
Comparing Transcription Rate and mRNA Abundance as
Parameters for Biochemical Pathway and Network
Analysis
Brewster Hayles, Sailu Yellaboina¤, Degeng Wang*

Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America

Abstract

The cells adapt to extra- and intra-cellular signals by dynamic orchestration of activities of pathways in the biochemical
networks. Dynamic control of the gene expression process represents a major mechanism for pathway activity regulation.
Gene expression has thus been routinely measured, most frequently at steady-state mRNA abundance level using micro-
array technology. The results are widely used in statistical inference of the structures of underlying biochemical networks,
with the assumption that functionally related genes exhibit similar dynamic profiles. Steady-state mRNA abundance,
however, is a composite of two factors: transcription rate and mRNA degradation rate. The question being asked here is
therefore whether steady-state mRNA abundance or any of two factors is a more informative measurement target for
studying network dynamics. The yeast S. cerevisiae was used as model organism and transcription rate was chosen out of
the two factors in this study, because genome-wide determination of transcription rates has been reported for several
physiological processes in this species. Our strategy is to test which one is a better measurement of functional relatedness
between genes. The analysis was performed on those S. cerevisiae genes that have bacterial orthologs as identified by
reciprocal BLAST analysis, so that functional relatedness of a gene pair can be measured by the frequency at which their
bacterial orthologs co-occur in the same operon in the collection of bacterial genomes. It is found that transcription rate
data is generally a better parameter for functional relatedness than steady state mRNA abundance, suggesting transcription
rate data is more informative to use in deciphering the logics used by the cells in dynamic regulation of biochemical
network behaviors. The significance of this finding for network and systems biology, as well as biomedical research in
general, is discussed.
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Introduction

Biochemical networks underlie essentially all cellular functions.

Proteins encoded in the genomic sequences form biochemical

pathways and pathways join together to form networks. Cellular

biochemical networks are highly modular in that they consist of a

hierarchical organization of functional modules [1]. For instance,

metabolic enzymes form the metabolic network; protein kinases

are backbones of the signaling network; and transcription factors

are major components of the transcription regulation network.

The cells constantly adapt to changes in their environment and

internal conditions. Consequently, biochemical networks are never

static. The cells respond to extra- and intra-cellular signals by

dynamic orchestration of activities of pathways in the networks;

activate pathways that are needed and inactivate the others [2].

For example, during carbon source shift from glucose to galactose,

the yeast cells activate galactose utilization pathways, while

inactivating pathways required for glucose metabolism [3,4].

Roughly two factors determine how active a pathway is: the

abundance and the activity of its components. The activity of

many proteins, the latter of the two factors, is under tight post-

translational control. There are many forms of post-translational

control: covalent chemical modification such as phosphorylation

[5] and glycosylation [6], allosteric interaction with regulatory

partners [7], etc.

The other determining factor of biochemical pathway activity,

the abundance of proteins, is also under tight cellular regulation.

Gene expression regulation is one of the major regulatory

mechanisms. Hence, gene expression has been, and will continue

to be, extensively studied. Perhaps due to the availability of reliable

and economical measurement methods such as the SAGE [8], the

micro-array and the upcoming deep sequencing technologies [9],

mRNA transcript levels have been the most frequently studied,

even though gene expression process is a multi-stepped process.

Measurement targets are usually steady state mRNA abundance.

The results are widely used in statistical inference of the structures

of underlying biochemical networks [10], as well as in regulatory

sequence analysis to detect common sequence motifs that drive

transcription of functionally related genes [11,12]. The underlying

assumption is that functionally related genes should exhibit similar
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dynamic transcription regulation profiles. Steady-state mRNA

abundance, however, is determined by two factors: transcription

rate and mRNA degradation rate; and discrepancies between

steady-state mRNA abundance and transcription rate have been

frequently reported [3]. This raises the issue whether steady-state

mRNA abundance is the best, and a sufficient, measurement of

functional relatedness.

Functional relatedness is an important parameter for the

construction and dynamic analysis of biochemical networks. To

some degree, genes are organized into distinct, though often

overlapping, functional groups. Transcription of genes in a group

are activated and inactivated together. This observation is

captured in the ‘‘regulon’’ concept to describe the strategy used

by the cells to orchestrate the activity of the collection of its

biochemical pathways [13]. In bacteria, a poly-cistronic operon

can be considered as a regulon, as proteins belong to the same

pathway are often organized into one operon [14]. Additionally,

for genes that are highly functionally related, operons in which

they co-occur tend to be conserved across bacterial genomes

[15,16]. Regulons or functional relatedness of a pair of genes,

however, is difficult to identify in eukaryotes. Genes in eukaryotes

are independent transcription units. Computational analysis of

regulatory sequences to predict similar expression profiles, and

functional relatedness, between a pair of genes remains technically

un-practical. On the other hand, many eukaryote genes, at least in

the yeast S. cerevisiae, have orthologs in bacteria genomes.

Occurrence in the same operon by their bacteria orthologs has

been shown to be a good indicator of functional relatedness for a

pair of such genes in S. cerevisiae [13].

Moreover, genome-wide determination of transcription rates

have been reported for several physiological processes in the yeast

S. cerevisiae [3,17,18]. Here, we report our efforts to take advantage

of these datasets to compare transcription rate and steady-state

mRNA abundance as measurements of functional relatedness.

Our analysis was performed on a group of S. cerevisiae genes that

have bacterial orthologs as identified by reciprocal BLAST

analysis. Functional relatedness of a gene pair is measured by

the frequency at which their bacterial orthologs occur in the same

operon in the collection of NCBI bacterial genomes.

Materials and Methods

A. Genome data and prediction of Saccharomyces
cerevisiae orthologs in bacteria

The proteomic sequences, protein genomic locations, and

complete genomic sequences of 765 bacteria species and the yeast

Saccharomyces cerevisiae were downloaded from NCBI ftp site (ftp://

ftp.ncbi.nih.gov/genomes/). Proteomes of the plasmids in all these

species were not included in our analysis. In order to identify

protein orthology between S. cerevisiae proteomes and the collection

of bacterial proteomes, bi-directional BLASTp analysis was

performed. Briefly, each of annotated open reading frames (ORFs)

of S. cerevisiae was used as a query to BLAST against each of the

bacterial proteomes, with 1024 as the cut-off BLAST E-value [19].

Conversely, each protein sequence in a bacterial proteomes was

used as a query in BLAST against S. cerevisiae proteome, with 1024

as the cut-off E-value. Orthology between a S. cerevisiae protein and

a bacterial protein was identified only when the pair is the best hit

in both direction of the BLAST analysis. Additionally, redundancy

exists in the bacterial proteome collection; many of the 765

bacterial proteomes are highly homologous, sometimes almost

identical, to each other. It is known that such genome redundancy

adversely affect computational prediction of functional relatedness

between genes [20,21]. Therefore, in these cases, we selected only

the one that shared the maximum number of orthologs with S.

cerevisiae to reduce redundancy. Finally, we identified a total of 284

non-redundant bacterial species that share orthologs with S.

cerevisiae. A total of 2030 S. cerevisiae genes were identified to have

bacterial orthologs.

B. Bacterial operon prediction and co-operon frequency
calculation

A support vector machine (SVM), as described previously [22],

was used. Briefly, experimentally proven operons downloaded

from the EcoCyc database were used to create a set of gene pairs,

in which the genes in a pair are adjacent to each other and belong

to the same operon. Additionally, we collected a set of gene pairs,

in which the genes in a pair are adjacent to each other, transcribed

in the same direction, but belong to different operons. Intergenic

distances between the genes in the former gene pairs were taken as

positive data set, whereas those in the latter were taken as the

negative data set. The two datasets were then used to train a

Support Vector Machine to predict poly-cistronic operons in the

284 species of bacteria. For any pair of S. cerevisiae genes, both of

which have bacterial orthologs, we counted how many times their

orthologs occurred in the same operon — the co-operon

frequency. Using this method, we identified 8636 gene pairs,

among 1491 S. cerevisiae genes, to have their bacterial orthologs co-

occur at least once in predicted operons.

The co-operon frequency dataset generated above was further

processed in two steps. First, the data were normalized using the

number of bacterial species that has an ortholog to the

corresponding S. cerevisiae gene. This bacterial species count varies

among the 1491 S. cerevisiae genes. In cases where the counts are

different for the two genes in a pair, the normalization process

should reflect the observation that the degree of co-presence/co-

absence by two genes in bacterial genomes, also known as

phylogenetic profile similarity, is a good indicator of functional

relatedness between two bacterial genes [23]. Normalization with

the lower bacterial species count would discard this useful

information, because only those bacterial species with orthologs

to both S. cerevisiae genes were considered. The higher count is

therefore chosen for the normalization.

The data was then subjected to a second step of processing.

Even though redundancy in the set of bacterial species has been

reduced, as discussed earlier in the gene orthology prediction step,

it is still possible that a gene pair can co-occur, potentially in the

same operon, in a small number of related bacterial species. It has

been reported that such situations adversely affect comparative-

genomics-based analysis of functional relatedness between bacte-

rial genes [21]. This problem was therefore alleviated by

eliminating those gene pairs in which the higher count of bacterial

species with orthologs is less than 50.

The remaining S. cerevisiae gene pairs were considered to be

functionally related (see Results). Genes that are highly function-

ally related tend to have their operons conserved across bacterial

genomes [15,16] and display similar phylogenetic profile [21].

Therefore, the higher the normalized co-operon frequency, the

more functionally related they are considered to be.

C. Micro-array data and data processing
Three S. cerevisiae datasets for parallel measurement of

transcription rate and steady-state mRNA abundance were used.

The three physiological processes studied are glucose-galactose

carbon source shift [3], oxidative stress [17] and osmotic stress

[18], respectively. The first two datasets were downloaded from

the researcher’s website (http://scsie.uv.es/chipsdna/chipsdna-e.

html#datos). The last one was obtained through personal
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communication with the authors. All are time-series data with 6

time points.

Each dataset was independently processed. Briefly, they were first

transformed into folds of change relative to the first time point, and

then subjected to log transformation. Log transformed data for each

time point was found to be normally distributed. Finally, the log-

transformed data were normalized so that the mean of all the genes,

for each time point, would be zero and the standard deviation one.

This was done by finding the Z-scores ((x-m)/s). Genes displaying

flat patterns across all the time points were removed by dropping

those profiles that had a standard deviation less than 0.50.

Resultant data was used in our analysis to compare two genes’

profiles in transcription rate and mRNA steady-state analysis.

Results

A. Transcription rate and mRNA abundance profile
similarity between genes are bi-modally distributed

The Pearson correlation coefficient was used to measure similarity

between two genes’ profiles. For every condition, the set of

correlations between all genes in the respective dataset was

computed. Two correlations were computed for each gene pair in

each of the three conditions: one between their transcription rate

profiles and one between their steady-state mRNA abundance

profiles. The distribution of the resulting correlations was examined

to determine a strategy for further analysis. None of the correlations

is normally distributed. Instead, both correlations in all three

conditions, displayed bi-modal distribution, with peaks at high

negative and positive correlation. Figure 1 displays the distribution

of steady-state mRNA abundance correlation (panel A) and

transcription rate correlations (panel B) in oxidative stress condition.

The distribution of correlations was also examined for the subset

of S. cerevisiae genes that have bacterial orthologs to see whether

they would be significantly different from the bi-modal distribution

discussed above. They were all found to be bimodal, with peaks at

high negative and positive correlations. Figure 2 displays the

distribution of steady-state mRNA abundance correlation (panel

A) for genes with bacterial ortholgs and the corresponding

transcription rate correlations (panel B) in oxidative stress

condition. These bimodal distributions, with two peaks not

significantly different from each other in their sizes, serve as a

good background model for our analysis. When analyzing only

those S. cerevisiae gene pairs whose bacterial orthologs co-occur in

the same operons, the mass of the distribution should shift to the

right, enlarging the positive correlation peak while reducing the

negative correlation peak (see Results section D).

B. The bimodal distribution was explained by simulation
analysis

To investigate why the background distributions discussed

above are bimodal, a simulation was performed. The simulation

started with a simplistic assumption that all gene profiles consist of

linear increases or decreases and could be modeled with a linear

function of timey tð Þ~ st. Gene profiles were generated random-

ly, each with a random slope, s, drawn from a uniform distribution

from the interval {50,50½ �. Values for time points were computed

directly from the line equation using consecutive values for t. In

such a model, every gene profile is either increasing or decreasing,

so all correlations are necessarily either 21 or 1. Not all profiles in

a micro-array time-series datasets are mono-tone; many fluctuate.

To account for this observation and the intrinsic noise in a micro-

array experiment, an error term was added to every time point.

The error was modeled by a Gaussian distribution with

parameters m= 0 and s. As the noise (s) was increased, the

resulting distributions came to resemble the distributions obtained

from experimental data (Figure 3). When the noise is small relative

to the signal (the range of the slope), there are peaks in the

histogram at -1 and 1 and the probability mass decreases

monotonically in both directions toward 0 (Figure 3A). As the

noise is increased relative to the signal, the peaks shift toward zero

in both directions (Figure 3B). Eventually, the distribution

resembled a Gaussian distribution, where only one peak can be

identified (Data not shown).

C. Discrepancy between transcription rate and mRNA
steady-state abundance

Steady-state mRNA abundance is determined, as mentioned

earlier, by both transcription rate and mRNA degradation rate.

Figure 1. Bimodal distribution of transcription rate and mRNA abundance profile similarity. A) Distribution of correlations for mRNA
abundance profiles under oxidative stress is shown; and B) distribution of correlations for transcription rate profiles under oxidative stress.
doi:10.1371/journal.pone.0009908.g001
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Thus, steady-state mRNA abundance does not always correlate

well with transcription rate. For example, ,41% of S. cerevisiae

genes exhibit lower than 0.5 correlation coefficients between their

mRNA abundance and transcription rate profiles in the glucose-

to-galactose shift experiment; ,8% exhibit significant negative

correlation [3].

Another type of discrepancy, a time-delay effect, was observed

in this study (Figure 4). Shown in figure 4A is a correlation matrix

of the datasets from the osmotic stress experiment. The datasets

contain 6 columns (time points) for transcription rate (TR) analysis

and 6 columns (time points) for steady state mRNA abundance

(RA) analysis; a column contains a reading for each gene at the

corresponding time point and analysis. The correlation matrix

display pair-wise Pearson correlation coefficients among the 12

columns. Each column correlates perfectly with itself as shown by

the diagonal in figure 4A. Part of the matrix that correlates TR

columns with RA columns was enlarged in figure 4B. TR columns

display better forward correlation. The 1st TR time point (TR1)

correlated better with the 2nd RA time point (RA2) than with the

1st RA time point (RA1). Similarly, The 2nd TR time point (TR2)

correlated better with the 3rd RA time point (RA3) than with the

2nd RA time point (RA2); the 3rd TR time point (TR3) correlated

better with the 4th RA time point (RA4) than with the 3rd RA

time point (RA3); and etc. Consistently, the RA column correlated

better backward; the 6th RA time point (RA6) correlated better

with the 5th TR time point (TR5) than with the 6th TR time point

(TR6). Thus, a time-delay effect, as our analysis suggested, exists

from TR to RNA.

D. Transcription rate correlates better with functional
relatedness

Transcription takes time. The delay effect discussed above

was therefore biologically meaningful. Moreover, it confirms the

quality of the datasets and the way they are processed in this study.

Figure 2. Bimodal distribution of transcription rate and mRNA abundance profile similarity between S. cerevisiae genes with
bacterial orthologs. Distribution of correlations for mRNA abundance (A), as well as the distribution of correlations for corresponding transcription
rate profiles (B), under oxidative stress are shown.
doi:10.1371/journal.pone.0009908.g002

Figure 3. Explanation of the bi-modal distribution by simulation analysis. Distribution of correlations generated from simulations with
s= 10 (A) and 40 (B) are shown.
doi:10.1371/journal.pone.0009908.g003
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Next, we examined whether transcription rate or steady-state

mRNA abundance is a better measurement of functional

relatedness between two genes.

D.1. Co-occurrence in the same operon by bacterial

orthologs indicates functional relatedness between S.

cerevisiae genes. Co-occurrence in the same operon (co-

operon) by the two genes in bacterial genomes indicates

functional relatedness; such genes often participate in the same

biochemical pathways [24]. We tested whether two S. cerevisiae

genes are functionally related when their bacterial orthologs

putatively co-occur in the same operon (see Materials and

Methods). Figure 5 displays the distributions of pair-wise

correlation coefficients for yeast gene pairs whose bacterial

orthologs display a co-operon frequency of one or more. When

compared with the distributions in figures 1 and 2, significant

positive correlation coefficients were substantially enriched. As

discussed earlier (see Results section A), the mass of the

distribution shifted to the right, dramatically enlarging the

positive correlation peak. Significant negative correlations were

substantially reduced; the peaks corresponding to negative

correlation coefficient were severely reduced when compared

with the corresponding peaks in figures 1 and 2. Thus, having their

bacterial orthologs sharing an operon strongly indicated functional

relatedness between two S. cerevisiae genes.

D.2. Transcription rate correlates better with co-operon

frequency. In order to compare transcription rate and mRNA

abundance as measurement of functional relatedness, we need an

independent measurement of functional relatedness to compare the

Figure 4. A time-delay effect from transcription rate data to mRNA abundance data. A) Correlation matrix between time points for mRNA
abundance (RA) and transcription rate (TR) analysis under an osmotic stress condition is shown; B) Only correlations between TR and RA shown.
doi:10.1371/journal.pone.0009908.g004

Figure 5. Co-occurrence in the same operon by their bacterial orthologs indicates functional relatedness between S. cerevisiae
genes. Distribution of correlations between genes whose bacterial orthologs co-occur in the same operon at least once are shown; A) data for mRNA
abundance levels; B) data for transcription rates.
doi:10.1371/journal.pone.0009908.g005
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two factors to. Operons containing highly functionally related genes

are, as revealed by comparative genomic analysis of bacterial

genomes, more likely to be conserved across species [15,16]. The

more an operon is conserved, the more functionally related its genes

are. Indeed, the winning method in a comparison of 30 operon

prediction methods utilizes cross species conservation as a major

predictive component [25]. Therefore, we used normalized co-

operon frequency by their bacterial orthologs, as discussed in

Materials and Methods, as a measurement of functional relatedness

between two S. cerevisiae genes. For all such gene pairs, we already

have two correlation coefficients: one between their transcription

rate profiles and one between their mRNA abundance profiles. We

tested which one of the two correlation coefficients correlate better

with the corresponding co-operon frequencies as we increase the

minimum co-operon frequency requirement. Two approaches were

used based on the observation that distributions of the correlation

coefficients are bimodal (see Results section A). We calculated the

fraction of the correlation coefficients that are equal or bigger than

0.6, as well as the fraction of the correlation coefficients that are

equal or smaller than 20.6. In the first approach, we examined how

the fraction of those correlation coefficients, which are equal to or

bigger than 0.6, changed along with the elevating co-operon

frequency (Fig. 6, top half). In the second approach, we calculated

the ratio of the two fractions and examined how the ratio changed

along with the elevating co-operon frequency (Fig. 6, bottom half).

Across all three experimental conditions and in both approaches,

transcription rate data displayed better positive relationship with

elevating co-operon frequency than mRNA abundance data.

Transcription rate, thus, seems a better indicator of functional

relatedness.

Discussion

Understanding cellular logic in gene expression regulation is

crucial for network and systems biology. Biochemical network

construction can, to some degree, be considered a reverse

engineering process - inference of the structure of the networks

from their dynamic behavior [26], which is often measured in

terms of gene expression levels. Using the right logic/assumption is

a prerequisite for such efforts to be successful. Once established, a

biochemical network model is useful only when theoretical

prediction can be made out of it. Once again, using the right

logic is the key to any accurate prediction.

Gene expression analysis is, due to its prominent role in cellular

dynamics, a critical component of network and systems biology

[4]. At the mRNA level, some measurement technologies are

hybridization based. Some are sequencing based, measuring

mRNA levels as the numbers of times a gene’s tags occur in the

sequence set [8,9]. These measurement technologies are less

expensive and more developed than those at the protein level.

Therefore, gene expression analysis is done, so far, more

frequently at the mRNA levels. Most efforts measure steady-state

mRNA abundance. Our analysis suggests such datasets should be

approached with caution; it is important not to over interpret such

data in network analysis and regulatory sequence analysis.

While undoubtedly informative, steady-state mRNA abundance

data analysis is complicated by the fact that mRNA abundance is

determined by two factors: transcription rate and mRNA

degradation rate. It is imperative to keep in mind that the

discrepancy between transcriptional rate and steady-state mRNA

abundance is frequently observed; a gene’s steady-state abundance

profile during a physiological process may not be explained by its

transcription rate profile. For example, the cells store mRNA

molecules in the EGP bodies and the p-bodies (processing bodies)

[27,28], so these mRNAs remain abundant even though no new

molecules are being produced. However, the precise cellular logic

involved in transcription and mRNA degradation regulation

remain to be un-covered.

At the transcription rate level, an important factor might be to

optimally allocate metabolic resources among the set of biochem-

Figure 6. Tanscription rate data correlates better with co-operon frequency. Relationship between transcription rate correlation (TR), as
well as mRNA abundance level correlation (RA), and co-operon frequency for S. cerevisiae gene pairs whose bacterial orthologs co-occur in the same
operons are shown. For each column, the top plot represents the fraction of points above 0.6 as cooperon frequency increases; the bottom plot
shows the ratio between the number of points above 0.6 and below 20.6 with increasing cooperon frequency. The bottom plot ends at cooperon
frequency where the number of point below 20.6 becomes 0 in the TR data, as the cooperon frequency where the number of point below 20.6
becomes 0 is always higher in the RA data. Both plots are given relative (folds of change) to the first time point. Column A) gives plots for galactose-
glucose shift data; column B) gives plots for oxidative stress data; column C) gives plots for osmotic stress data.
doi:10.1371/journal.pone.0009908.g006
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ical pathways, and at the same time, meet the demands of

biochemical network dynamics. Gene expression carries expensive

metabolic overhead. Signaling pathways are often used to regulate

transcription factors to specify the genes for active transcription. A

signaling step, usually a protein kinase, consumes an ATP

molecule for protein phosphorylation. Upon initiation, the

transcribing RNA polymerase consumes more ATP molecules

and ribo-nucleotide building blocks to synthesize transcript

product of the gene. Thus it is vital to utilize the signaling and

the transcription machineries in the most economical manner, and

to minimize un-necessary wasteful transcription events.

For transcription regulation, genomic regulatory sequences play

prominent roles in transcription regulation. Important signals

embedded in the sequences include short motifs, to which

transcription factors bind to activate or turn off transcription.

Even though eukaryotic genes are independent transcriptional

units, functionally related genes tend to have similar expression

profiles. It is a general assumption that regulatory sequences of

such genes embed similar profiles of transcription factor binding

sites, often termed transcription factor binding site modules.

Computational analysis of eukaryotic regulatory sequences,

however, remains technically challenging; satisfactory predictive

power remains elusive. Part of the blame might be low signal-to-

noise ratio, as transcription factor binding sites are generally short

and permutation tolerant. It might also be partially due to the fact

that we have not understood eukaryotic transcription regulation

well enough yet. Additionally, our finding suggests that using

steady-state mRNA abundance data as input to such computa-

tional analysis, as is generally practiced, might bear part of the

blame as well. Transcription rate data, which is free from

interference by mRNA degradation, should be a better input in

regulatory sequence analysis.

While our understanding of transcription regulation is far from

satisfactory, we understand even less about mRNA degradation

regulation. Much progress has been made, especially the recent

discovery of miRNA mediated mRNA degradation mechanism

[29]. Functionally related genes tend to have their mRNA

products co-degraded, thus the term ‘‘degradation regulon’’ has

been used to describe this phenomenon. But much of the cellular

logic in mRNA degradation regulation remains to be deciphered.

Datasets that can be used to systematically correlate degradation

profiles and functional relatedness for gene pairs, as was done at

transcription rate level in this study, remain to be produced.

Additionally, relationship between transcription regulons and

degradation regulons, i.e., how much they overlap, remains to

be explored.

Similar issues exist for analyzing gene expression regulation

logic at the protein level. Current efforts generally measure steady-

state protein abundance. Steady-state levels of proteins, similar to

that of mRNAs, are determined by two factors: translation rate

and degradation rate. While biologically informative, steady-state

abundance data might not be the best to use to decipher the

cellular logic in the dynamic behavior of biochemical networks.

Translation is a metabolically expensive process: it uses ATP

molecules as energy supply and amino acids as building blocks.

Optimal allocation of these resources among the collection of

biochemical pathways should be an important part of biochemical

network dynamics.

Additionally, gene expression profiling has also been widely

used in clinical research. Currently, disease diagnosis is primarily

histology and morphology based. Therapy is generic for all

patients. The goal of genomic and personalized medicine is to

improve disease diagnosis at molecular level and personalized

therapy tailored for individual patients. Potential usage of gene

expression profiling in these area is under intensive investigation.

For instance, gene expression profiling has been explored as a

potential tool to improve the accuracy of tumor classification and

prognosis [30], which so far are largely histology and morphology

based. Our finding suggests that revising the protocol to

incorporate additional information such as transcription rate data,

for which genome wide analysis technology is readily available,

deserves further exploration.
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