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Simple Summary: Dickkopf-3 (DKK3) is considered a tumor suppressor as it possesses anti-tumoral
properties and is frequently downregulated in various cancers. However, the role of DKK3 in
ovarian cancer is not known. In this study, we showed that DKK3 loss occurred in 56.1% of patients
with ovarian cancer and that it was significantly associated with poor survival and chemoresistance.
Secreted DKK3 possessed anti-tumoral properties and enhanced paclitaxel susceptibility by inhibiting
the β-catenin-P-glycoprotein signaling pathway in ovarian cancer. This study revealed promising
therapeutic effects of secreted DKK3, which targets paclitaxel-resistant ovarian cancer.

Abstract: Dickkopf-3 (DKK3), a tumor suppressor, is frequently downregulated in various cancers.
However, the role of DKK3 in ovarian cancer has not been evaluated. This study aimed to assess
aberrant DKK3 expression and its role in epithelial ovarian carcinoma. DKK3 expression was
assessed using immunohistochemistry with tissue blocks from 82 patients with invasive carcinoma,
and 15 normal, 19 benign, and 10 borderline tumors as controls. Survival data were analyzed using
Kaplan–Meier and Cox regression analysis. Paclitaxel-resistant cells were established using TOV-21G
and OV-90 cell lines. Protein expression was assessed using Western blotting and immunofluorescence
analysis. Cell viability was assessed using the MT assay and 3D-spheroid assay. Cell migration was
determined using a migration assay. DKK3 was significantly downregulated in invasive carcinoma
compared to that in normal, benign, and borderline tumors. DKK3 loss occurred in 56.1% invasive
carcinomas and was significantly associated with disease-free survival and chemoresistance in serous
adenocarcinoma. DKK3 was lost in paclitaxel-resistant cells, while β-catenin and P-glycoprotein
were upregulated. Exogenous secreted DKK3, incorporated by cells, enhanced anti-tumoral effect
and paclitaxel susceptibility in paclitaxel-resistant cells, and reduced the levels of active β-catenin
and its downstream P-glycoprotein, suggesting that DKK3 can be used as a therapeutic for targeting
paclitaxel-resistant cancer.
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1. Introduction

Ovarian cancer remains the most lethal gynecological malignancy worldwide. Current
therapeutic approaches for treating epithelial ovarian cancer are relatively effective for the
early stage; however, more than 60% of patients with ovarian cancer are diagnosed at an
advanced stage (stage III or IV) with metastasis to distant organs beyond the pelvis [1,2].
Most patients with advanced epithelial ovarian cancer ultimately develop recurrent disease,
despite achieving clinical remission after completing the initial treatment. In particular,
the serous subtype accounts for nearly 70% of cases of epithelial ovarian cancer and has a
poorer prognosis than the other major subtypes, including mucinous, endometroid, and
clear cell carcinoma. Chemoresistance is considered the main cause of treatment failure [1,3].
Thus, to facilitate treatment of this subtype identification of therapeutic candidates that can
overcome chemoresistance is critical.

Dickkopf-3 (DKK3) is considered a tumor suppressor as it is often deleted in cancers [4,5]
and is frequently downregulated owing to epigenetic inactivation in cervical, lung, prostate,
bladder, gallbladder, and breast cancers [6–13]. In addition, a significant relationship
between aberrantly reduced DKK3 expression and poor prognosis was reported in uterine,
cervical, colorectal, and pancreatic cancers [10,14–17]. Previous in vitro studies have shown
that the tumor suppressor potential of DKK3 is mediated via angiogenesis in ovarian cancer
cell lines and via mitochondrial and Fas death receptor pathways in mucinous ovarian
cancer cells [18,19]. DKK3 mRNA expression in 35 of 56 tumors was lower than that in
normal samples [20]. However, the clinical significance of DKK3 protein expression in
serous ovarian cancer and its therapeutic role has not been elucidated.

P-glycoprotein, also known as multidrug resistance protein (MDR1) or ATP-binding
cassette sub-family B member 1 (ABCB1), acts as an ATP-dependent efflux pump of the
ABC transporter family, which transports a broad range of substrates, including paclitaxel,
to outside the cell [21]. It is involved in the chemoresistance of various cancers [21–24] and
has been a research target for several decades [25,26]. Its expression is promoted by the
activation of β-catenin signaling [27]. However, the correlation of DKK3 and β-catenin-P-
glycoprotein in ovarian cancer has not been reported yet.

Hence, in this study, we assessed DKK3 expression and its clinical significance using
tissue blocks and the clinicopathological information of patients with serous ovarian cancer;
finally, we evaluated the therapeutic function of DKK3. Here we report that DKK3 may be
used as a biotherapeutic molecule to target paclitaxel-resistant ovarian cancer.

2. Materials and Methods
2.1. Patients

Tissue blocks from 82 patients with histologically proven invasive primary epithelial
ovarian carcinoma were included in this study. Fifteen normal ovaries, 19 benign adenoma,
and 10 borderline epithelial tumors were used as controls. The medical records and patho-
logical findings of 42 patients with serous subtype were assessed for the clinicopathological
parameters of age, serum CA125 level, Federation of Gynecology and Obstetrics (FIGO)
stage, grade, debulking status, chemoresistance, and recurrence. Subjects with neoadjuvant
chemotherapy were excluded. All patients underwent surgery as their primary treat-
ment between 1995 and 2004 at the Department of Gynecologic Oncology at Chung-Ang
University Hospital, Seoul, Korea. All patients underwent debulking surgery, including
total abdominal hysterectomy, bilateral salpingo-oophorectomy, omentectomy, and lymph
node dissection, and received minimum six cycles of postoperative chemotherapy with
paclitaxel and carboplatin. Disease stage was assigned according to the International FIGO
staging system, and the tumor grade and histological type were determined following
World Health Organization standards. Grade 1 carcinomas were categorized to type I, and
grade 2 and 3 carcinomas were categorized to type II [28]. Optimal cytoreduction was
defined as less than 1 cm residual tumor after primary surgery. The study was approved
by the institutional review board (approval number, C2015106 (1564)).
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2.2. Immunohistochemical Analysis

Formalin-fixed and paraffin-embedded sections were cut to a thickness of 5 µm,
dewaxed in xylene, and then dehydrated in alcohol gradient. After the slides were rinsed,
endogenous peroxidase activity was blocked using 3% H2O2 for 15 min. The slides were
pretreated with citrate buffer (10% citrate buffer stock in distilled water, pH 6.0) and
autoclaved for 15 min to retrieve the antigen. Nonreactive blocking was performed with
1.0% horse serum in Tris-buffered saline (TBS), pH 6.0, for 3 min. Primary goat polyclonal
antibody against human DKK3 (R&D Systems, Minneapolis, MN, USA), diluted 1:100 in
phosphate-buffered saline (PBS) (pH 7.4), was applied and incubated for 1 h at 37 ◦C in a
humidified chamber. A negative control was prepared by substituting the non-immune
serum for primary antibody. After the slides were rinsed with PBS, they were incubated
with secondary antibody for 10 min at room temperature (15–25 °C) and then again rinsed
in PBS. Antibody binding was detected using a standard labeled streptavidin-biotin system
(Life Science Division, Mukilteo, WA, USA). The slides were dehydrated and mounted after
counterstaining with Mayer’s hematoxylin. The immunoreactivity of DKK3 was scored
for the tumor cells. DKK3 staining was evaluated for each tissue sample using a semi-
quantitative staining intensity score (0, undetectable; 1+, weakly positive; 2+, moderate
positive; 3+, intensely positive). One pathologist who was blind to the patients’ clinical
histories reviewed all the cases.

2.3. Cell Culture

The 293 normal human embryonic kidney cells and TOV-21G and OV-90 ovarian can-
cer cell lines were purchased from the American Type Culture Collection (ATCC, Manassas,
VA, USA). The cells were maintained in Eagle’s minimum essential medium (293 cells)
and Roswell Park Memorial Institute (RPMI)-1640 medium (TOV-21G and OV-90) sup-
plemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 µg/mL
streptomycin (Invitrogen Corp, Carlsbad, CA, USA). All culture media and FBS were from
Welgene (Daegu, Korea). The cells were incubated at 37 ◦C in a humidified atmosphere
with 5% CO2. Media were routinely changed after every 3 d.

2.4. Establishment of Paclitaxel-Resistant Cell Lines

The resistant cell lines were established using a paclitaxel concentration gradient
method. When the parent cell confluence reached 80%, the cells were treated with paclitaxel
(Boryung Pharmaceutical, Seoul, Korea). Initially, the exponentially growing cells were
exposed to the IC50 concentration of paclitaxel (10 ng/mL and 25 ng/mL for TOV-21G and
OV-90, respectively) which are based on the results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Each time paclitaxel was added to the cells,
the dead cells were discarded after 48 h of treatment and the remaining viable cells were
considered drug-resistant upon reaching 70–80% confluence. The remaining viable cells
were then cultured in a higher concentration of paclitaxel and the above process was
repeated. With gradual increase in paclitaxel concentration, the paclitaxel-resistant cell
lines (TOV-21G/PTX and OV-90/PTX) survived in a final culture medium containing
0.1 µg/mL and 0.2 µg/mL paclitaxel, respectively.

2.5. Preparation of Recombinant Human DKK3

The human FLAG-DKK3 stable expression clone in TOV-21G cells was established
using lipofectamine transfection of the p3X FLAG DKK3 plasmid encoding the full length
human DKK3 gene with FLAG tag. TOV-21G cells stably expressing FLAG-DKK3 were
cultured in FBS-free RPMI-1460 medium for 3 d before collecting the supernatant. The
culture supernatant was concentrated using Amicon Ultra-15 centrifugal unit, NMWL
10,000 (Merck Millipore, Co. Ltd., Cork, Ireland), followed by FLAG immunoprecipita-
tion to purify FLAG-DKK3 (Sigma-Aldrich, St. Louis, MO, USA). The purified human
FLAG-DKK3 protein stock solution was maintained at −80 ◦C until use. Protein concentra-
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tion was measured using the bicinchoninic acid protein assay (Thermo Scientific, Rockford,
IL, USA).

2.6. Preparation of Conditioned Medium

DKK3 conditioned media was harvested from DKK3-transfected 293 cells. The cells
were plated in a 6-well culture dish, transfected with 2 µg DKK3 plasmid (293-DKK3) or
empty plasmid (293-Control), and incubated for 2 d (80–90% confluence). The culture
media was harvested and Western blotting was performed to detect DKK3 protein in the
culture media.

2.7. Three-Dimensional (3D) Spheroid Assay

OV-90 and OV-90/PTX cells were cultured in a microwell array as described before [29].
Briefly, the diameter of each well in the microwell was 600 µm, the depth was 600 µm, and
the distance between the wells was 1.5 mm. To minimize cell loss, the entrance to the well
was sloped. Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI, USA),
which has been widely used for cell culture because of its transparent and biocompatible
characteristics, was used as the microplate material. The microwell array was coated
with Pluronic F-127 (P2443, Sigma, St. Louis, MO, USA) to prevent cell attachment. Air
bubbles trapped in the microwells were removed via manual pipetting. The next day,
5 × 105 cell/mL were loaded in the microarray and approximately 3 × 103 cells were
present in each microwell. The cells aggregated after 20 min of seeding, indicative of
spheroid formation; then, the ovarian cancer-forming spheroids were incubated with the
conditioned media with or without PTX (200 ng/mL) and half of the medium was replaced
every day. After 6 d, the spheroids in each well were imaged using light microscopy
(magnification, 40×; scale bar 300 µm). Martin’s diameter, which indicates the distances
between opposite edges passing through the center of the spheroid, was measured using
the ImageJ software (NIH Image Processing and Analysis in Java), as the ovarian cancer-
forming spheroids were not perfectly circular [30]. Spheroid diameter was finally decided
as the mean value of several diameters in different orientations. Cell viability in spheroids
was measured using the MTT assay after preparing single-cell suspension.

2.8. Immunofluorescence Analysis

The OV-90/PTX and TOV-21G/PTX cells were cultured in a cell culture dish at the
density 1 × 104 cells/cm2 and then incubated with DKK3 conditioned medium for 24 h.
Subsequently, the cells were fixed with 4% formaldehyde for 15 min and incubated with a
permeabilization buffer at 25 ◦C for 15 min. After blocking with 5% bovine serum albumin,
the cells were co-stained with primary FLAG antibody (#ant-146, Prospec, East Brunswick,
NJ, USA) and anti-non-phospho-β-catenin (#D13A1, Cell Signaling, Beverly, MA, USA)
for 1 h, followed by washing twice with PBS. After incubation with a goat anti-mouse
IgG-FITC secondary antibody and a goat anti-rabbit IgG-TR secondary antibody (sc-2010
and sc-2780, respectively, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at room
temperature, the nucleus was stained using Hoechst 33,442 for 10 min. Fluorescence signals
were observed using fluorescence microscopy.

2.9. Western Blot Analysis

For Western blot analysis, the cells were lysed for 30 min on ice in radioimmunoprecip-
itation assay buffer with a protease inhibitor cocktail (P8340, Sigma, USA), and the lysates
were cleared via centrifugation at 14,000 rpm for 15 min. The proteins were separated on
8–10% sodium dodecyl sulfate polyacrylamide gel and electro-transferred to a Hybond
ECL nitrocellulose membrane (Amersham Pharmacia Biotech). The membrane was then
blocked with 3% bovine serum albumin in 1× TBS containing 0.1% Tween 20 for 4 h and
incubated overnight at 4 ◦C with appropriate dilution of each primary antibody, according
to antibody datasheet. The membranes were rinsed thrice for 15 min each with washing
buffer (1× TBS containing 0.1% Tween 20) and incubated with the appropriate secondary
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antibody at room temperature for 1 h. After rinsing thrice for 15 min with washing buffer
at room temperature, the membrane was developed using SuperSignal West Pico PLUS
chemiluminescent substrate (Thermo Scientific, Meridian Rd., Rockford, IL, USA). The
protein bands in the Western blot films were quantified using the NIH ImageJ software.
The experiment was performed in triplicate and repeated at least three times.

2.10. MTT Assay

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) reagent (12 mM)
was added to the cells and incubated for 3 h according to the manufacturer’s protocol
(M6494, Invitrogen, Eugene, OR, USA). At the end of the incubation, 100 µL dimethyl
sulfoxide was added to dissolve the MTT reaction product, formazan, at room temperature
for 30 min. Then, cell density was estimated as absorbance at 540 nm using an enzyme-
linked immunosorbent assay (ELISA) reader (Epoch2, BioTek, Winooski, VT, USA). The
experiment was performed in triplicate and repeated at least three times.

2.11. Migration Assay

Cells were seeded in a 6-well plate (SPL Life Science, Gyeonggi-do 487-835, Korea) at
80–90% confluence. After 24 h, the cells were treated in different ways and the monolayer
was scratched using a 1000 µL tip. The cells were incubated at 37 ◦C in a humidified
atmosphere with 5% CO2. Cell motility was tracked 24 h post-treatment. The migration
rate was calculated as the percentage of recovered area compared to the initial gap at 0 h.
Images were captured using a light microscope (magnification 10×; scale bar, 200 µm). The
mean gap area was calculated using the ImageJ software. The experiment was performed
in triplicate.

2.12. Chemicals and Antibodies

Paclitaxel was obtained from Boryung Pharmaceutical (Seoul, Korea). Lithium chloride
(LiCl) was purchased from Sigma (L9650, MO, USA). The following antibodies were used
for the Western blot analysis: anti-FLAG from Prospec (USA), anti-β-actin from Santa Cruz
Biotechnology (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-DKK3 from R&D
Systems (Minneapolis, MN, USA), anti-β-catenin and anti-non-phospho-β-catenin from
Cell Signaling (Beverly, MA, USA), anti-P-glycoprotein from Invitrogen, Thermo Fisher
(Waltham, MA, USA), and anti-E-cadherin from Santa Cruz Biotechnology.

2.13. Statistical Analysis

Survival was estimated using Kaplan–Meier estimates and compared using the log-
rank test. Median counts were analyzed using the Mann–Whitney U-test. Kruskal–Wallis
test was used to compare DKK3 expression among normal, benign, borderline, and invasive
tumors. Dichotomous groupings were analyzed using the Chi-square and Fisher’s exact test
as appropriate. Multivariate analysis was performed using the Cox regression method. The
Mann–Whitney U-test was used to compare values between two groups. Cell viability was
compared between two groups using the Mann–Whitney U-test with Bonferroni correction.
All p-values reported are two-sided, and statistical significance was defined as p < 0.05.
Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS,
version 15.0, Chicago, IL, USA).

3. Results
3.1. Aberrant Downregulation of DKK3 in Invasive Ovarian Carcinoma

Immunohistochemical analysis showed that DKK3, present predominantly in the cyto-
plasm of cells (Figure 1a,b), was abundantly expressed in normal ovarian epithelial cells
and benign adenoma. DKK3 expression was significantly lower in invasive cancer tissues
than in normal, benign, and borderline tumors (Table 1), while it did not differ among
normal, benign, and borderline tumors. Approximately 56.1% (46 of 82) of invasive carci-
noma tissues showed complete loss of DKK3; DKK3 was absent in most mucinous, serous,
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endometrioid, and undifferentiated carcinomas, while its expression was not reduced in
transitional cell carcinoma.
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Magnification 200×.

Table 1. Expression of DKK3 in different ovarian tissue samples.

Immunoreactivity, N (%)
0 +1 +2 +3 Total p-Value

Normal epithelium 0 2 (13.3) 6 (40) 7 (46.7) 15 (100)

<0.001 *
Benign adenoma 0 4 (21.1) 8 (42.1) 7 (36.8) 19 (100)
Borderline tumor 2 (20.0) 5 (50.0) 2 (20.0) 1 (10.0) 10 (100)

Invasive carcinoma 46 (56.1) 16 (19.5) 6 (7.3) 14 (17.1) 82 (100)
Mucinous 10 0 1 2 13

Serous 26 11 4 1 42
Endometrioid 3 2 0 0 5

Transitional cell 0 1 0 11 12
Clear cell 1 1 1 0 3

Undifferentiated 6 1 0 0 7

* Kruskal–Wallis test was used to compare DKK3 expression among normal, benign, borderline, and invasive tumors.
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3.2. Characteristics and Survival Analysis of 42 Patients with Serous Ovarian Carcinoma

Analysis of data from all 82 patients with invasive carcinoma revealed that DKK3
expression was not significantly associated with survival and clinicopathological param-
eters (Supplementary Tables S1 and S2). As histological type is one of the main factors
used in predicting prognosis in patients with ovarian cancer, 42 patients with serous adeno-
carcinomas were selected for further evaluation. Twenty-six of forty-two (61.9%) patients
exhibited DKK3 loss (Table 1). The clinicopathological parameters of these patients are
listed in Table 2. After a median follow-up of 27.5 months (range, 1–151 months), 25 (59.5%)
patients did not show evidence of disease, and 17 (40.5%) patients experienced recurrent
disease. Disease-free survival was defined as the length of time (months) from the last
therapy to the diagnosis of the first recurrence. Univariate survival analysis showed that the
FIGO stage, DKK3 protein expression, surgical debulking optimality, and chemo-response
were significant factors affecting disease-free survival (Figure 1c). Multivariate survival
analysis adjusted for FIGO stage, surgical debulking optimality, chemo-response, and
DKK3 expression showed that women with chemosensitivity were at significantly lower
risk of recurrence than women with chemoresistance (Table 2, p < 0.01).

Table 2. Clinicopathological parameters and disease-free survival analysis of prognostic factors
in 42 patients with serous adenocarcinoma.

Clinicopathological Parameters N (%)
p-Value

Univariate Multivariate

Age
Mean (range), year 53.2 (24–77)

CA125
≤35 U/mL 3 (7.1)
>35 U/mL 39 (92.9)
FIGO stage 0.015 * NS

I–II 14 (33.3)
III–IV 28 (66.7)
Type NS

I 12 (28.6)
II 30 (71.4)

DKK3 protein expression 0.042 NS
Negative 26 (61.9)
Positive 16 (38.1)

Debulking surgery 0.031 NS
Optimal 18 (42.9)

Suboptimal 24 (57.1)
Chemo-response <0.001 <0.01

Sensitive 20 (47.6)
Resistant 19 (45.2)
Unknown 3 (7.2)

* NS, no significance.

3.3. DKK3 Loss Was Significantly Associated with Chemoresistant Ovarian Cancer

The 42 patients with serous adenocarcinoma were stratified by the absence or presence
of the DKK3 protein into negative and positive groups. The clinicopathological characteris-
tics of the patients in each group are summarized in Table 3 and statistical analysis showed
a significant association between DKK3 protein loss and chemoresistance (p = 0.029). There
was no difference in DKK3 expression according to age, FIGO stage, surgical debulking
optimality, preoperative serum level of CA-125, and type or disease recurrence between the
two groups.

3.4. DKK3 Was Lost in Paclitaxel-Resistant Ovarian Cancer Cells

Paclitaxel-resistant cells from TOV-21G and OV-90 were established using a paclitaxel
concentration gradient method (Figure 2a,b). These paclitaxel-resistant cell lines did not
show any morphological changes and their growth rates were similar to those of parental



Cancers 2022, 14, 924 8 of 15

cell lines. The paclitaxel-resistant cells proliferated persistently when the cells were treated
with paclitaxel, while the viability of the parental cells decreased markedly (Figure 2c,d).

Table 3. Clinicopathological characteristics of women with/without DKK3 expression.

Clinicopathological Parameters DKK3 Expression
Negative (n = 26) Positive (n = 16) p-Value

Age * NS
Mean (±SD), year 52.9 (±11.8) 54.3 (±12.5)

CA125 NS
≤35 U/mL 1 2
>35 U/mL 25 14
FIGO stage NS

I–II 7 7
III–IV 19 9
Type NS

I 7 5
II 19 11

Debulking operation NS
Optimal 10 8

Suboptimal 16 8
Chemo-response 0.029

Sensitive 9 11
Resistant 15 4
Unknown 2 1
Recurrence NS

No 13 12
Yes 13 4

* NS, no significance.

As DKK3 loss was significantly associated with chemoresistance of patients with
ovarian cancer, we assessed DKK3 protein level in the paclitaxel-resistant cells. Western blot
analysis showed that, compared to that in parental cells, DKK3 expression was markedly
reduced and beta-catenin was upregulated in paclitaxel-resistant cells. P-glycoprotein was
upregulated in both paclitaxel-resistant cell lines, suggesting a link between P-glycoprotein
level and DKK3 loss (Figures 2e and S1).

3.5. Secreted DKK3 Enhanced Paclitaxel Susceptibility of Ovarian Cancer Cells

DKK3 is a well-known secreted protein [31]. Therefore, we treated the cells with con-
ditioned media containing secreted DKK3, which was produced by DKK3-overexpressing
293 cells. The media of empty vector-transfected cells was used as the control media.
The proliferation of TOV-21G and TOV-21G/PTX was inhibited by treatment with DKK3-
conditioned media in a dose-dependent manner, while the cells grew well in the control me-
dia (Figure 3a,b). The viability of OV-90 cells increased in the control media but decreased
in the -conditioned media, while OV-90/PTX cells were inhibited by both the conditioned
media, with the inhibitory effect of the DKK3-conditioned media being stronger than that
of the control media (Figure 3c). Next, we tested the effect of purified recombinant human
DKK3 protein in OV-90 and OV-90/PTX cells and found a dose-dependent inhibition in
both cell lines (Figure 3d). We further assessed whether secreted DKK3 increased the anti-
tumoral effect of paclitaxel in paclitaxel-resistant cells. Cotreatment with paclitaxel and
control conditioned media did not interrupt the growth of TOV-21G/PTX and OV-90/PTX
cells; however, cotreatment with paclitaxel and DKK3-conditioned media significantly
decreased the viability of both paclitaxel-resistant cell lines (Figure 3e,f), suggesting syn-
ergism between the effects of DKK3 and paclitaxel. Next, the anti-proliferative effect of
DKK3 was evaluated in three-dimensional (3D) tumor spheroids of OV-90 and OV-90/PTX
formed in the microwell arrays (Figure 3g,h). We observed that DKK3 CM treatment
shrunk the spheroids and that cotreatment with DKK3 CM and paclitaxel disassembled
them, indicative of serious damage. We compared the diameter of the spheroids to evaluate
the effect of the treatments on spheroid growth, as the clinical response of cancer treatment
was previously evaluated by measuring tumor diameter [32]. Simultaneously, we assessed
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cellular viability using the MTT assay after suspension of spheroids into single cells. The
size and viability of spheroids in the DKK3 conditioned medium were significantly lower
than those in the control conditioned medium. Moreover, cotreatment of OV-90/PTX with
secreted DKK3 and paclitaxel synergistically reduced spheroid size despite no difference
in cell viability. Next, the anti-tumoral effect of DKK3 on OV-90/PTX and TOV-21G/PTX
was evaluated using migration assay (Figure 3i,j). Cell migration in DKK3 CM was remark-
ably inhibited compared to that in the control CM, and cotreatment with DKK3 CM and
paclitaxel synergistically reduced cell motility. Furthermore, to understand the underlying
mechanism, we assessed the expression of E-cadherin, an epithelial marker. Loss of E-
cadherin expression reflects cancer metastasis [33]. Our results showed that E-cadherin was
upregulated in the DKK3 CM group compared to that in the control CM group, indicating
that DKK3 inhibits ovarian cancer cell migration by restoring epithelial–mesenchymal
transition (Figures 3k,l and S2). Therefore, secreted DKK3 exerted an anti-tumoral effect in
paclitaxel-resistant ovarian cancer cells and enhanced paclitaxel susceptibility.
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Figure 2. Characteristics of paclitaxel-resistant cells. (a,b) Cells were seeded in triplicates in 96-well
plates in 0.1 mL culture medium at a density of 1 × 104 cells/well. After 24 h, the cells were treated
with paclitaxel. MTT assay performed 48 h after treatment showed that the paclitaxel-resistant
cells (TOV-21G/PTX and OV-90/PTX) had higher IC50 than the parental cells. (c,d) Paclitaxel
treatment reduced the viability of parental cells, while the paclitaxel-resistant cells continued to grow.
(e) Western blot analysis revealed that DKK3 was lost and that β-catenin and P-glycoprotein were
upregulated in paclitaxel-resistant cells (Res) compared to that in their parent cells (Con). β-Actin
was used as the loading control. * p < 0.01.
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Figure 3. Anti-proliferative effect of the secreted DKK3 on paclitaxel-resistant cells. (a) Western
blotting results show DKK3 protein levels in the control and DKK3 conditioned medium (CM). MTT
assay performed after 24 h of incubation with CM (*** p < 0.001). (b) The viability of TOV-21G
and TOV-21G/PTX cells after treatment with DKK3 CM diluted to 0%, 50%, and 90%, respectively,
with control CM (** p < 0.01). (c) The OV-90 and OV-90/PTX cells were incubated with CM with or
without DKK3. Western blotting results show DKK3 protein levels in the control and DKK3 CM.
MTT assay after 24 h of treatment (*** p < 0.001). (d) Western blotting reveals recombinant human
DKK3 levels. Two concentrations of the protein (10 µg/mL and 50 µg/mL) were used to treat cells
for 72 h (* p < 0.05). (e,f) TOV-21G/PTX and OV-90/PTX cells were treated with CM with or without
paclitaxel (100 ng/mL and 200 ng/mL, respectively) (** p < 0.01). (g) 3D spheroids of OV-90 and
OV-90/PTX cells were generated in a microwell array and the images were captured after incubation
for 6 d (magnification, 40×; scale bar 300 µm). (h) Spheroid viabilities and diameters were compared.
The asterisks on the graph denote statistically significant differences (p < 0.01) between the DKK3 CM
group and the control CM group. The diameter of spheroids in the DKK3 CM group was compared
to that in the DKK3 CM with paclitaxel group (#, p < 0.01). (i,j) OV-90/PTX and TOV-21G/PTX
cells were treated as mentioned above and migration rates were evaluated using the migration assay.
(k,l) The paclitaxel-resistant cells were incubated with control and DKK3 CMs. At the indicated time
points, the cells were harvested and subjected to Western blotting. The graphs were plotted based on
the band densities measured using the ImageJ software. * p < 0.05.
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3.6. Secreted DKK3 Enhanced Paclitaxel Susceptibility of Ovarian Cancer Cells via Inhibition of
β-Catenin-P-Glycoprotein Signaling Pathway

As DKK3 loss is associated with chemoresistance and upregulation of the active form
of β-catenin and P-glycoprotein, we investigated the relationship between them. We first
assessed whether the secreted DKK3 was internalized by the cells. Immunofluorescence
analysis showed perinuclear accumulation of FLAG-DKK3 and an inverse correlation
between DKK3 and the active form of β-catenin in OV-90/PTX and TOV-21G/PTX cells
(Figure 4a,b). After 24 h of incubation, secreted DKK3 reduced the levels of the active form
of β-catenin and P-glycoprotein (Figures 4c,d, S3 and S4). We then activated β-catenin
with LiCl, a glycogen synthase kinase (GSK) inhibitor, in paclitaxel-resistant cells. Western
blotting showed that activated β-catenin upregulated P-glycoprotein in chemoresistant
cells treated with a control conditioned medium. However, β-catenin was not activated
in the chemoresistant cells treated with the DKK3 conditioned medium, and accordingly,
P-glycoprotein was not upregulated (Figures 4e,f, S5 and S6). On the basis of these results,
we concluded that secreted DKK3 reduced the level of P-glycoprotein, one of the most
important chemoresistance-regulating proteins, by inhibiting β-catenin.Cancers 2022, 14, 924 13 of 18 
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Figure 4. Secreted DKK3 enhanced paclitaxel susceptibility via inhibition of the β-catenin-P-
glycoprotein signaling pathway. (a,b) The cells were incubated with control and DKK3 CM. Im-
munofluorescence analysis after 24 h showed that FLAG-DKK3 was present in the perinuclear area,
attenuating TR-non-phospho-β-catenin signaling. Scale bar, 50 µm. (c,d) The cells were incubated
with control and DKK3 CM and subjected to Western blotting. The graphs were plotted based on the
band densities (* p < 0.01). (e,f) To activate endogenous β-catenin, cells were treated with LiCl for
24 h and subjected to Western blot analysis. β-Actin was used as the loading control. The intensities
of the Western blot bands were normalized to that of β-actin for comparison (* p < 0.01).
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4. Discussion

This study has assessed the clinical significance of DKK3 loss and its role as a potential
biotherapeutic molecule in ovarian cancer. In this study, we found that DKK3 was signifi-
cantly downregulated in invasive epithelial ovarian carcinoma compared to that in normal
tissue, adenoma, and borderline tumors. Moreover, complete loss of DKK3 was observed in
56.1% of cases of invasive epithelial ovarian carcinomas. Taken together with the results of
a previous report showing the absence of DKK3 in 63% cases of 56 ovarian carcinoma tissue
samples [20], we concluded that >50% invasive epithelial ovarian cancers lose DKK3 during
carcinogenesis. DKK3 is frequently downregulated in various cancers [6,10,14,16–18,34–36],
and therefore, this study supports the hypothesis that downregulation of DKK3 occurs
commonly during carcinogenesis.

In this study, we analyzed the relationship between DKK3 expression and the clini-
copathological factors and prognosis of patients with serous ovarian cancer. Although a
previous study did not find any correlation between DKK3 loss and clinicopathological
parameters of ovarian cancer [20], the results of univariate survival analysis in this study
showed that DKK3 loss was a prognostic factor, along with the FIGO stage, suboptimality
of debulking surgery, and chemoresistance. This may be explained by the variation in the
clinical behaviors of different histological ovarian cancers [1,2]. We analyzed the clinico-
pathological parameters of only the serous type in this study, although a previous study has
included all types. Multivariate analysis showed that only chemo-response was an inde-
pendent prognostic factor for patients with serous ovarian carcinoma. Because of the strong
correlation between DKK3 loss and chemoresistance, the significance of DKK3 loss was
nullified after adjustment. Despite the limitations associated with the retrospective nature
and small sample size of this study, this is the first report to show the clinical significance
of DKK3 loss in ovarian cancer. A significant correlation between DKK3 downregulation
and poor prognosis was reported in patients with cervical squamous cell carcinoma or
gastric cancer [10,16], and DKK3 loss was significantly associated with higher Gleason
scores in prostate cancer [37]. In addition, compared to that observed in patients with
strong DKK3 expression, DKK3 downregulation in tumors of gastric cancer tissue samples
was associated with short disease-free survival [38]. Taken together, these findings suggest
that aberrant reduction in DKK3 expression is a clinical biomarker for identifying high-risk
cancer patients with poor prognoses.

As a secreted glycoprotein, DKK3 can be detected in patient sera using ELISA. In
fact, the serum level of DKK3 in patients with ovarian cancer was found to be lower than
that in normal individuals [39]. These findings prompted us to assess the anti-tumor
activity of DKK3 secreted in the medium in a monolayer culture system and 3D spheroid
model. We observed endocytosis of secreted DKK3 6 h after treatment, which showed
anti-proliferative activity, as endogenous DKK3 is downregulated in cancer cells and lost in
paclitaxel-resistant cells. Moreover, the cytotoxicity of paclitaxel on paclitaxel-resistant cells
was restored when treated with secreted DKK3, but not with the control medium, indicating
that secreted DKK3 restored paclitaxel susceptibility. As the 3D spheroid structure mimics
the physical and biochemical features of a natural solid tumor mass, it may be similar
to cells growing in vivo. Thus, our result suggested that secreted DKK3 may effectively
penetrate the tumor mass, resulting in fractional killing, which is consistent with the results
of previous reports showing that an adenovirus carrying DKK3 induced apoptosis in
bladder, prostate, biliary, and liver cancers [34,35,40–42]. Taken together, we believe that
DKK3 may be a promising cancer therapeutic for overcoming drug resistance, which may
be utilized in various types of biopharmaceutics.

In our paclitaxel-resistant ovarian cancer cells, DKK3 was downregulated and P-
glycoprotein was upregulated. Interestingly, when DKK3 was re-expressed after treatment
with secreted DKK3, P-glycoprotein expression was attenuated. So far, the signaling link
between DKK3 and P-glycoprotein has not been elucidated. P-glycoprotein, acting as an
ATP-dependent efflux pump, transports various chemo agents, such as paclitaxel, to outside
the cells, which is a well-known mechanism of drug resistance [21–23,43]. Previous studies
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have shown that adenovirus-DKK3 treatment suppressed P-glycoprotein expression in
an Akt/NFκB or c-Jun-kinase (JNK)-dependent manner [8,44,45]. In addition, we have
previously shown that DKK3 inactivated β-catenin by direct interaction with β-TrCP, which
was reported to be involved in β-catenin degradation [15,46,47]. Here, we established a
signaling link among DKK3, β-catenin, and P-glycoprotein, in which DKK3 negatively
regulates P-glycoprotein by inhibiting β-catenin. In addition, activation of β-catenin
by LiCl, a β-catenin signaling agonist, resulted in P-glycoprotein upregulation. These
results indicated that β-catenin is an upstream regulator of P-glycoprotein. Moreover,
P-glycoprotein was downregulated after treatment with secreted DKK3. Taken together, the
chemosensitizing effect of secreted DKK3 was mediated via a downregulation of β-catenin-
P-glycoprotein signaling. Therefore, negative regulation of P-glycoprotein expression may
be a mechanism via which DKK3 restores paclitaxel susceptibility.

As chemoresistance is an obstacle in ovarian cancer therapy [1,2], the anti-tumoral
effect of DKK3, as well as its synergistic effect with paclitaxel in paclitaxel-resistant ovarian
cells, indicates the possibility of a new therapeutic strategy. The subgroups of four patients
with chemoresistance/expressing DKK3 and nine patients with chemosensitivity/lacking
DKK3 could not be explained. We investigated one of the various mechanisms functioning
in individual cancer cells; therefore, our findings are not applicable to all ovarian cancers.
Patients who may benefit from DKK3 therapy should be individually identified. Moreover,
as the mechanism of action of DKK3 involves regulation of P-glycoprotein expression, its
anti-tumoral effect may not be limited to only paclitaxel-resistant cells. However, further
work in this direction is warranted.

5. Conclusions

In conclusion, DKK3 was significantly downregulated in invasive epithelial ovarian
carcinomas compared to that in normal, benign, and borderline tumors. DKK3 loss was
more frequent in serous ovarian cancers with chemoresistance than in those with chemosen-
sitivity. Moreover, DKK3 exerted an anti-proliferative effect on ovarian cancer cells and
reversed paclitaxel resistance by downregulating P-glycoprotein via inhibition of β-catenin.
Therefore, secreted DKK3 may be a potential drug to target drug-resistant cancers such as
epithelial ovarian cancer. Hence, developing human secreted DKK3 as a biotherapeutic
molecule, in cancer treatment, will be added in our future work.
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