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Abstract

Studies of structural plasticity in the brain often require the detection and analysis of axonal

synapses (boutons). To date, bouton detection has been largely manual or semi-automated,

relying on a step that traces the axons before detection the boutons. If tracing the axon fails,

the accuracy of bouton detection is compromised. In this paper, we propose a new algorithm

that does not require tracing the axon to detect axonal boutons in 3D two-photon images

taken from the mouse cortex. To find the most appropriate techniques for this task, we com-

pared several well-known algorithms for interest point detection and feature descriptor gen-

eration. The final algorithm proposed has the following main steps: (1) a Laplacian of

Gaussian (LoG) based feature enhancement module to accentuate the appearance of bou-

tons; (2) a Speeded Up Robust Features (SURF) interest point detector to find candidate

locations for feature extraction; (3) non-maximum suppression to eliminate candidates that

were detected more than once in the same local region; (4) generation of feature descriptors

based on Gabor filters; (5) a Support Vector Machine (SVM) classifier, trained on features

from labelled data, and was used to distinguish between bouton and non-bouton candi-

dates. We found that our method achieved a Recall of 95%, Precision of 76%, and F1 score

of 84% within a new dataset that we make available for accessing bouton detection. On

average, Recall and F1 score were significantly better than the current state-of-the-art

method, while Precision was not significantly different. In conclusion, in this article we dem-

onstrate that our approach, which is independent of axon tracing, can detect boutons to a

high level of accuracy, and improves on the detection performance of existing approaches.

The data and code (with an easy to use GUI) used in this article are available from open

source repositories.

Introduction

Imaging in neuroscience is widely used to study dynamic processes such as structural and

functional neuronal plasticity. Three-dimensional, high-resolution images of neurons from
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many different modalities, including confocal, two-photon, and light-field microscopy, and

many different species produce different types of data at a fast pace. For these datasets to be

useful and for these studies to be reproducible there is the urgent need for robust analytical

tools.

Over the last few years, there has been a significant effort to automate image analysis in neu-

roscience. For example, the Big Neuron project [1] is a community effort to standardise the

tracing of neuronal structures [2–6]. However, while there have been some efforts at synapse

detection and quantification, this has mainly focused on dendritic spines [7–11], the postsyn-

aptic sites of synaptic connections. Several studies have shown an association between den-

dritic spine remodelling and motor learning [12], and a causal link has been recently

established between spine enlargement and Long Term Potentiation (LTP), a process often

associated with the formation of new memories [13, 14]. Axons are thinner and orders of mag-

nitude longer than dendrites and as a result axonal boutons, i.e. the presynaptic sites, have

received comparatively less attention [15, 16]. Improved analysis algorithms tailored for axonal

boutons are urgently needed to deepen our understanding of the synaptic basis of behaviour

and cognitive impairment [17, 18].

Manual methods like those provided in ImageJ [19–21], a software package that is often

used in neuroscience, are the current standard to analyse axonal bouton data. The biggest limi-

tations of manual analysis techniques are that results may differ between users, are time con-

suming, and can lead to bias. Even recent advances in semi-automated methods [22] such as

EPBscore [16, 18] have limitations, EPBscore uniquely allows the analysis of boutons over time

by first tracing the axon backbone, and then by using these traces to detect the locations of

boutons. The tracing process is automated for relatively simple axons and good signal-to-noise

conditions, but there are often more complex datasets that require a user’s input. There are

other problems associated with relying on axon backbone tracing. For example, EPBscore typi-

cally fails to completely track axons with high curvature and apparent gaps due to low inten-

sity, as well as those with several axons or branches (in the test dataset associated with this

paper, when there are 2 or more axons or branches, 49% of them are partially detected, and

only 10% of them are completely detected). Generally speaking, semi-automated tracing

requires additional user input, which increases the time required for analysis. Finally, the EPB-

score bouton detection algorithm uses the intensity profile of the traced axon. When the auto-

matic tracing of an axon fails, boutons along those axons will be missed, wasting potentially

meaningful data.

To overcome these limitations, we propose a fully automated bouton detection algorithm

that is independent of the tracing of the axon. The proposed algorithm uses an interest point

detector for the detection of candidate regions of interest (ROI); within these regions, visual

features are extracted. These features are used to classify the regions as bouton or non-bouton

using a Support Vector Machine (SVM) classifier. This approach improves on existing meth-

ods, allowing a faster, more accurate and reliable analysis of axonal boutons.

Materials and methods

Image acquisition and experimental details

Dataset. This Dataset consists of 100 images (TIFF files), split in 20 test and 80 training

images, containing axons with their synapses (boutons) labelled. The labels are in form of

ground-truth binary images of the same size, in which the corresponding synapses have been

labelled as boxes. For examples of images from this dataset, see Fig 1. The data presented in

this study is pre-existing data collected for other experimental studies, which are currently

unpublished.

Detection of axonal synapses in 3D two-photon images
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Animals. Images were collected from male mice (n = 6, 22 − 24 months old, and n = 8,

3 − 5 months old) from Thy-1-GFP-M, with cytosolic targeted GFP with C57BL/6 genetic

background. Mice were housed in groups of two to four litter mates, in standard individually

ventilated cages, and were maintained in a 12-h light-dark cycle with access to food and water

ad libitum, with shelter and cardboard tunnels for environment enrichment. A long-term

maintenance diet (R05-10; Scientific Animal Food and Engineering) was used to limit obesity.

The animal work was approved by the local Animal Welfare and Ethical Review Body

(AWERB). All experiments were conducted by trained researchers (Cher Bachar, and Vin-

cenzo De Paola) holding a UK personal license, under a project license (70/7845), and in

accordance with the Animals (Scientific Procedures) Act 1986 (United Kingdom) and associ-

ated guidelines.

Surgery. Cranial windows were surgically implanted overlying the barrel cortex (center

coordinates were: Anterior Posterior −1.8 mm, and Lateral +2.8 mm from bregma) according

to previously described methods [18, 23]. Briefly, mice were anesthetized with a ketamine-

xylazine i.p. injection (0.083 mg/g ketamine, 0.0078 mg/g xylazine). The animals then were

administered i.m. dexamethasone (0.02 mL at 4 mg/mL) to limit inflammation response and s.

c. bupivacaine (1 mg/kg), a long-lasting local anesthetic. Once the skull was exposed, a few

drops of the short-lasting local anesthetic lidocaine [1% (wt/vol) solution] were applied on its

surface. The glass coverslip that seals the window was placed directly over the dura and the

bone edges, with no agarose in between, and was sealed with dental cement. Mice were allowed

to recover for 2-3 weeks before the start of the imaging protocol. Post-operative care was done

by personal license holders, and trained staff at the animal house. Animals were monitored

continuously for the first hour after surgery, daily until fully recovered (minimum 72 hr) and

then at least three times a week after that to ensure no adverse effects are seen. Post operation

analgesia was given (e.g. buprenorphine) within 72 hours post surgery, as advised by the

Named Veterinary Surgeon (NVS).

A number of humane end points were observed, and mice were sacrificed by a schedule 1

method or non schedule 1 method, if 2 or more of the following clinical signs are present:

piloerection, hunched posture, reduced activity, increased docility or aggression, weight loss

up to 20% of body weight, dehydration persisting for 24 hours in spite of fluid replacement

therapy, altered respiration, or self-mutilation.

In vivo imaging. Imaging was performed in a manner similar to Grillo et al [18, 23], with

a few minor alterations, described below. A two-photon microscope equipped with a tunable

Coherent Ti:Sapphire laser and Prarie software for image acquisition was used for all imaging

Fig 1. Examples from the 3D axon dataset. A, image with several crossing axons. B, image with 2 crossing axons with low intensity. C, image with

high intensity noise (on the right). D, image with blob-like noise.

https://doi.org/10.1371/journal.pone.0183309.g001
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experiments. Mice were anesthetized with Isoflurane, an inhalation anaesthetic, and secured to

a fixed support under the microscope. To prevent dehydration in the eyes, Lacri-lube (Aller-

gan) was applied. To regulate body temperature (37˚C) an underlying heat pad was used and

rehydration administered with isotonic saline solution (i.p.) as required during long imaging

sessions. Depth of anesthesia was closely monitored by a video camera and regularly checking

reflexes (toe pinch) and respiratory rates. An Olympus 4× with a 0.13 numerical aperture

(NA) objective was used to identify characteristic blood vessel patterns, in order to relocate

axons used in previous imaging sessions. An Olympus 40 × 0.80 NA water-immersion objec-

tive was used to acquire the images (512 × 512 pixels, 0.147 μm per pixel for the x, y planes,

and 1 μm for the z plane. A Point Spread Function characterised by a Full Width at Half Maxi-

mum (FWHM) values of 0.45 × 0.45 × 2.5 μm (x, y, z)). Either a water repellent pen or Vaseline

(pure Petroleum Jelly) was applied around the cranial window to stabilize the meniscus for the

40x objective. A pulsed 910 nm laser beam was used never exceeding 70 mW on the back focal

plane. Each imaging session typically lasted for 60–90 min, during which time up to 40 image

stacks were collected.

Algorithm details

Overview of bouton detection method. To make use of the varicosity of boutons we

decided on the following architecture. Our bouton detection algorithm consists of feature

enhancement which strengthens the bouton-specific signals that are applied to the mean inten-

sity projections of two-photon stacks. Following this, an interest point detector is used to iden-

tify candidate boutons, and a feature vector is constructed for each region of interest (ROI).

With the local maxima of boutons increased by the blob feature enhancement module, the

interest point detection module identifies candidate boutons, which significantly improves the

scores (precision, recall, F1 score) and computation speed. In addition, a custom local maxima

suppression algorithm is used in order to move candidate boutons to their local maxima. Can-

didate boutons are then classified as boutons and non-boutons using an SVM based on the

extracted features. Lastly, we extend the 2D locations detected to 3D. In the process of choos-

ing the most appropriate interest point detector and feature descriptor, we compared several

well-known approaches and chose the best methods for our algorithm. A summary of the

main steps of the algorithm is shown in Fig 2.

Fig 2. Flow chart of the bouton detection method. Our proposed algorithm has 5 main steps. (1) A negative Laplacian of Gaussian (LoG) mask is used

in order to enhance blob-like objects (i.e. boutons) in the mean intensity projected image. (2) An interest point detector then detects the possible bouton

locations. (3) Non-maximum suppression is used to move candidate boutons to their local maxima, and removes multiple detections of the same bouton in

a close local area. (4) Feature vectors (with 12 elements each) are then generated at the location of the detected interest points. (5) A trained SVM

classifies the points as boutons or non-boutons. (6) The last step uses the 2D coordinates to define a search volume for the 3rd coordinate.

https://doi.org/10.1371/journal.pone.0183309.g002
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Feature enhancement module. The purpose of the Feature Enhancement module is to

enhance structures corresponding to boutons (Fig 3). Because the varicosity of the boutons

yields a blob-like image structure, we decided to use a negative Laplacian of Gaussian (LoG)

convolution kernel with a set radius, as it has been shown to enhance such types of structure

well [24]. The Gaussian kernel with a scale parameter, σ, is defined as

Gðx; y; sÞ ¼
1

2ps2
exp

� ðx2 þ y2Þ

2s2

� �

ð1Þ

where x and y denote spatial position in the imaging plane, and σ is the standard deviation of

the Gaussian function G(x, y; σ). The LoG kernel may be thought of as a “dark blob” detector

Fig 3. Example of the bouton detection method step by step. A, A mean intensity projection image from the 3D axon dataset. B, The same

image convolved with LoG mask. C, In this example Interest points were detected using SURF (green “+” signs). D, Following SVM classification,

the final proposed boutons are plotted on the mean projection image (white “+” signs).

https://doi.org/10.1371/journal.pone.0183309.g003
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and is expressed as

LoGðx; y; sÞ ¼ Gxxðx; y; sÞ þ Gyyðx; y; sÞ ¼
x2 þ y2 � 2s2

ffiffiffiffiffiffiffiffiffiffi
2ps5
p exp

� ðx2 þ y2Þ

2s2

� �

ð2Þ

at a certain scale space representation LoG(x, y; σ), where Gxx,yy denotes the partial second

order derivatives in x and y, respectively. By converting to polar coordinates and considering

only radial distance, ρ, (because LoG(x, y; ρ) is circularly symmetric), the value of σ that gives

the maximum response for an image, I(x, y), containing light blobs with a radius, r, is such

that:

d
ds
�

Z r

0

LoGðr; sÞdr

� �

¼ 0 ð3Þ

This leads to:

r2 � 2s2 ¼ 0

and so

s ¼
r
ffiffiffi
2
p

Convolution of the image with the LoG kernel increases sensitivity of the bouton detection

by accentuating local extrema corresponding to blob-like structures in the image. In our case,

we use the prior value for σ = 4, which reflects the average diameter of a bouton (average of 20

boutons from this dataset, σ = 4.56 pixels; 512 × 512 resolution; 0.147 μm per pixel). Convolv-

ing the image with −LoG(x, y; σ) suppresses the intensity of image structures significantly

smaller than σ. By moving to a coarser scale image, bouton detection specificity is increased

with the disappearance of small structures that could become false positive instances of bou-

tons in the next step of processing (Fig 2). This is particularly important, due to the scale-

invariance of the succeeding interest point module for detecting candidate boutons. Moreover,

the smoothing effect of the LoG kernel increases the stability of the subsequent interest point

detection by reducing shot noise, and increasing the image response of blob-like structures.

One disadvantage of this is that it may lead to duplicate detections of the same bouton. To

address this, a custom non-maximum suppression step is used.

Interest point detection module. The purpose of using an interest point detector is to

find candidate locations for the boutons within the image. This allows the remainder of the

bouton detection process to focus on using computationally expensive routines to separate the

candidate boutons from non-bouton structures, far more efficient than pixel-wise application

of a feature descriptor (see Feature Descriptor module). We selected three widely used interest

point detectors (Harris, SURF keypoint detector and SIFT keypoint detector), focusing on

those that are more likely to be appropriate for detecting the blob-like nature of boutons. We

explain the reasons for these choices below, evaluating their performance in a later section.

The Harris corner detector relies on the principle that at a corner, the image intensity

within a local window will change considerably when the window is shifted in different direc-

tions [25]. Because a bouton is a Gaussian-like object [26] that changes its intensity along all

radial directions, it displays some attributes that might be considered to be corner-like. The

Harris detector makes use of local partial derivatives in intensity over space, computing a 2 × 2

Harris matrix [25]. The eigenvalues of the matrix yield a corner response at all locations in the

Detection of axonal synapses in 3D two-photon images
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image, which is then thresholded to produce candidate bouton locations. We used the Matlab
implementation of the Harris detector in this work.

The SIFT interest point detector forms one part of the SIFT keypoint detector [27], which is

in extremely wide usage in object recognition, image stitching and video tracking [28, 29]. The

interest point locations of SIFT are identified by finding local maxima in a scale-space repre-

sentation of the original image; this representation is obtained by blurring the image with

Gaussian masks at different spatial scales. We used the VLFEAT implementation of SIFT [30].

Finally, the SURF keypoint detector [31] uses box filter approximations of second order

spatial Gaussian functions in order to construct a local Hessian matrix; the determinant of this

matrix can be used to find locations of intensity minima, maxima and saddle points. The

approach has been suggested [31] to be good at dealing with slightly elongated structures, mak-

ing it suitable for detecting the possible locations of boutons, particularly since they sit on or

very near to axons. We used the Matlab implementation of SURF.

Non-maximum suppression module. In this step, we propose a way to eliminate candi-

date bouton locations that are present in a relatively close local area by using non-maximum

suppression [32]. This is due to the statistics of the image data, and tendency of SURF interest

point detector to fire several times around circular structures, which are common in micros-

copy data. By removing multiple detections of the same bouton automatically, the user will not

need to manually remove the over-detections.

In this paper, non-maximum suppression is done differently to that of the Canny edge

detector in [32], as it is applied to candidate bouton centres rather than candidate edge loca-

tions. To place candidate boutons at their local maxima, we iterate over all candidate bouton

locations and relocate them to the pixel with the highest intensity in their local area (= W1 pix-

els). In order to save time in manual user intervention, we then remove all boutons in the local

area (= W2 pixels), apart from one candidate bouton in the location with highest pixel inten-

sity. We found that the best values for W1 and W2 were 20 and 10 respectively.

Feature descriptor module. The purpose of using a feature descriptor is to capture the

appearance of image regions around candidate bouton locations; these descriptors are then

used as observation vectors to classify the candidate interest points as boutons or non-boutons.

In this section, we briefly describe 3 feature descriptors that were evaluated for this task; one of

these is custom designed for the bouton detection task.

Standard region descriptors. The more widely used feature descriptors (including SIFT

[27] and HOG [33, 34]) for local image appearance consist of a standard series of steps, based

around estimating the local intensity gradient field around a reference location (such as an

interest point): they differ mainly in the local operators used to estimate the intensity gradient

field, the way that the gradient field is encoded in to the descriptor, and the way that the distri-

butions of gradient orientation are normalised. We used the most widely employed standard

implementations of HOG (Matlab) and SIFT-based descriptors (VLFEAT [30]). HOG yields a

144 element descriptor which describes the gradient field in a number of square pixel regions

arranged around the interest point. SIFT yields a 128 element rotation invariant description of

a center-weighted local image gradient field, again computed around the interest point. We

reduced the length of both descriptors to 12 elements by using minimum Redundancy, Maxi-

mum Relevance [35, 36]. This process selects the most informative and least redundant subset

of features, speeding processing, and improving stability. Because reducing dimensionality in

this way changes the normalisation of the remaining elements of the vector, we re-normalise

the reduced vectors using the best of L1, L2 and L1 normalisation on the remaining elements

within the validation data set.

A custom descriptor. SIFT descriptors and the HOG descriptor are designed for general

use in visual recognition. We hypothesized that a custom-designed descriptor, providing a

Detection of axonal synapses in 3D two-photon images
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joint encoding of spatial and directional structure, could improve the ability of a classifier to

distinguish boutons from non-boutons. Accordingly, we built a Gabor-based feature descrip-

tor that was designed to perform well for the bouton detection problem.

Gabor filters give large responses at intensity edges and within regions of an image where

the texture matches that of the filter. They have successfully been used for edge detection [37]

and texture segmentation [38, 39]. However, the parameters of spatial Gabor filters can also be

tuned so that they yield strong responses to blob-like structures. The patterns of intensity

around boutons also tend to contain some directional structures (e.g. the axons they lie on).

Thus, without performing explicit axon detection, a descriptor that takes the visual of structure

surrounding boutons into account can be constructed from patterns of directional Gabor fil-

ters. The two-dimensional Gabor functions were selected using the standard definition for

symmetric 2D Gabor functions:

gevenðx; yÞ ¼
1

2psxsy
exp �

1

2

ðy � y0Þ
2

s2
y

þ
ðx � x0Þ

2

s2
x

" #" #

cos ð2pwx0
x þ 2pwy0

yÞ ð4Þ

where σx and σy are the standard deviations of the elliptical Gaussian for x and y, respectively.

The centre of the receptive field in the spatial domain is (x0, y0) and (wx0
;wy0

) is the optimal

spatial frequency of the filter in the frequency domain. The Gabor filters module uses several

Gabor filters with varying spatial frequency and standard deviations to construct a robust bou-

ton discriminatory feature vector x = [x1, . . ., xV]. Element d of the feature vector x is defined

as:

xd ¼
XI� 1

i¼0

XJ� 1

j¼0

f ði; jÞ � gdði; jÞ ð5Þ

where f is an image patch of size I × J pixels meant to capture the entirety of individual boutons

and has its centre in a single interest point. The inner products between an image patch and

the Gabor filters at angles θ = nπ/6, {n = 1, 2, 3, . . ., 12} make up the feature vector x with

V = 12 features (Fig 4). The image patch size is determined by the standard deviation used in

the interest point detection module such that

I � 1

2
¼ 3sx ð6Þ

J � 1

2
¼ 3sy ð7Þ

because σx and σy are approximately equal to 4, and f consists of 25 × 25 pixels.

SVM classification module. The classification module is trained to identify the true posi-

tives among candidate bouton regions (obtained from the interest points) using the extracted

features (Fig 3G). For this detection task, we use a SVM, which is a sparse kernel machine that

maximises the margin between points of different classes in a high-dimensional feature space.

SVMs have been found to be easy to train, are widely implemented and are relatively fast in

classifying. Our SVM uses a polynomial discriminant function to maximise the margin

between the two classes of candidate boutons. The regularisation coefficient, C> 0, penalises

the misclassification of non-boutons as boutons and vice versa. To train and validate the SVM

to correctly classify interest points, 80 images were used; 900 patches were randomly selected

for training and validation. The collected training image patches of negative and positive

Detection of axonal synapses in 3D two-photon images
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instances of boutons were resized to 25 × 25 pixels to match the size of the average bouton. All

the training images contain a part of an axon.

3D point detection module. The 3D point detection module aims to transfer the final 2D

points on the mean intensity projection image detected by the algorithm, and extend them to

3D (i.e. detect which slice they lie on).

For each bouton detected in 2D, a 3D point is found by:

z ¼ arg max
k

XN

i¼1

XN

j¼1

f ðxi; yj; zkÞ ð8Þ

In which f(xi, yi, zk) is a voxel region in 3D space, k is the z coordinate, xi, yi are the (x, y)

coordinates, N is the number of pixels in a patch. For each bouton detected, the algorithm iter-

ates over all slices in the stack, and sums the pixel intensities within a 25 × 25 patch centred on

the point. The slice with highest overall value is chosen as the location z.

Method validation. We compared the performance of the algorithm to manual labelling

of boutons, done by 3 expert neurobiologists, and another automated tool, EPBscore, a Matlab-

based software tool available for detection and analysis of axonal boutons. We used a total of

100 images in the training, validation (80 images), and testing (20 images). The images chosen

Fig 4. Example of bouton features generated using Gabor filters. On the left, there are examples of 4 different types of patches

extracted from the interest points (in this example, by the SURF detector). The first 2 are examples of boutons, the 3rd is an example of

noise, and the 4th an example of an axon segment. The image patches are then convolved with 12 different Gabor filters and their inner

product is computed to create a 12-dimensional feature vector. The colorbar shows the pixel intensities.

https://doi.org/10.1371/journal.pone.0183309.g004
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for testing had a few of axons per image, and considerable noise (Fig 1). Each image had a size

of 512 × 512 × Z voxels, 2[15, 50]. We used 900 image patch examples of boutons and non-

boutons (450 each) for training (720 patches) and validation (180 patches). A total of 345

(average of 17 per image) boutons were present in the test images.

To compute the metrics (Precision, Recall, F1 score and AUC), we calculated the amount

of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN)

that were present in each image (Fig 5). Precision is computed using TPs and FPs

(Precision ¼ TP
TPþFP), Recall is computed using TPs and FNs (Recall ¼ TP

TPþFN), and F1 score is

described by both Precision and Recall (F1 ¼ 2�
precision�recall
precisionþrecall).

Results

Comparison of feature descriptors and interest point detectors

We compared several well-known feature descriptors (Fig 6, left), including HOG, and SIFT,

and Gabor kernels. We trained the SVM using the same datasets on HOG, SIFT, or Gabor fea-

tures. For a fair comparison with the Gabor features, we extracted the 12 most significant fea-

tures for each by using minimum redundancy feature selection [35, 36], and normalized the

features using the best normalization method for each descriptor (L1, L2, L1). We also

Fig 5. Examples of how True Positives (TP), False Positives (FP), False Negative (FN) and True

Negatives (TN) were classified. For the calculation of these scores, we manually labelled boxes around the

correct boutons. A point was classified as a TP only when its x and y coordinates lie within one of the boxes,

and only 1 TP was counted per box (i.e. if there are 2 points within the box, 1 would be counted as a TP, and

one would be counted as FP). FNs were classified for the number of detected boxes that did not have any

points. The TNs were all the other points in the image (not including the 25 × 25 boxes around all other TPs,

FPs, and FNs).

https://doi.org/10.1371/journal.pone.0183309.g005
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Fig 6. Graphs comparing the performance of the descriptors and interest point detectors at 103 SVM class thresholds.

We chose Gabor and SURF, as our descriptor and interest point detector, as they had better performance than the other methods

(all with separately optimized hyperparameters). The precision-recall graphs seem to have an unusual curvature; however, this

can be explained by the nature of the dataset. In this axon dataset, where the number of TPs (i.e. boutons) is relatively small

compared to the size of the image, it is to be expected that there will always be some FP detections when TP points are also

detected. As such, there will never be a case in which precision = 1, as there will always be some FPs detected as well (i.e. the
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optimized the SVM hyperparameters (e.g. Kernel function, Polynomial Orders (d), Cost (C),

and γ) and used the best result for each descriptor. Comparison between the descriptors is

shown in Fig 6. We compared various performance measures including Precision, Recall, F1

score, and Area Under Curve (AUC).

The proposed Gabor-based descriptor had the best performance compared to both HOG

and SIFT (Fig 6, left). We also compared several interest point detectors (SURF, Harris and

SIFT), as an improvement in the interest point detection can have a big influence on the final

performance of the algorithm. SURF had significantly better Recall and F1 scores (Fig 6,

right). We therefore chose SURF as our interest point detector, and Gabor as our feature

descriptor. In a later section, we compare our method against the existing semi-automated

alternative for bouton detection (within EPBscore [16]).

Optimization of hyperparameters

To optimize the performance of the algorithm, we compared the Precision-Recall and Receiver

operating characteristic (ROC) curves for different descriptors and interest point detectors

(Fig 6) on a validation set. After scaling the SVM scores to range [−1, 1], we found that the

threshold—defining a point on the ROC—that gave the best results was at −0.0399, giving a

mean F1 score of 0.840 (Precision = 0.765; Recall = 0.952). We optimized our algorithms after

choosing the optimal normalization paradigm on the features, and on different SVM hyper-

parameters. These include kernel functions (Polynomial and Gaussian), polynomial orders,

Cost (C), and γ.

Our best performing SVM model has a polynomial kernel (order = 3) and a regularisation

term that penalises the misclassification of non-boutons and boutons.

Comparison to EPBscore

In this section, we compare our algorithm (using SURF and Gabor features, as our interest

point detector and feature descriptor, respectively) to EPBscore. When analysing data from

neurons, it is important to include as many synapses (i.e. boutons) as possible in the analysis.

Hence, we used the measure of Recall (the number of true boutons that were correctly

detected). We found that our algorithm detected boutons (TPs) extremely well (Fig 7, Table 1),

with a 0.952±0.15 Recall compared to EPBscore that had a recall of 0.306±0.21 (p< 10−5, Kol-

mogorov-Smirnov (KS) test). The Precision, which is an indication of the number of false bou-

ton detections, was also measured. There was no significant difference (p = 0.135, KS test) in

the precision of our algorithm and EBPscore. We then computed the F1 score, which takes

into account both Precision and Recall. Our detector is significantly better (p< 10−5, unpaired

two-tailed t-test); with 0.433 higher average F1 score than EPBscore, demonstrating that our

algorithm performs much better than the current state of the art method used to analyse syn-

aptic boutons.

SVM can not have a FPR of 0). A, Precision-Recall curve comparing feature descriptors (AUC: Gabor = 0.779, HOG = 0.728,

SIFT = 0.75). Gabor based descriptors reached the highest Precision, and has the best overall performance, demonstrated by the

AUC. B, Precision-Recall curve comparing interest point detectors (AUC: SURF = 0.779, Harris = 0.598, SIFT = 0.357). SURF

reaches the best TPR in comparison to the other methods. C, ROC curve comparing feature descriptors (AUC:

Gabor = 1.8 × 10−5, HOG = 1.65 × 10−5, SIFT = 1.49 × 10−5). Gabor has the best overall performance, demonstrated by the AUC.

D, ROC curve comparing interest point detectors (AUC: SURF = 1.8 × 10−5, Harris = 1.08 × 10−5, SIFT = 4.69 × 10−6). SURF

reaches the best Recall in comparison to the other methods. E-F, Error bar graphs comparing metrics between the descriptors

and interest point detectors, respectively. Gabor and SIFT have the best overall performance across the metrics compared. The

dotted lines are where the graphs saturate. TPR, True Positive Rate; FPR, False Positive Rate; FP, False Positive; TP, True

Positive; Error bars, SEM; AUC, Area Under Curve.

https://doi.org/10.1371/journal.pone.0183309.g006
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Application to a published dataset

We applied our algorithm to a published dataset from De Paola et al [23], in which they did a

morphological analysis of axons, and quantified synaptic dynamics. The data was collected

using a two-photon microscope, in the mouse barrel cortex. The genetic background was Thy-

1 transgenic mice in a c57/bl6 background, expressing cytoplasmic GFP (more details of

experimental method in [23]). We analysed 22 images, containing 348 boutons.

The algorithm performed well, even without being tuned to this dataset. Example of perfor-

mance is shown in Fig 7C. Precision (p = 0.04, unpaired two-tailed t-test), Recall (p = 0.002,

Fig 7. Comparative scores of our bouton detection algorithm versus EPBscore results. Results of detection in EBPscore versus our

algorithm in the test dataset (A-B), and in a published dataset (C-D) [23]. A, Example of bouton detection in the test dataset. The white boxes

indicate the true positive boutons, and the purple crosses are the boutons detected by the algorithm, and green/ teal crosses are boutons

detection by EPBscore. B, The proposed bouton detection method has significantly better Recall (p < 10−5, KS test) and F1 (p < 10−5, unpaired

two-tailed t-test) scores than EBPscore. C, Example of bouton detection in the published dataset. D, In the published dataset, the proposed

bouton detection method has significantly better Precision (p = 0.04), Recall (p = 0.002, unpaired two-tailed t-test) and F1 (p = 0.004, unpaired

two-tailed t-test) scores than EBPscore. Error Bars, SEM; Kolmogorov-Smirnov, KS.

https://doi.org/10.1371/journal.pone.0183309.g007
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unpaired two-tailed t-test) and F1 (p = 0.004, unpaired two-tailed t-test) scores were signifi-

cantly better than EBPscore (Fig 7D).

Discussion

We used an algorithm based on interest point detection, feature extraction, and classification

using an SVM. In our chosen method, first a negative LoG mask was convolved with the mean

projection image, which produced an image with enhanced blob-like objects (i.e. boutons).

Then a SURF point detector was applied to the pre-processed LoG image, which extracts inter-

est points for the classifier. These image patches [25 × 25 pixels] were convolved with 12

Gabor filters to generate a feature vector for each interest point. The feature vectors were then

processed by the SVM classifier which gave the final detected 2D bouton locations, which can

be extended to 3D locations.

We found that our algorithm is significantly better (p< 10−5) than the current state of the

art method (EPBscore) in the same dataset. It detects nearly all boutons that were present in

the images, with a mean Recall of 0.95 ± 0.06. The limitation of the algorithm is that, in our

tests, it sacrifices a small amount of precision (i.e. more FPs) for a better recall. Most of the FPs

were either due to noise, spines or intersection points in the axons. However, an algorithm

that is independent of the axon or neuron tracing is advantageous, as it is faster, and reliably

produces likely bouton candidates, unlike methods based on neuronal tracing which can be

Table 1. Comparative scores of our bouton detection algorithm versus EPBscore results.

Image Number of boutons Bouton detection algorithm EPBscore

Precision Recall F1-score Precision Recall F1-score

1 10 0.71 1.00 0.83 1.00 0.20 0.33

2 8 1.00 1.00 1.00 1.00 0.25 0.40

3 27 0.73 1.00 0.84 0.70 0.26 0.38

4 40 0.85 0.98 0.91 0.83 0.13 0.22

5 26 0.74 1.00 0.85 0.80 0.77 0.78

6 16 0.56 0.94 0.70 1.00 0.75 0.86

7 11 0.91 0.91 0.91 0.70 0.64 0.67

8 7 1.00 1.00 1.00 0.00 0.00 0.00

9 4 0.67 1.00 0.80 0.50 0.25 0.33

10 10 0.91 1.00 0.95 1.00 0.20 0.33

11 11 0.92 1.00 0.96 0.57 0.36 0.44

12 9 0.78 0.78 0.78 1.00 0.22 0.36

13 25 0.78 0.84 0.81 0.71 0.20 0.31

14 49 0.66 0.88 0.75 1.00 0.08 0.15

15 31 0.88 0.90 0.89 0.73 0.35 0.48

16 12 0.71 1.00 0.83 1.00 0.50 0.67

17 17 0.45 1.00 0.62 1.00 0.47 0.64

18 9 0.53 0.89 0.67 0.67 0.22 0.33

19 8 0.89 1.00 0.94 0.50 0.13 0.20

20 15 0.64 0.93 0.76 1.00 0.13 0.24

Average 17.25 0.76 0.95 0.84 0.79 0.31 0.41

STD 0.15 0.06 0.10 0.25 0.21 0.21

On average, Recall and F1 score were better by 0.65 and 0.43, respectively (p < 10−5). Precision is not significantly different (p = 0.135) between the

methods.

https://doi.org/10.1371/journal.pone.0183309.t001
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slow, manual, and produce variable results that are dependent on the neuron trace. To remove

the extra FPs, we include a simple Graphical User Interface (GUI) that allows a user to easily

remove these over-detected points, or to add undetected boutons. The GUI also records these

FPs, so that they can be used in future training.

The algorithm presented in this paper is likely to work best for images acquired using a sim-

ilar protocol to the dataset provided here. Indeed, we demonstrated that the algorithms

worked well in another published dataset [23], which had similar conditions (Fig 7C and 7D).

It is also likely to work well for other image datasets with similar blob-like objects, because of

the data this algorithm was trained on, as well as the steps taken in the algorithm to detect ini-

tial points. However, is it possible that other imaging protocols with considerably different

conditions might lead to different contrasts, resolutions, and noise levels which might require

changes to some of the modules, or require additional training for optimal results. In addition,

the use of interest point detectors also provides scale estimates that could be used to support

the detection of boutons at different magnification factors, either through training the classi-

fier with the scale estimate, or using the scale estimate to tune the Gabor parameters. We sug-

gest this for future work.

The strategy for detecting boutons on the mean intensity projection of a stack, and then

tracing back through slices to determine the z coordinate, works well for the acquisition proto-

col used in this and similar studies, and requires low computational effort. However, there is

the small possibility that axons which cross in the third dimension (z), and have boutons in a

nearby x, y location, can lead to incorrect bouton detections. The solution to this problem lies

in creating a fully three-dimensional bouton detector which is able to operate on the 3D data

by taking into account the slice spacing and slice thickness of the confocal stack. Future work

will involve the use of intensive training using surrogate data in order to learn a 3D bouton

detector. This might employ a deep learning architecture, currently a very popular class

of methods in computer vision, which has also been applied to biomedical image analysis

[40–44]. Deep learning methods are often trained end-to-end, i.e. the features that are learned

during training are not hand crafted, and are optimal for the particular task in hand. This kind

of approach might yield improved performance over methods with hand-crafted features. It is,

however, achieved at the expense of having sufficiently large numbers of datasets with labelled

boutons. The benefit of the current approach is that the parameters are sufficiently small in

number to enable hand optimization.

We will also extend the analysis to time-series images in order to analyse the changes in

synapses over time, analysis often required in the study of structural plasticity of neurons.

Conclusion

In this paper we proposed an algorithm for the detection of axonal boutons in 3D two-photon

microscopy images. We found that using SURF keypoints and Gabor features gives the best

results after comparing several well-known keypoint detectors and feature descriptors, and

that the algorithm provides significant improvements over the currently available methods.

Most importantly, our method makes advances in automated bouton detection without trac-

ing the axons first, which can be an inaccurate and a computationally expensive step. We

showed that despite removing this step, a high Recall of 95% is achieved, therefore detecting

more true boutons than the existing method [16]. Increasing the TPR is an important factor

for the analysis of axonal boutons in neuroscience research, as it can significantly increase the

number of bouton samples that can be analysed. Since this type of data is often limited and

hard to acquire, it is important to detect all boutons present in the image to get more data for

the statistical analysis. This usually requires a significant and time-consuming amount of user-
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intervention, but by using the approach presented in this paper, it may be more easily

achieved, as the vast majority of boutons are found by the algorithm.
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changes of presynaptic boutons and reduces their contacts with spines. Neuron. 2008; 60(4):590–7.

https://doi.org/10.1016/j.neuron.2008.09.018 PMID: 19038217

21. Majewska AK, Newton JR, Sur M. Remodeling of synaptic structure in sensory cortical areas in vivo.

The Journal of Neuroscience. 2006; 26(11):3021–9. https://doi.org/10.1523/JNEUROSCI.4454-05.

2006 PMID: 16540580

22. Marik Sa, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD. Axonal dynamics of excitatory and inhibi-

tory neurons in somatosensory cortex. PLoS Biology. 2010; 8(6):e1000395. https://doi.org/10.1371/

journal.pbio.1000395

23. De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, et al. Cell type-specific structural plas-

ticity of axonal branches and boutons in the adult neocortex. Neuron. 2006; 49(6):861–75. https://doi.

org/10.1016/j.neuron.2006.02.017 PMID: 16543134

24. Kong H, Akakin HC, Sarma SE. A generalized Laplacian of Gaussian filter for blob detection and its

applications. IEEE Transactions on Cybernetics. 2013; 43(6):1719–1733. https://doi.org/10.1109/

TSMCB.2012.2228639 PMID: 23757570

25. Harris C, Stephens M. A Combined Corner and Edge Detector. Procedings of the Alvey Vision Confer-

ence. 1988; 15:50.

26. Kitti T, Jaruwan T, Chaiyapon T. An Object Recognition and Identification System Using the Harris Cor-

ner Detection Method. International Journal of Machine Learning and Computing. 2012; 2(4):462–465.

https://doi.org/10.7763/IJMLC.2012.V2.168

27. Lowe DG. Distinctive image features from scale invariant keypoints. International Journal of Computer

Vision. 2004; 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Detection of axonal synapses in 3D two-photon images

PLOS ONE | https://doi.org/10.1371/journal.pone.0183309 September 5, 2017 17 / 18

https://doi.org/10.1162/089976602753712945
http://www.ncbi.nlm.nih.gov/pubmed/12020447
https://doi.org/10.1186/1471-2105-14-287
https://doi.org/10.1186/1471-2105-14-287
http://www.ncbi.nlm.nih.gov/pubmed/24088199
https://doi.org/10.1007/s12021-009-9057-y
http://www.ncbi.nlm.nih.gov/pubmed/20012509
https://doi.org/10.1016/j.media.2008.06.019
https://doi.org/10.1371/journal.pone.0001997
https://doi.org/10.1038/nature10844
http://www.ncbi.nlm.nih.gov/pubmed/22343892
https://doi.org/10.1371/journal.pbio.0060219
https://doi.org/10.1016/j.tins.2010.01.001
https://doi.org/10.1016/j.tins.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20138375
https://doi.org/10.1016/j.jneumeth.2005.07.011
http://www.ncbi.nlm.nih.gov/pubmed/16157388
https://doi.org/10.1523/JNEUROSCI.0254-13.2013
https://doi.org/10.1523/JNEUROSCI.0254-13.2013
https://doi.org/10.1073/pnas.1218731110
https://doi.org/10.1073/pnas.1218731110
http://www.ncbi.nlm.nih.gov/pubmed/23542382
https://doi.org/10.1523/JNEUROSCI.4825-12.2013
https://doi.org/10.1523/JNEUROSCI.4825-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23447617
https://doi.org/10.1016/j.neuron.2008.09.018
http://www.ncbi.nlm.nih.gov/pubmed/19038217
https://doi.org/10.1523/JNEUROSCI.4454-05.2006
https://doi.org/10.1523/JNEUROSCI.4454-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16540580
https://doi.org/10.1371/journal.pbio.1000395
https://doi.org/10.1371/journal.pbio.1000395
https://doi.org/10.1016/j.neuron.2006.02.017
https://doi.org/10.1016/j.neuron.2006.02.017
http://www.ncbi.nlm.nih.gov/pubmed/16543134
https://doi.org/10.1109/TSMCB.2012.2228639
https://doi.org/10.1109/TSMCB.2012.2228639
http://www.ncbi.nlm.nih.gov/pubmed/23757570
https://doi.org/10.7763/IJMLC.2012.V2.168
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1371/journal.pone.0183309


28. Mikolajczyk, Krystian; Schmid C. Indexing based on scale invariant interest points. Eighth IEEE Interna-

tional Conference on Computer Vision. 2001;1:525–531.

29. Zhou H, Yuan Y, Shi C. Object tracking using SIFT features and mean shift. Computer Vision and

Image Understanding. 2009; 113(3):345–352. https://doi.org/10.1016/j.cviu.2008.08.006

30. Vedaldi A, Fulkerson B. VLFeat: An Open and Portable Library of Computer Vision Algorithms; 2008.

http://www.vlfeat.org/

31. Bay H, Tuytelaars T, Van Gool L. SURF: Speeded up robust features. European Conference on Com-

puter Vision. 2006; p. 404–417.

32. Canny J. A Computational Approach to Edge Detection; 1986.

33. Dalal N, Triggs B. Histograms of oriented gradients for human detection. IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition. 2005; I:886–893.

34. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field

model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging. 2001;

20(1):45–57. https://doi.org/10.1109/42.906424 PMID: 11293691

35. Peng HC, Long FH, Ding C. Feature selection based on mutual information: Criteria of max-depen-

dency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence. 2005; 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262

36. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal

of Bioinformatics and Computational Biology. 2005; 3(2):185–205. https://doi.org/10.1142/

S0219720005001004 PMID: 15852500

37. Mehrotra R, Namuduri KR, Ranganathan N. Gabor filter-based edge detection. Pattern Recognition.

1992; 25(12):1479–1494. https://doi.org/10.1016/0031-3203(92)90121-X

38. Jain aK, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition.

1991; 24(12):1167–1186. https://doi.org/10.1016/0031-3203(91)90143-S

39. Weldon TP, Higgins WE, Dunn DF. Efficient Gabor filter design for texture segmentation. Pattern Rec-

ognition. 1996; 29(12):2005–2015. https://doi.org/10.1016/S0031-3203(96)00047-7

40. Xu Y, Li Y, Liu M, Wang Y, Fan Y, Lai M, et al. Gland Instance Segmentation by Deep Multichannel Neu-

ral Networks. arXiv preprint arXiv:160704889. 2016; p. 1–10.

41. Ciresan D, Giusti A, Gambardella L, Schmidhuber J. Deep neural networks segment neuronal mem-

branes in electron microscopy images. Advances in Neural Information Processing Systems. 2012; p.

2843–2851.

42. Greenspan H, Van Ginneken B, Summers RM. Guest Editorial Deep Learning in Medical Imaging:

Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging.

2016; 35(5):1153–1159. https://doi.org/10.1109/TMI.2016.2553401

43. Jurrus E, Paiva ARC, Watanabe S, Anderson JR, Jones BW, Whitaker RT, et al. Detection of neuron

membranes in electron microscopy images using a serial neural network architecture. Medical Image

Analysis. 2010; 14(6):770–783. https://doi.org/10.1016/j.media.2010.06.002 PMID: 20598935

44. Teikari P, Santos M, Poon C, Hynynen K. Deep Learning Convolutional Networks for Multiphoton

Microscopy Vasculature Segmentation. arXiv preprint arXiv:160602382. 2016; p. 1–23.

Detection of axonal synapses in 3D two-photon images

PLOS ONE | https://doi.org/10.1371/journal.pone.0183309 September 5, 2017 18 / 18

https://doi.org/10.1016/j.cviu.2008.08.006
http://www.vlfeat.org/
https://doi.org/10.1109/42.906424
http://www.ncbi.nlm.nih.gov/pubmed/11293691
https://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1142/S0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500
https://doi.org/10.1016/0031-3203(92)90121-X
https://doi.org/10.1016/0031-3203(91)90143-S
https://doi.org/10.1016/S0031-3203(96)00047-7
https://doi.org/10.1109/TMI.2016.2553401
https://doi.org/10.1016/j.media.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20598935
https://doi.org/10.1371/journal.pone.0183309

