found to be hypermethylated; this was in line with the
hypothesis that cell cycle, transcription, and WNTpathways
would represent biological processes that were deranged
[12]. +ey would, in turn, be found in the onset of para-
thyroid neoplasms [12].

It is important to note that gene markers based solely on
expression are still not reliable [13]. However, using cut-
ting-edge computational methods and genomics data,
significant markers can be identified. +is can be done by
integrating gene expression profiles with protein-protein
interaction maps. +us, in this study, we developed a
workflow to identify significant methylation of genes that
were functionally associated with diseases. We did this so
that feature selection could maximize prediction perfor-
mance [14].

2. Methods

2.1. Collection of DNAMethylation Data. DNA methylation
data for parathyroid tumors (accession no. GSE64412) [15]
were accessed from the Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/gds), in the National
Center for Biotechnology Information. +e microarray data
used the GPL11154 platform (Illumina HiSeq 2000 Homo
sapiens; Illumina Inc., San Diego, CA, USA). GSE64412
included 38 samples: 13 sporadic (non-MEN1) parathyroid
adenomas, 12 MEN1-parathyroid tumors, 4 parathyroid
carcinomas, and 9 normal parathyroid tissues.

2.2. Data Preprocessing and Identification of Differentially
Methylated Genes. A methylation-identification algorithm
found in Genelibs (http://www.genelibs.com) was utilized.
Raw microarray data containing 1954997 CpGs sites were
filtered down in order to better focus our study. Sites were
eliminated when they met the following criteria: (i) distance
from CpG to single-nucleotide polymorphism (SNP) was
less than or equal to 2; (ii) minor allele frequency (MAF) was
less than 0.05; (iii) cross-hybridized probes were found, or
on sex chromosomes. 1925786 CpGs were kept for further
study. +e DNA methylation microarray data were then
processed using the Lumi package (bioconductor.org/
packages/release/bioc/html/lumi) [16, 17]. Data were nor-
malized via the β-mixture quantile normalization method
[18].

In this study, β values have been represented graphically,
both the diseased group and the normal group. +e per-
centage of methylation used the following formula: meth-
ylated/(methylated + unmethylated); results range between 0
and 1, where zero represented fully unmethylated genes and
one represented fully methylated. Subsequently, the absolute
value of the difference in mean β values was calculated,
termed A. T-tests were then employed to identify the

differentially methylated CpGs and identified at the
threshold of P< 0.05 and A>0.01.

In order to decrease the number of nonvariable sites,
further filtering steps were performed. All sites with
methylation scores were >50; the differential expression p

value was <0.001, and the absolute value of >3 remained.
Only CpGs termed A with a value of ≥17 (and corrected p

value <0.05) were applied. +is was done in order to detect
substantial methylation differences.

2.3. Hierarchical ClusteringAnalysis. Hierarchical clustering
is an analytical tool applied to discover the closest associ-
ations that exist between gene profiles and specimens [19].
Generally, cancers have similar methylation profiles that
tend to cluster together. To analyze whether these differ-
entially methylated CpGs would segregate into two distinct
clusters, unsupervised hierarchical clustering was conducted
using Euclidian distance and average linkage criteria [20].
+e matrix of mean β-value levels was then formed between
the parathyroidoma and normal samples.

2.4. Gene Ontology (GO) Analysis of DifferentiallyMethylated
Genes. Gene ontology (GO) was applied to analyze the main
function of differentially expressed genes (DEGs), the key
functional classification used by the National Center of
Biotechnology Information (NCBI). In the present study,
Fisher’s exact test was used to ascertain the GO category;
furthermore, P values were corrected using the false dis-
covery rate (FDR) along with the Benjamini & Hochberg
method [21]. Functional terms with an FDR <0.01 and gene
count >10 were considered to be statistically significant.

2.5. PathwayEnrichmentAnalysis ofDifferentiallyMethylated
Genes. Pathway analysis was used to find significant path-
ways of the DEGs according to the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [22]. In the present study,
Fisher’s exact test was used to extract significant pathways,
and the threshold of significance was defined by FDR.
Significant pathways were selected according to the
thresholds of FDR <0.01 and gene count >10.

2.6. Identification of the Ego Genes in the Methylation Cor-
relation Network. +e Search Tool for the Retrieval of
Interacting Genes (STRING) database (http://www.bork.
embl-heidelberg.de/STRING) is a global resource used for
analyzing gene-gene interaction [23]. In the present study,
STRINGwas utilized to identify the correlations between the
differentially methylated genes.

First, a network of all human gene interactions was ob-
tained from the STRING database; a special subnetwork that
contained differentially methylated genes and parathyroid
adenoma genes (CDC73, MEN1, CCND1, RET) was then
used for further analysis. +e absolute value of the Pearson
coefficient was calculated: interaction pairs with a p value of
0.05 defined the difference expression network [24]. Finally,
the weight value of interaction in the network was calculated
using the following formula (EgoNet algorithm) [25]:
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where V represents the node set in the network.
+e topological analysis of the differential expression

network was measured by four indicators: degree, closeness,
betweenness, and transitivity (a measure of the clustering
coefficient). In order to identify themethylationmarkers, the
context likelihood of relatedness (CLR) was applied to the
algorithm to square weight and then to form an adjacency
matrix. Genes were sorted in descending order based on the
importance of genes in the netweb (g (i)� z-score).

2.7. Support Vector Machine Analysis. +e support vector
machine (SVM) is a machine learning method commonly
used in pattern recognition for binary classification [26]. In
this study, SVM was used to test whether ego genes could
completely separate the diseased group from the normal
group and to further verify the feasibility of our analysis
methods.

+e normal group and the diseased group were together
termed the total population. In accordance with the ratio of
6 : 4, the total population was randomly divided into an
experimental group and a testing group. SVM C-classifi-
cation was then performed using linear kernel and 5-fold
cross-validation. +e experimental group served as the basis
for classification, and the testing group as the basis for re-
gression [27].

3. Results

3.1. Identification of Differentially Methylated Genes.
Following quality control and normalization to (i) remove
probes with an SNP-CpG distance of ≤2, (ii) remove probes
with a minimum allelic frequency of <0.05, and (iii) dem-
onstrate cross-hybridization, a total of 1925786 methylated
CpGs remained. A volcano plot exhibiting the distribution
of the 1925786 methylated CpGs is presented in Figure 1.
Among these 1925786 methylated CpGs, 192613 of them
(representing 26926 genes) were differentially methylated,
where the absolute value of the mean β-value was >0.05, and
the P value <0.05. A total of 192340 of the CpGs were
hypermethylated, and 273 CpGs were hypomethylated in the
disease group.

Subsequently, these 192613 methylated CpGs were
subjected to further filtering. 31207 unique CpGs (covering
13798 genes) met the following conditions: [1] a methylation
score >50; [2] differential expression P value < 0.001, and [3]
absolute value> 3. +e only CpGs with the absolute value of
the mean β-value difference were ≥17, with the corrected P

value <0.05.28241. CpGs (covering 634 genes) were selected
for further analysis. According to various studies, CDC73,
MEN1, CCND1, and RET were shown to be parathyroid
adenoma susceptible genes [28–31]. +eir P values are
demonstrated in Table 1.

3.2. Hierarchical Clustering Analysis. To further explore the
changes in the methylation levels, cluster analysis was con-
ducted. +e cluster heat map is demonstrated in Figure 2. In
this figure, it is observed that there were distinctive meth-
ylation patterns in the parathyroidoma and normal samples,
further segregating the samples into two distinct groups.

3.3. GO Enrichment. To determine the primary functions of
the differentially methylated genes, a comprehensive gene
ontology (GO) analysis was performed. As shown in Fig-
ure 3, 7 signaling pathways were significantly enriched by the
differentially methylated genes, including regulation of small
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Figure 1: Volcano plot exhibiting the methylation data of 29
parathyroid tumors and 9 normal samples. X-axis represents the
mean methylation difference between parathyroid tumor and
normal samples. Y-axis represents the log-transformed P values. A
total of 192613 CpG sites were considered to be significantly
differentially methylated, indicated in blue.

Table 1: P values of susceptible parathyroid adenoma genes.

ID p value Symbol
1173651 0.003161659 RET
1173667 0.003246324 RET
1173680 7.16E−05 RET
1173684 0.000342777 RET
1173722 0.002885583 RET
1173736 0.002602326 RET
1173749 0.001025146 RET
1173756 0.000703971 RET
1173773 0.000353432 RET
1301532 0.001475949 MEN1
1312429 0.004835513 CCND1
1312477 0.003523037 CCND1
150982 0.001799107 CDC73
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GTPase mediated signal transduction, regulation of cell
morphogenesis, calcium ion transmembrane transport,
glutamate receptor signaling pathway, regulation of cell
morphogenesis involved in differentiation, regulation of ion
transmembrane transport, and ERBB signaling pathway.
+ese GO terms were sorted in ascending order based on
FDR value. Overall, the GO terms were mainly involved in
cell morphogenesis, ion transport, and GTPase signal.

3.4. KEGG Pathway Analysis. Pathway enrichment analysis
of the differentially methylated genes was conducted given the
KEGG pathway database. +is analysis yielded 48 pathways.
Table 2 lists the top 10 pathways. +ese pathways were sorted
in ascending order based on FDR value. +e top 3 signifi-
cantly enriched pathways were cholinergic synapses, gluta-
matergic synapses, and the oxytocin signaling pathway. +e
oxytocin signaling pathway was associated with CCND1.

3.5. Ego Analysis. Given the goal of analyzing the association
between the differentially methylated genes, STRING software
was used to establish the PPI network (PPIN). A network of all
human gene interactions containing 787896 interaction pairs
(16730 genes) was obtained from STRING. A total of the 793
interaction pairs (the target-PPI) were extracted from the
PPIN. +e target-PPI included differentially methylated genes
as well as parathyroid adenoma susceptible genes (CDC73,
MEN1, CCND1, RET). +is covered 299 genes. +e weight
value of the interaction in the network was calculated, and
genes were sorted in descending order based on topological
degree. +e top 30% were selected as ego genes. A total of 67
ego genes were obtained (Figure 4). +e differential expression
of the 67 genes ensures complete separation between the
normal and parathyroid tumor populations. Genes with higher
z-scores were given greater importance. +e top 10 of the 67
ego genes are shown in Table 3.

Gene Ontology

regulation of small GTPase mediated signal transduction

regulation of cell morphogenesis

calcium ion transmembrane transport

glutamate receptor signaling pathway

regulation of cell morphogenesis involved in differentiation

regulation of ion transmembrane transport

ERBB signaling pathway

0 10 20 30

pvalue

7.5e-05

5.0e-05

2.5e-05

Figure 3: Differentially methylated genes identified between para-
thyroidoma and normal samples were functionally classified via gene
ontology analysis. +e most enriched terms, which satisfied the
criteria of FDR <0.01 and gene count >10, are represented.

Figure 2: Hierarchical clustering analysis of significantly differ-
entially methylated CpGs between parathyroidoma and normal
samples. DNA methylation across the 28241 sites in each of the
samples was analyzed by this method. Each row is an individual
CpG site and each column is a different sample.+e color gradation
from green to red denotes low to high DNA methylation, with
β-values ranging from 0 (no methylation; green) to 1 (complete
methylation; red).
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Table 2: +e top 10 key pathways according to KEGG analysis.

Pathway name P value
4725 Cholinergic synapse [PATH:hsa04725] 3.27E−07
4724 Glutamatergic synapse [PATH:hsa04724] 4.63E−07
4921 Oxytocin signaling pathway [PATH:hsa04921] 5.67E−06
4261 Adrenergic signaling in cardiomyocytes [PATH:hsa04261] 4.82E−05
4911 Insulin secretion [PATH:hsa04911] 0.000101911
4713 Circadian entrainment [PATH:hsa04713] 0.0002795
4020 Calcium signaling pathway [PATH:hsa04020] 0.000363009
4912 GnRH signaling pathway [PATH:hsa04912] 0.000829401
4730 Long-term depression [PATH:hsa04730] 0.00111826
5205 Proteoglycans in cancer [PATH:hsa05205] 0.001260031

Figure 4: Protein-protein interaction network constructed from differentially methylated genes. Nodes colored in orange are gene-as-
sociated ego genes. Yellow nodes represent parathyroid adenoma susceptibility genes. It is paramount to explicate that CCDN 1 and RETare
parathyroid adenoma susceptibility genes as well ego genes.

International Journal of Endocrinology 5



3.6. Support Vector Machine Analysis. +e use of machine
learning in medical diagnosis is gaining currency. +is is
mainly because the effectiveness of classification and rec-
ognition systems has significantly improved, helping
medical experts in diagnosing diseases [32, 33]. In this
paper, C-classification was performed using linear kernel
and 5-fold cross-validation. Assessment indicators were
AUC (the area under receiver operating characteristic
curve), accuracy (classification accuracy), MCC (Mathews’
correlation coefficient), specificity (TNR, true-negative
rates), and sensitivity (TPR, true-positive rates). +e results
of the analysis are as follows: AUC � 0.9123, accu-
racy � 99.29%, MCC � 0.8549, specificity � 83%, and
sensitivity � 92%. +us, the methods used in this study
could completely separate the diseased group from the
normal one.

4. Discussion

Analysis of DNA methylation data has been widely used to
identify abnormally methylated genes associated with tu-
mors. It has also enabled the extraction of targets for
therapeutic strategies. In this study, the pathogenesis of
parathyroid tumors was analyzed by means of bio-
informatics. +is included the detection of differentially
methylated genes, gene ontology (GO), pathway enrich-
ment, PPI construction, and ego genes identification. Po-
tential mechanisms of parathyroid tumors have been thus
revealed, providing novel insights into parathyroid diagnosis
and therapy.

In general, the genetic background of parathyroid tu-
mors is characterized by the loss of two oncosuppressor
genes. First, a loss of menin, the protein encoded by the
MEN1 gene, takes place. +is occurs in the parathyroid
lesions found in multiple endocrine neoplasia type 1
(MEN1), [34]. Second is a loss of parafibromin, encoded by
the CDC73/HRPT2 gene. +is occurs in hyperparathy-
roidism-jaw tumors (HPT-JT) [35].

+e heterogeneity of parathyroid tumors’ biological and
clinical presentation may be due to epigenetic deregulation
[36, 37]. As mentioned, epigenetic modifications at DNA
and chromatin levels are present in all human cancers
[38–40]. Epigenetic regulation is achieved through multiple
regulatory pathways unifying sequence-specific, DNA-
binding transcription factors, ATP-dependent, nucleosome

remodeling, and long, noncoding RNA and DNA methyl-
ation [41–44].

Our model aimed at finding the diseased genes by means
of the following underlying assumption: if the majority of
neighbors of a central disease gene are also disease genes,
then its other neighbors are likely to be involved in the
disease pathway. +is model’s benefit is that it can find
hidden genes that would otherwise show no significance by
themselves but are nevertheless clustered in a subnetwork
module. It is in this subnetwork where collectively the genes
are highly predictive of disease status. Furthermore, ma-
chine-learning techniques can be used to assess the asso-
ciation between ego-networks and clinical outcomes.

Based on pathway analyses, pathways of cholinergic
synapses, glutamatergic synapses, and oxytocin signaling
were considered the most important. +e oxytocin signaling
pathway in particular was associated with CCND1. On the
other hand, cholinergic and glutamatergic synapses were
closely related to the regulation of nerve excitement and
inhibition. In GO analysis, the differentially methylated
genes were enriched in 7 GO terms, which were mainly
involved in cell morphogenesis, ion transport, and GTPase
signal. Recent studies suggest that there is a cross-regulation
between morphogenesis and EMT processes. Aberrant ac-
tivation of these coregulators can drive different stages of
cancer progression, including tumor invasion, cell spread,
and metastatic colonization and growth [45] +e ion (such
as Ca2+, K+, Fe3+, and Cl−) and channel proteins play im-
portant roles in tumor progression. +ese membrane ion
transport systems have great potential as diagnostic bio-
markers and therapeutic targets in tumor treatment [46–48].
GTPase-related signaling pathways are widely abnormally
activated in tumors and are involved in the regulation of
tumor cell growth, metastasis, and drug resistance [49].
However, there are few studies on the relationship between
these three cell functions and the tumorigenesis of para-
thyroid tumors, suggesting that further research in this area
should be conducted in the future.

Following the implementation of the PPIN and ego-net,
67 ego genes were found, which completely separates normal
from parathyroid tumor populations. +e top 10 of the 67
ego genes were POLA1, FAM155 B, AMMECR1, THOC2,
CCND1, CLDN11, IDS, TST, RBPJ, and GNA11. At present,
there have been studies conducted on CCND1, but little
research on the other genes. It is reported that AMMECR1 is
associated with growth, bone, and heart alterations; CLDN11
is an epigenetic biomarker for malignancy, and THOC2
mutations are related to X-linked intellectual disability
[50–52]. POLA1 is the catalytic subunit of DNA polymerase
and plays an essential role in the initiation of DNA repli-
cation [53]. FAM155 B is predicted to be a multipass
membrane protein with unknown function. IDS is involved
in the lysosomal degradation of heparan sulfate and der-
matan sulfate [54]. TST is mainly localized to mitochondria
and catalyzes the conversion of thiosulfate and cyanide to
thiocyanate and sulfite [55]. As molecular switches in reg-
ulating the notch response, transcription factor RBPJ in-
volves in the regulation of the progression of a variety of
tumors, such as colorectal cancer [56], lung cancer [57],

Table 3: +e top 10 key ego genes based on ego-net analysis.

Node z-Score
POLA1 219.1896777
FAM155B 202.6303015
AMMECR1 161.7614615
THOC2 135.7028647
CCND1 132.8239023
CLDN11 128.873499
IDS 126.8873715
TST 125.1721484
RBPJ 117.4724126
GNA11 115.4442218
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hepatocellular carcinoma [58], glioblastoma [59, 60], and
prostate cancer [61]. As a member of the G protein family,
GNA11 plays an important role in tumor progression [62].
Research shows that CCND1 and POLA1 are potential
targets of miR-206 and may share a common regulatory
network [63]. +e interrelationship between these genes has
not been studied.

Global promoter methylation by CCND1 often displays
differentially expressed DNA hypomethylation, especially
when compared to normal tissue [64]. Different CpG sites
located near promoter regions of more than 14,000 pre-
dicted genes were screened. Both CCND1 and CCND2 have
been previously reported as deregulated in many cancers
[65, 66]. Furthermore, they represent an alternative marker
to study epigenetic modifications [66]. +e reversibility of
these changes makes them prime targets for therapeutic
manipulations. A number of small molecules targeting
chromatin-based mechanisms are currently being tested in
clinical trials [67]. However, the results of this study were
based on a limited clinical sample, which limited the ac-
curacy of the data. +e role of the above biomarkers still
needed to be verified with more samples. In addition, we did
not analyze the difference of MEN1 in adenomas, carci-
nomas, or sporadic tumors due to the limitation of sample
size. Importantly, our conclusions still require experimental
confirmation, not just bioinformatics data analysis. +e
expression of MEN1 in subgroups of parathyroid tumors is
still worthy of further analysis.

In conclusion, we have evaluated the performance of
EgoNet in human protein-protein interaction networks.
+is method has not only successfully identified CCND1
from significant ego-networks but has also detected several
novel targets, such as POLA1, FAM155B, AMMECR1, and
THOC2. We expect that EgoNet can be widely used to infer
novel biomarkers for phenotypic prediction of many human
diseases.
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[32] K. Polat and S. Güneş, “Breast cancer diagnosis using least
square support vector machine,” Digital Signal Processing,
vol. 17, no. 4, pp. 694–701, 2007.

[33] Y. Lee and C. K. Lee, “Classification of multiple cancer types
by multicategory support vector machines using gene ex-
pression data,” Bioinformatics, vol. 19, no. 9, pp. 1132–1139,
2003.

[34] F. Marini, A. Falchetti, E. Luzi, F. Tonelli, and B. Maria Luisa,
Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome, 2009.

[35] O. Gimm, P. Nguyen +anh, M. Bloching et al., “Hyper-
parathyroidism-jaw tumor (HPT-JT)-syndrome: three case
reports,” Experimental and Clinical Endocrinology &Diabetes,
vol. 113, no. S 1, 2005.

[36] C. Verdelli, I. Forno, V. Vaira, and S. Corbetta, “Epigenetic
alterations in human parathyroid tumors,” Endocrine, vol. 49,
no. 2, pp. 324–332, 2015.

[37] J. Costa-Guda and A. Arnold, “Genetic and epigenetic
changes in sporadic endocrine tumors: parathyroid tumors,”
Molecular and Cellular Endocrinology, vol. 386, no. 1-2,
pp. 46–54, 2014.

[38] M. Esteller and J. G. Herman, “Cancer as an epigenetic
disease: DNA methylation and chromatin alterations in hu-
man tumours,” �e Journal of Pathology, vol. 196, no. 1,
pp. 1–7, 2002.

[39] L. Ellis, P. W. Atadja, and R. W. Johnstone, “Epigenetics in
cancer: targeting chromatin modifications,”Molecular Cancer
�erapeutics, vol. 8, no. 6, pp. 1409–1420, 2009.

[40] S. B. Baylin, M. Esteller, M. R. Rountree, K. E. Bachman,
K. Schuebel, and J. G. Herman, “Aberrant patterns of DNA
methylation, chromatin formation and gene expression in
cancer,” Human Molecular Genetics, vol. 10, no. 7,
pp. 687–692, 2001.

8 International Journal of Endocrinology



[41] P. A. Jones and D. Takai, “+e role of DNA methylation in
mammalian epigenetics,” Science, vol. 293, no. 5532,
pp. 1068–1070, 2001.

[42] P. B. Becker and W. Hörz, “ATP-dependent nucleosome
remodeling,” Annual Review of Biochemistry, vol. 71, no. 1,
pp. 247–273, 2002.

[43] T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-
coding RNAs: insights into functions,” Nature Reviews Ge-
netics, vol. 10, no. 3, pp. 155–159, 2009.

[44] S. B. Baylin, “DNAmethylation and gene silencing in cancer,”
ChemInform, vol. 37, p. S4, 2006.

[45] C. C. Wang, “Metabolic stress adaptations underlie mammary
gland morphogenesis and breast cancer progression,” Cells,
vol. 10, no. 10, p. 2641, 2021.

[46] E. Bulk, L. M. Todesca, and A. Schwab, “Ion channels in lung
cancer,” Reviews of Physiology, Biochemistry & Pharmacology,
vol. 181, pp. 57–79, 2021.

[47] K. J. Anderson, R. T. Cormier, and P. M. Scott, “Role of ion
channels in gastrointestinal cancer,” World Journal of Gas-
troenterology, vol. 25, no. 38, pp. 5732–5772, 2019.

[48] N. Prevarskaya, R. Skryma, and Y. Shuba, “Ion channels in
cancer: are cancer hallmarks oncochannelopathies?” Physio-
logical Reviews, vol. 98, no. 2, pp. 559–621, 2018.

[49] E. Crosas-Molist, R. Samain, L. Kohlhammer et al., “Rho
GTPase signaling in cancer progression and dissemination,”
Physiological Reviews, vol. 102, no. 1, pp. 455–510, 2022.

[50] L. Gao, K. van den Hurk, P. T. M. Moerkerk et al., “Promoter
CpG island hypermethylation in dysplastic nevus and mel-
anoma: CLDN11 as an epigenetic biomarker for malignancy,”
Journal of Investigative Dermatology, vol. 134, no. 12,
pp. 2957–2966, 2014.

[51] M. Moysésoliveira, G. Giannuzzi, R. J. Fish, J. A. Rosenfeld,
F. Petit, and M. F. Soares, Inactivation of AMMECR1 Is As-
sociated with Growth, Bone, and Heart Alterations, Human
Mutation, Wiley-Liss Inc., Hoboken, NJ, USA, 2017.

[52] R. Kumar, M. A. Corbett, B. W. van Bon et al., “THOC2
mutations implicate mRNA-export pathway in X-linked in-
tellectual disability,” �e American Journal of Human Ge-
netics, vol. 97, no. 2, pp. 302–310, 2015.

[53] C. Toukoki and I. Gryllos, “PolA1, a putative DNA poly-
merase I, is coexpressed with PerR and contributes to per-
oxide stress defenses of group A Streptococcus,” Journal of
Bacteriology, vol. 195, no. 4, pp. 717–725, 2013.

[54] K. Matsuhisa and K. Imaizumi, “Loss of function of mutant
IDS due to endoplasmic reticulum-associated degradation:
new therapeutic opportunities for mucopolysaccharidosis
type II,” International Journal of Molecular Sciences, vol. 22,
no. 22, Article ID 12227, 2021.

[55] P. Singh, P. Rao, and R. Bhattacharya, “Dose and time-de-
pendent effects of cyanide on thiosulfate sulfurtransferase, 3-
mercaptopyruvate sulfurtransferase, and cystathionine λ-ly-
ase activities,” Journal of Biochemical and Molecular Toxi-
cology, vol. 27, no. 12, pp. 499–507, 2013.

[56] G. Q. Chen, Z.M. Liao, J. Liu, F. Li, D. Huang, and Y. D. Zhou,
“LncRNA FTX promotes colorectal cancer cells migration and
invasion by miRNA-590-5p/RBPJ Axis,” Biochemical Genet-
ics, vol. 59, no. 2, pp. 560–573, 2021.

[57] H. Onishi, S. Ichimiya, K. Yanai et al., “RBPJ and MAML3:
potential therapeutic targets for small cell lung cancer,”
Anticancer Research, vol. 38, no. 8, pp. 4543–4547, 2018.

[58] Y. C. Ye, J. L. Zhao, Y. T. Lu et al., “NOTCH signaling via
WNT regulates the proliferation of alternative, CCR2-inde-
pendent tumor-associated macrophages in hepatocellular

carcinoma,” Cancer Research, vol. 79, no. 16, pp. 4160–4172,
2019.

[59] B. D. Giaimo, E. K. Gagliani, R. A. Kovall, and T. Borggrefe,
“Transcription factor RBPJ as a molecular switch in regulating
the notch response,” Advances in Experimental Medicine and
Biology, vol. 1287, pp. 9–30, 2021.

[60] G. Zhang, S. Tanaka, S. Jiapaer et al., “RBPJ contributes to the
malignancy of glioblastoma and induction of proneural-
mesenchymal transition via IL-6-STAT3 pathway,” Cancer
Science, vol. 111, no. 11, pp. 4166–4176, 2020.

[61] L. Xue, H. Li, Q. Chen et al., “Inhibition of recombining
binding protein suppressor of hairless (RBPJ) impairs the
growth of prostate cancer,” Cellular Physiology and Bio-
chemistry, vol. 36, no. 5, pp. 1982–1990, 2015.

[62] L. Larribère and J. Utikal, “Update on GNA alterations in
cancer: implications for uveal melanoma treatment,” Cancers,
vol. 12, no. 6, p. 1524, 2020.
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