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ABSTRACT: Systems Toxicology is the integration of classical toxicology with quantitative analysis of
large networks of molecular and functional changes occurring across multiple levels of biological
organization. Society demands increasingly close scrutiny of the potential health risks associated with
exposure to chemicals present in our everyday life, leading to an increasing need for more predictive
and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic
understanding of the ways in which xenobiotic substances perturb biological systems and lead to
adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such
mechanistic knowledge by combining advanced analytical and computational tools. Furthermore,
Systems Toxicology is a means for the identification and application of biomarkers for improved safety
assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an
exposure are measured, and a causal chain of molecular events linking exposures with adverse
outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to
describe these processes in a quantitative manner. The integrated data analysis leads to the
identification of how biological networks are perturbed by the exposure and enables the development
of predictive mathematical models of toxicological processes. This perspective integrates current
knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved
risk assessment.
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1. INTRODUCTION

Assessing the potential risk that a substance poses to human
health or the environment involves a combined quantitative
analysis of both exposure and hazard, including the estimation of
associated uncertainties. For decades, the evaluation of

toxicological hazards in the context of regulatory risk assessment
has relied heavily on animal experimentation, often described in
internationally recognized test guidelines (e.g., OECD). Animal
experiments are typically designed either to indicate the dose at
which substance-induced pathological effects, other than cancer,

Figure 1.What is Systems Toxicology? Systems Toxicology is aimed at decoding the toxicological blueprint of active substances that interact with living
systems. It resides at the intersection of Systems Biology with Toxicology and Chemistry. It integrates classic toxicology approaches with network
models and quantitative measurements of molecular and functional changes occurring across multiple levels of biological organization. The
multidisciplinary Systems Toxicology approach combines principles of chemistry, computer science, engineering, mathematics, and physics with high-
content experimental data obtained at the molecular, cellular, organ, organism, and population levels to characterize and evaluate interactions between
potential hazards and the components of a biological system. It is aimed at developing a detailed mechanistic as well as quantitative and dynamic
understanding of toxicological processes, permitting prediction and accurate simulation of complex (emergent) adverse outcomes. Thereby, the
approach provides a basis for translation between model systems (in vivo and in vitro) and study systems (e.g., human, ecosystem). Systems Toxicology,
therefore, has an ultimate potential for extrapolating from early and highly sensitive quantifiable molecular and cellular events to medium- and long-term
outcomes at the organism level, and its application could be part of a new paradigm for risk assessment. Artwork by Samantha J. Elmhurst (www.
livingart.org.uk).
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are first observed after a defined treatment duration (e.g., lowest
observed adverse effect level, LOAEL) or to infer the dose below
which no effect is expected to occur (e.g., no observed adverse
effect level, NOAEL). Then, through a process of extrapolation
using empirically derived uncertainty factors, the assessor can
arrive at various hazard reference values (e.g., a derived no effect
level, DNEL) useful for an ecological or human health risk
assessment. Throughout this process, information about the
mechanistic basis of the observed adverse effects is often
considered nice to have rather than necessary to have. Despite its
shortcomings, over the years this traditional approach to toxicity
assessment has been generally considered as offering an
acceptable level of protection to our health and the environment.
However, we are arguably positioned to shift toward a new
paradigm for toxicity assessment because of the limitations of this
process in addressing increasing demands imposed by modern
society together with the opportunities offered by considerable
developments in biomedical research tools to do better. The
possibilities of improved safety from applying Systems
Toxicology (Figure 1) approaches provide a scientific impetus
to bring about change.1,2

There are numerous regulatory drivers promoting the
development and application of innovative methodology for
risk assessment, many of which have particular emphasis on
alternative in vitro and computational methods that avoid or limit
the use of animals.3 Since 1986, the European Union (EU) has
had legislation in place covering the use of animals for scientific
purposes, in particular Directive 2010/63/EU,4 which came into
full effect in January 2013, restricting the use of animals for
assessing the toxicological properties of substances for either
regulatory or research purposes to cases where it can be clearly
demonstrated that no alternative method is available. The EU
Cosmetics Regulation5 bans the marketing of cosmetics products
in the EU that have had any ingredient tested on an animal since
11 March 2013, irrespective of the fact that full replacement
methods are not yet available for complex health effects such as
chronic systemic toxicity, reproductive toxicity, and cancer.
Legislation dealing with risk management in other sectors, such
as the Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH),6 the Plant Protection Products Regu-
lation,7 and the Biocides Regulation,8 still allows the use of
animal testing to satisfy information requirements; however, the
use of alternative methods is strongly encouraged and, in some
cases, obligatory if available and accepted by regulatory
authorities. Thus, never before has there been such demand for
animal-free solutions to toxicological testing and assessments
that are fit for the purpose of regulatory decision making.
Considering the diversity of chemical exposures under real-

world conditions, there is currently no mechanism within the
framework of EU legislation to facilitate the systematic,
comprehensive, and integrated assessment of the combined
effects of chemicals resulting from different routes and times of
exposure. Although risk assessment for mixtures is typically
driven by exposure considerations, a key question is whether
certain combinations of chemicals have independent, additive, or
even synergistic toxic effects. However, mechanism-based
mixture toxicology is severely hindered because the mecha-
nism(s) or mode(s) of action of most chemicals is unknown or
poorly described, there are no established criteria for character-
izing mechanisms or modes of action, and there is no agreed
terminology or formal description thereof.9 In addition, although
assessing the combined action of co-acting chemicals may be
practically possible when they have the same basic mechanism of

action (e.g., act on the same molecular target), the problem
becomes much more difficult when considering chemicals that
impact the same biological system but act through different
mechanisms. These issues have emerged prominently, for
example, in the contemporary dialogue regarding endocrine-
disrupting chemicals (EDCs) because there is much debate
regarding what constitutes the endocrine system and criteria to
identify EDCs. Tackling issues such as non-monotonic dose−
response and the existence of thresholds is severely hampered by
an over-reliance on empirical evidence derived primarily from
animal experiments, a lack of emphasis on understanding the
fundamentals of endocrine system dynamics, and the limitations
of analytical and computational tools suitable to characterize and
model the problem at hand.
In the context of chemical risk assessment, the application of

the new tools of experimental and computational Systems
Toxicology is anticipated to occur first for the large numbers of
environmental chemicals that have little or no toxicological data
in the public domain. In this manner, there can be a prioritization
of chemicals to evaluate for endocrine-disrupting activity (see
http://www.epa.gov/endo/pubs/edsp21_work_plan_
summary%20_overview_final.pdf). This approach also will be
used to prioritize chemicals under the U.S. Toxic Substances
Control Act (TSCA) (see http://www.epa.gov/agriculture/lsca.
html) once the methodologies are capable of deciphering modes
of action beyond those related to the endocrine system. For drug
development, motivators for the application of systems tools
include identification and characterization of disease-related
therapeutic targets and uncovering chemical liabilities early in the
drug-discovery pipeline, thus avoiding costly failures once a
candidate molecule reaches clinical trials.10 Drug safety
objectives are being addressed, for example, by a large public−
private partnership, the eTOX project in the European Union
(see http://www.etoxproject.eu), under the Innovative Medi-
cines Initiative (see http://www.imi.europa.eu/). The aim is to
develop a drug safety database for the pharmaceutical industry
and novel tools to predict better the toxicological profiles of
molecules in early stages of the drug-development pipeline.
Another application on the horizon is the assessment of
alternative chemicals designed and produced within the
framework of green or sustainable chemistry. The aim in this
case is to minimize the use and generation of hazardous
substances. Without an understanding of the toxicological
liability of proposed alternatives, the push for greener chemicals
is limited to using chemical engineering tools to reduce the use of
known hazardous precursors, maximize atom economy in
synthetic processes, and increase the energy efficiency of
reactions. The U.S. National Academy of Science has recently
undertaken a project to provide a framework for evaluating safer
substitutes (see studies in progress at http://www8.
nationalacademies.org/cp/projectview.aspx?key=49569), in-
cluding, in particular, Systems Toxicology. Together with
regulatory drivers, an overarching expectation is that Systems
Toxicology approaches, applied in a systematic and rigorous
manner, will provide more sound information on which to judge
how chemicals cause biological perturbations, moving knowl-
edge beyond knowing only what phenotypes are altered. The
resulting understanding of biological responses to chemical
exposure and biomolecular interactions is expected to reduce
uncertainties in species extrapolations, in high-to-low dose
extrapolation, and to shed light on life stage and other
susceptibility factors such as genetics and pre-existing diseases.
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When paired with advances in hazard detection and
biomonitoring strategies,11 Systems Toxicology holds the long-
term promise, at least in part, to address these challenges. It will
enable the gradual shift from toxicological assessment using
solely apical end points toward understanding the biological
pathways perturbed by active substances. Systems Toxicology is
expected, therefore, to create knowledge regarding both the
dynamic interactions between biomolecular components of a
complex biological system and how perturbing these interactions
with active substances alters homeostasis and leads to adverse
reactions and disease. This knowledge, represented as adverse
outcome pathways (AOPs),12 is then expected to enable our
system-level understanding of exposure to active substances and
to lead to more effective risk assessment.
Systems Toxicology is rooted in the premise that morpho-

logical and functional changes in cellular, tissue, organ, and
organism levels are caused by, and cause, changes at the genomic,
proteomic, and metabolomic level. A molecular system can be
represented initially by high-level static biological network (BN)
models that employ basic graph representations to map the
molecular entities (nodes) and their interactions (edges).
Although these basic BN models serve to map the underlying
molecular wiring of a biological system, they are too simplistic in
nature to describe a toxicological pathway and its dynamic
nature. The description of a toxicological pathway requires the
development of more sophisticated computable BNs by
incorporating mechanistic information through the encoding of
causal relationships between the nodes. Such models enable the
computational analysis and contextualization of experimental

data, for instance, for the quantification of network perturbation,
which is further described in this perspective. Ultimately, the
description of dynamic toxicological processes requires the
development of even more sophisticated executable BN models
by incorporating the mathematical description of the dynamic
behavior of these causal relationships. Such BNs are capable of
simulating changes in state of the molecular network caused by
external perturbation or modification of boundary conditions.
To be useful in current risk-assessment frameworks, however,
mathematical models need to bemultiscale or able to traverse the
different levels of biological organization ultimately to relate the
dynamics at the BN level to apical adverse outcomes on which
regulations are based. The most direct causal path, traversing
multiple levels of organization and linking exposure, binding of
the toxicants to biomolecules, intermediate key events, and apical
adverse outcome, is what characterizes AOPs (Figure 2).12

AOPs are tools for describing the entire toxicological process
from the molecular level, triggered by an active substance, to an
adverse outcome of regulatory concern, typically observed at a
tissue, organ, organism, and potentially population level.
Although not traditionally associated with Systems Toxicology,
an AOP is, in fact, a model that discretizes a process into key
events (KE) (nodes) and the causal relationship between them
(edges). An AOP13 is developed first on the basis of a qualitative
model that captures KEs and their high-level relationships.
Gradually, as detailed mechanistic knowledge accumulates, they
will capture the causal relationships between the KEs and the
underlying molecular events. Even qualitative AOP models serve
a very important purpose. For example, such AOPs can be used

Figure 2. Steps that define the Systems Toxicology paradigm, from biological network models to dynamic adverse outcome pathway (AOP) models.
The development of dynamic AOP models enabling the simulation of the population-level effects of an exposure is the ultimate goal of Systems
Toxicology. This development follows three broad steps of maturity from top to bottom. The first level consists of the development of causal
computable biological network models that link the system’s interaction of a toxicant with the organ-level responses. Such models can be used to
quantify the biological impact of an exposure in the context of quantifiable end points such as histology or physiological measurements. In a second step,
as more mechanistic knowledge derived from quantitative measurements accumulates, dynamic models linking the exposure with the organ-level
responses can be developed. Ultimately, the third level of maturity is reached when the link between the exposure and the population outcome can be
represented by mathematical models that enable the simulation of population-level effects of an exposure. Blue arrows denote causal links, which are
mainly derived from correlative studies. Artwork by Samantha J. Elmhurst (www.livingart.org.uk).
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to map quantitative information for visualization purposes or to
compare and identify common features and intersections
between AOPs. As AOPs are developed to include more detailed
causal and quantitative information, they are expected to become
computable and eventually executable, making them quantita-
tive, sensitive, and predictive of outcome for risk assessment.
The implementation and practice of Systems Toxicology

requires several experimental approaches to generate data
relevant to the question at hand. First, the exposure needs to
be characterized both in terms of composition, dose, and
duration and in terms of biomarkers of exposure at the subject
level. The next step is to examine the effect of these exposures in
biological model systems such as cellular and organotypic
cultures relevant to the exposure and the observed toxicological
effects. The results obtained from these in vitro experiments can
then further guide the selection of relevant models of human
diseases and environmental health. All of these studies will,
however, yield quantitative phenotypic readouts in the context of
quantitative system-wide molecular measurements. The third
step is to integrate the data from these large-scale experiments, to
analyze them to decipher the biological mechanisms by which
adverse effects arise from exposure, and to build a functional
model thereof. A new framework for risk assessment should
therefore integrate this mechanistic knowledge. This perspective,
derived from the presentations and discussions held at a recent
symposium on Systems Toxicology,14 offers an integrated view
on this trajectory from experimentation to computational
analysis and risk assessment.

2. THE EXPOSOME: A SYSTEMS APPROACH TO
UNDERSTANDING EXPOSURE

Xenobiotic exposures are acknowledged to play an over-
whelmingly important role in common chronic diseases such
as cancer, diabetes, cardiovascular, and neurodegenerative
diseases, which constitute the major health burden in
economically developed countries.15 It has been estimated that
90% of cancer deaths and half of heart disease mortality cannot
be explained by genetic factors, suggesting an environmental
origin.16 Sequencing the human genome has permitted
identification of individual susceptibility to disease through
genome-wide association studies, but so far these have explained
comparatively little of the variability in chronic disease
prevalence.17 In contrast, there has been a relative paucity of
comparable tools for exposure assessment18,19 and exposure
estimates (e.g., in epidemiology studies) have relied primarily on
questionnaires, geographic information, and a few targeted
measurements. In environmental toxicology, exposure assess-
ment is commonly based on quantifying chemical concentrations
in the exposure medium (e.g., water or soil), although there is
increasing recognition that quantification of intraorganism
concentrations provides a better means to link exposure to
toxicological effect.20

Remarkable advances in analytical sensitivity and capacity,
including omics technologies, have nowmade environment-wide
association study (EWAS) feasible,21−,23 permitting detection of
associations between biomarkers and human health outcomes on
a much larger scale than previously possible. Wild,18 therefore,
proposed the concept of the exposome, representing all
environmental exposures (including diet, lifestyle, and infec-
tions) from conception onward, as a complement to the genome
in studies of disease etiology. In this concept, the body’s internal
environment is subject to exposure to biologically active
chemicals. Exposures are therefore not only restricted to

chemicals (toxicants) entering the body from air, water, or
food but also include endogenous chemicals produced by
inflammation, oxidative stress, lipid peroxidation, infections, gut
flora, and other natural processes. This internal chemical
environment continually fluctuates during life because of changes
in external and internal sources, aging, infections, life-style, stress,
psychosocial factors, and pre-existing diseases.23

A challenge lies in choosing on which of the thousands of
measurable biologically active chemicals to focus. Paraphrasing
Abraham Lincoln, Stephen Rappaport has suggested, “We
cannot measure everything all the time, but we can measure
most things some of the time, and we can measure some things
most of the time.”14 Thus, the primary purpose of biomarker-
based exposure monitoring should be to identify risk factors for
use in epidemiological studies rather than to provide exhaustive
personalized exposomes that cannot be interpreted at an
individual level. Even a partial exposome characterization can
lead to major public health benefits, for example, one or more
cross-sectional exposure measurements at different time points
in a prospective cohort study.19 Because the serum exposome is
enormously complex, an EWAS focuses on measuring network
features, such as N-linked glycoproteins or reactive electrophiles
stabilized as adducts of human serum albumin.24 In this way,
potential biomarkers can be identified for subsequent use in
targeted epidemiological studies. The issue of timing of exposure
assessment may have to be tailored to specific hypotheses by
examining exposure in cohorts of different ages.19

The term biomarker can relate to any interaction between an
external environmental agent and a biological system such as the
human body. In the context of risk assessment, biomarkers of
interest have been defined in terms of whether they relate
quantitatively to a particular exposure, its effect in a biological
system, or to the way in which the system reacts.25 These
biomarkers are distinguished as follows:

• Biomarker of exposure: an exogenous substance or its
metabolite or the product of an interaction between a
xenobiotic agent and some target molecule or cell that is
measured in a compartment within an organism;

• Biomarker of effect: a measurable biochemical, physio-
logical, behavioral or other alteration within an organism
that, depending upon the magnitude, can be recognized as
associated with an established or possible health impair-
ment or disease;

• Biomarker of susceptibility: an indicator of an inherent or
acquired ability of an organism to respond to the challenge
of exposure to a specific xenobiotic substance.

However, the boundaries between exposure and effect are fluid
and it is therefore helpful to describe the measurement of
xenobiotics and their metabolites in biological systems as
biological monitoring and to restrict the term biomarker to
consequences of functional or structural change (e.g., protein
and DNA adducts, chromosome aberrations, urinary proteins,
and enzymes) that represent an integration of exposure and
various biological processes. For example, chemical-induced
DNA adducts vary at the individual level because of carcinogen
metabolism, DNA repair, and cell turnover, at least partially as a
result of interindividual genetic variation. Therefore, such
biomarkers may not strictly correlate with exposure but are
more likely to be associated with disease outcome, for example,
cancer risk, because they reflect the consequences of exposure on
a pathway relevant to carcinogenesis.19
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In assessing biomarkers, particularly omics-based biomarkers,
it is therefore important to separate those generated by
environmental exposures ultimately leading to disease (causal
pathway) from those that are manifestations of disease (reactive
pathway). This process of biomarker identification and validation
can be separated into two main phases.24 In the discovery phase,
EWAS is used in an untargeted, data-driven way with a focus on
small molecules and proteins. The main objective is to identify
discriminating features that are consistent across studies, ideally
those with a prospective cohort design. The exact chemical
nature of the discriminating feature has to be identified, a process
that may involve searching for matches in existing databases as
well as additional experiments using a battery of different
analytical techniques. In the second phase, candidate biomarkers
are investigated in targeted, knowledge-driven follow-up studies
to establish causality, prevention, diagnosis, prognosis, and
treatment of diseases. An example of such a stepwise approach to
the identification of biomarkers is the screening of several
thousand small nonpolar molecules in serum to discover a
molecular biomarker of susceptibility to colorectal cancer linked
to low serum GTA-446 anti-inflammatory fatty acid levels.26

Unraveling complex environmental and genetic disease
etiologies demands that both environmental exposures and
genetic variation are reliably measured. Characterizing the
exposome represents a technological challenge at least as large
as that for the human genome project, which began when DNA
sequencing was in its infancy.23 The data generated by
application of omics technologies, potentially in a longitudinal
fashion, poses enormous bioinformatics and biostatistics
challenges, requiring substantive interdisciplinary collaboration.
However, exposomics methods and goals are not as standardized
as they were for DNA sequencing, and, consequently, the
exposome does not translate as easily to scale-up as did
sequencing the human genome.19 Nevertheless, Systems Biology
and Systems Toxicology, when linked to epidemiology, offer the
prospect of examining gene−environment interactions and
identifying biomarkers for causative pathways of diseases,
monitoring their progression, and guiding treatments.

3. LARGE-SCALE MOLECULAR MEASUREMENT
A fundamental building block of Systems Toxicology is that
exposures lead to changes at the molecular level, some of which
may induce morphological or functional changes at the cellular
and organism level that contribute to toxic outcomes. Over the
past decade, there has been unprecedented development in
technologies that enable the collection of very large-scale data
sets composed of quantitative information regarding molecular
responses on the basis of changes in all major classes of
biomolecules in living organisms. Furthermore, advanced
imaging methods enable the quantitative analysis of cell-level
changes. Hereafter, we will highlight a few of the recent
developments in transcriptomic, proteomic, metabolomic, and
lipidomic measurement technologies as well as high-content
screening as the main emerging molecular methods that are
critical enablers of Systems Toxicology. A broader range of
technologies, including epigenetics,27−29 and their applications
to toxicology have been described recently.2,30

3.1. Transcriptomics. Transcriptomics or gene-expression
profiling is perhaps the most widely used measurement
technology in Systems Toxicology and is used to study the
changes in expression of all mRNAs in a cell population, organ, or
organism. Transcriptomic analysis is also the best established
approach for identifying perturbed biological networks (see

below) and thereby gaining mechanistic insight into the system’s
response to an exposure.31,32 The current technological basis of
transcriptomics measurements for Systems Toxicology studies
has involved oligonucleotide microarrays and, more recently,
next-generation sequencing (NGS).
Oligonucleotide microarrays represented the major techno-

logical advance in transcriptomics of the past decade and were
introduced and generalized with the invention of high-density
array printing by Affymetrix. Today, it is possible to design an
array of oligomer probes that covers the whole transcriptome of
any organism for which the genome sequence is known and the
possible open reading frames and gene models have been
identified using well-established bioinformatics analysis pipe-
lines. These microarrays enable high-throughput parallel analysis
of many samples derived frommodel systems as well as clinical or
environmental samples. With the concomitant progress in full
cDNA sequencing and RNA sequencing by next-generation
sequencing technologies, current microarrays can cover each
gene or its exons; such exon arrays are now available for human,
mouse, and rat. The use of exon arrays has improved the analysis
of alternatively spliced RNA transcripts as well as the accuracy of
the overall gene-expression measurements.
NGS technologies31,32 are emerging as the measurement

methods that may supersede microarray technologies in the near
future on the basis of greater accuracy, providing exact transcript
counts and results that closely approach quantitative PCR.
Furthermore, NGS methods are more flexible as they enable
gene-expression studies in organisms for which microarrays are
not available, such as model systems used in environmental
toxicology. Finally, they are likely to offer a higher throughput
than microarrays as new developments will likely allow for the
analysis of thousands of transcriptome samples in a single
sequencing run.

3.2. Proteomics. The proteome represents the full comple-
ment of the proteins in a cell, organ, or organism, and proteomics
is a systematic approach to characterizing all or an enriched
subset of proteins therein. Measuring changes in levels and
modifications of proteins is applied to diagnostics, drug
discovery, and investigating toxic events. Proteomic data are of
particular value in Systems Toxicology because the proteome is
an important mediator of altered biological responses as a
consequence of exposure to active substances. Increases or
decreases in protein levels may be a direct consequence of
corresponding mRNA-expression changes, but increases or
decreases in protein function may also be influenced by post-
translational modifications. For example, protein phosphoryla-
tion, which can be further addressed by high-throughput
phosphoproteomics, enables the characterization of molecular
events proximal to disease-related signaling mechanisms.33

Mass spectrometry (MS) is widely considered to be the central
technology for modern proteomics, mainly because of its
unsurpassed sensitivity and throughput. Thanks to the high
accuracy of MS, peptides in the subfemtomolar range can be
detected in biological samples with a mass accuracy of less than
10 ppm. This level of accuracy is necessary to compare proteins
between samples derived from exposed and control systems.
Isotope tagging for relative and absolute quantification (iTRAQ)
is used in comparative proteomics for Systems Toxicology
because it enables the relative quantification of protein species
between samples in a nontargeted manner. This method can be
further complemented with a targeted method of even higher
accuracy: selected reaction monitoring (SRM). SRM enables the
precise quantification of predefined proteins. It leverages a
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unique property of MS to quantify peptides, produced by a
controlled enzymatic digestion of the proteome, as a way to
quantify their corresponding proteins. Because it is a targeted
approach, any proteomics analysis by SRM requires the a priori
selection of the proteins to quantify. This is generally achieved
using the results of previous experiments using nontargeted
approaches such as iTRAQ combined with a review of the
scientific literature to leverage prior knowledge. The list of
selected proteins is then processed with bioinformatics tools to
identify at least two proteolytic peptides that optimally represent
the protein and distinguish it from all others. This step is
followed by the selection of SRM transitions for each of those
peptides and several optimization and validation steps to ensure
unique identification and accurate quantification. This method
enables a multiplexed approach by which hundreds of proteins
can be quantified in a single MS run.
Targeted approaches for protein quantification have been

developed to produce accurate and high-sensitivity data for
defined subproteomes. An emerging example is the development
of surface-capture probes to interrogate the surface-reactive
subproteome, a critical response gateway for active substances, as
recently demonstrated for hepatocytes.34 Antibody-based
approaches are also important in targeted proteomics. For
instance, reverse protein arrays (RPAs) have evolved from
classical enzyme-linked immunosorbent assays (ELISA) and
enable high-throughput analysis of up to 192 different lysates,
including post-translationally modified proteins, on a Zepto-
CHIP with over 200 validated antibodies. Other antibody-based
targeted methods, such as Luminex, provide alternative measure-
ment platforms for multiplexed, high-sensitivity and -specificity
targeted proteomic data generation.33 These data can lead to the
refinement of mechanistic details of toxicology pathways that
were mainly based on transcriptomic data.
3.3. Metabolomics. Metabolomics involves a comprehen-

sive and quantitative analysis of all metabolites or low molecular
weight organic or inorganic chemicals that are products or
substrates of enzyme-mediated processes.35−41 In the context of
Systems Toxicology, metabolomics is unique because it can be
used to define amounts of internalized xenobiotic chemicals and
their biotransformation products24,42 as well as the perturbed
endogenous metabolome, which represents the ultimate change
in the levels of chemical species resulting from molecular
perturbations at the genomic and proteomic levels.39−41 In the
first case, an understanding of the kinetic behavior of xenobiotic
toxicants and their metabolites (as well as related biomolecular
adducts)43 is necessary to identify candidate biomarkers of
exposure for human and environmental monitoring. The second
is a more conventional Systems Biology perspective of
metabolomics, which involves both identification of metabolites
and quantification of changes in their abundance and rates of
production caused by an exposure.
From a technical perspective, metabolomics most commonly

involves NMR spectroscopy and/or MS analysis techniques in
untargeted profiling or targeted analysis strategies.39,44 Profiling
of a metabolome may entail global detection and relative
quantification of a large number of metabolites without a priori
knowledge. However, targeted experiments involve the absolute
quantification of a small number of metabolites (around 20 or
less) to test a defined hypothesis. In Systems Toxicology,
metabolomics may be accompanied by concomitant tran-
scriptomic and proteomic measurements to provide the full
context of the exposure. Integrated analysis of these diverse data
types is necessary to enable a full understanding of the

mechanistic events driving metabolomic changes. Finally,
emerging application areas include the characterization of effects
of mixtures on chemical responses in microfluidic organ model
systems.45,46

3.4. Lipidomics.The lipidome is the complete lipid profile of
a biological system and is an example of a specialized subset of the
metabolome. By extension, lipidomics is a systematic approach to
characterize and quantify lipids in biological samples using, as
with metabolomics, analytical methods based on NMR and MS.
It has been recognized recently that alterations of lipid
homeostasis contribute to several pathophysiological conditions.
Lipids are not only an important energy store but are also
essential constituents of all cellular membranes and exert a
number of signaling functions. Indeed, profound changes in the
cellular and tissue lipid composition occur in response to
exposure to active substances and environmental factors.
Lipidomics is thus a powerful method to monitor the overall
lipid composition of biological matrixes and has been shown to
have great potential to identify and detect candidate biomarker
signatures indicative of toxicity. There have been rapid recent
advances in MS-based techniques capable of identifying and
quantifying hundreds of molecular lipid species in a high-
throughput manner.47,48 Large sample collections can be
analyzed by automated methods in a 96-well format.49 The
lipid extracted from various biological matrices can then be
analyzed by multiple MS platforms, either by detecting the lipids
by shotgun lipidomics or after separation by liquid chromatog-
raphy to detect and quantify lipids of lower abundance.
Performing concomitant transcriptomics analysis in samples
subjected to lipidomic profiling enables the integrated analysis of
these complementary data sets to derive mechanistic information
regarding the toxicological meaning of lipid alterations.50

3.5. High-Content Screening. Molecular changes meas-
ured in Systems Toxicology studies should, as often as possible,
be correlated with cellular or tissue-level changes measured
under the same conditions. Although histopathology is the main
approach to gather such data, phenotypic assessment of cells in
culture can be performed using high-content screening (HCS)
methods.51 This technique is based on computer-aided visual
detection of a panel of functional biomarker measurements
providing precise temporal, spatial, and contextual information
that define the biological status of the cells or organs and
structure of small organisms (e.g., early life stages in zebrafish).
The measurement of the different biomarkers can be achieved on
either a fixed specimen labeled with fluorescent reagents or
directly on a living specimen during the time of the exposure. A
broad panel of biomarkers can be analyzed in a multiplexed
manner to provide quantitative measurements of the level of
abundance and localization of proteins (e.g., phosphorylated
protein) and/or changes in the morphology of the cell. Each
biomarker can be adapted to the cell type relevant to a particular
exposure modality to quantify key cellular events such as (1)
apoptosis and autophagy, (2) cell proliferation, (3) cell viability,
(4) DNA damage, (5) mitochondrial health, (6) mitotic index,
(7) cytotoxicity and oxidative stress, (8) nascent protein
synthesis, and (9) phospholipidosis and steatosis. HCS is
enabled by computer-aided automated digital microscopy (e.g.,
ArrayScan) or flow cytometry for data analysis and storage.

4. DATA AND INFORMATION MANAGEMENT
Advanced experimental technologies for Systems Toxicology
produce unprecedented amounts of data, the management of
which is a major challenge for scientists. It is expected that this
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trend will accelerate because of ongoing technology develop-
ments and concomitant cost decreases. Therefore, we are
witnessing many efforts globally to develop methods and tools to
manage, integrate, and process this data. As a consequence, a
wide range of open-source software solutions (e.g., EMMA52 and
MIMAS53) are continuously being developed andmade available
to store and manage data along with the information to describe
accurately the experimental setup and the conditions that led to
the data. This latter point is of crucial importance to data
integration, experimental reproducibility, and proper data
analysis and interpretation. The Institute of Medicine of the
U.S. National Academy of Sciences has recently specified
experimental transparency as one of the major requirements
for translational omics.54 Minimum information about micro-
array experiment (MIAME )-based55 exchange format MAGE-
TAB56 provides a solution for microarray data, which has also
become the standard for data sets deposited in public databases
such as ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) or
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo/). A similar standard exists for proteomics experiments,
namely, the minimum information about a proteomics experi-
ment (MIAPE).57

The analysis of complex data sets is greatly facilitated by
computational pipelines or workflows that automate a sequence
of computational tasks, often performed by independent
software components. In this context, Computational Biology
workflow management systems (e.g., Galaxy58 and Taverna59)
have been developed to implement reproducible data analysis
processes. caArray and caGrid60 from the National Cancer
Institute Biomedical Informatics Grid (NCI caBIG) are
prominent examples of a Systems Biology data-integration
environment that includes knowledge management as well as
workflow systems. For instance, this environment allows
integration with commercial data analysis and biological pathway
analysis systems.

5. COMPUTATIONAL PLATFORMS FOR SYSTEMS
TOXICOLOGY

As outlined above, the core objective of Systems Toxicology is to
elucidate the mechanisms that causally link a well-characterized
exposure to active substances with quantifiable adverse events
and disease. It requires collection of experimental data reflecting
molecular changes in the context of quantifiable cellular, tissue-
level, or physiological changes that are linked to disease
phenotypes or adverse events at the organism level. Thus,
Systems Toxicology heavily relies on computational approaches
to manage, analyze, and interpret the data generated by the large-
scale experimental approaches described earlier. The ultimate
goal is to develop predictive in silico models that can be used in
risk assessment. To reach this ambitious goal, computational
Systems Toxicology has four major areas of focus:

• Analyzing the massive amounts of systems-wide data
generated by high-throughput methods and their
integration with the structural description of the
substances involved in the exposure.

• Representing the relevant mechanisms leading to adverse
outcome as biological network models that adequately
describe both the normal state and the causal effect of their
perturbations upon exposure to active substances (Figure
3).

• Quantifying the dose-dependent and time-resolved
perturbations of these biological networks upon exposure
and assessing their overall biological impact.

• Building and validating adequate computational models
with predictive power that can be applied to risk
assessment (Figure 3).

Hereafter, we highlight just a few applications of computa-
tional Systems Toxicology covering Computational Toxicology,
biological network model building, biological impact quantifica-
tion, and predictive modeling to exemplify some recent
developments in these four areas.

Figure 3. Biological network model-development process. Initial static BN models can be constructed using biological facts derived from the literature.
This process mainly involves manual curation. These initial models can serve as the basis to guide the development of computable BN models. These
models rely on biological facts (key events) derived from both the literature and new experimental data and are expressed in a computable format such as
the biological expression language (BEL). Computational methods such as reverse causal reasoning and reverse engineering are used to support the
model-building process. Such networks can then serve as the foundation to build executable BN models in which edges are expressed with equations
such as ordinary differential equations. The main applications of these broad classes of BNmodels are shown in light blue boxes. Artwork by Samantha J.
Elmhurst (www.livingart.org.uk).

Chemical Research in Toxicology Perspective

dx.doi.org/10.1021/tx400410s | Chem. Res. Toxicol. 2014, 27, 314−329321

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
www.livingart.org.uk


5.1. Computational Toxicology. Computational Toxicol-
ogy, recently reviewed by Kavlock and colleagues,61 is a growing
area of research that integrates molecular and cell biology with
chemistry and computational approaches. The objective is to
increase the predictive power of toxicology by more efficiently
and effectively ranking chemicals based on risk. With the advent
of high-throughput experimental setups, relevant cell-based assay
systems can be exposed to a large number of substances in a dose-
dependent manner, and many phenotypic end points can be
measured quantitatively by high-content (or visual) screening
methods. Furthermore, cell-free enzymatic and ligand-binding
assays, including G-protein-coupled and nuclear receptors,
kinases, phosphatases, cytochrome P450s, histone deacetylases,
ion channels, and transporters, can be used in a high-throughput
screening mode to profile the mechanism(s) of action of
chemicals. These approaches enable the screening of numerous
substances for their impact on toxicity pathways. This will
eventually lead to the creation of a comprehensive landscape of
adverse cellular effects induced by biologically active substances.
The integration of the biological end points with the chemical
structures of the tested substances enables computational
mapping (interpolating) of untested chemical analogues into
the toxicity data, thereby providing a prediction of their relative
toxicological hazard potential.
ToxCast is a major initiative in Computational Toxicology

supported by the U.S. EPA. ToxCast aims to understand the
potential health risks of a large number of diverse chemicals
including failed pharmaceuticals, commodity chemicals, and
pesticides by employing a large array of high-throughput
screening methodologies. The first phase, or proof of concept,
involved the use of almost 300 chemicals that had been well-
characterized for their toxicological potential in animal models
that were studied in more than 600 high-throughput screening
assays.62 The results of this phase included a large number of
expected perturbed biological pathways and the development of
several predictive models based on a multifactorial data
analysis.63 The second phase of the ToxCast initiative (http://
www.epa.gov/ncct/toxcast/) is currently screening over 1000
such compounds against many of the same targets employed in
phase I, and the data for this component has been released (see
ToxCast website). A key element of the ToxCast program
involves the interpretation of the in vivo relevance of in vitro
activity concentrations through a process called reverse
toxicokinetics.64 Combining this information with high-
throughput exposure assessments, as introduced by Wambaugh
and colleagues,11 provides for a risk-based process of
prioritization of chemicals for more intensive study of their
potential to impact human health.
5.2. Building Computable Biological Networks. By

necessity, all descriptions of complex systems need to be simpler
than the system itself. Indeed, BN models are represented as
diagrams of nodes (entities) and edges (relationships). Initial
models can be constructed using existing knowledge drawn from
both pathway databases and literature-derived information
(Figure 3). Although publicly accessible databases of manually
curated biological networks and pathways, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG)65 and WikiPath-
ways,66 are available, they generally provide a high-level static
representation of our understanding of biological processes and
offer only a limited representations of the adverse event
mechanisms in the context of a particular exposure. Therefore,
they need to be further supplemented with new nodes and edges
derived from experiments adequately designed to link observed

molecular changes with phenotypic changes in the context of a
given exposure. To extract the key molecular entities and their
relationships from these data sets, sophisticated reverse-
engineering algorithms, such as GNS Healthcare’s reverse-
engineer and forward simulation predictive framework67,68 or
those reviewed by Lecca and Priami69 can be applied. Second,
these high-level pathway maps have limited computational value
for the analysis of Systems Toxicology data sets. Even though
recent network informatics tools allow us to “paint” pathway
maps according to the differential abundance of molecular
entities (such as gene-expression data), they generally fall short
of providing a computational infrastructure for causal reasoning
and hence a more complete interpretation of high-throughput
data sets. The transition from static to computable BN models is
thus a necessary step to analyze experimental data fully and to
build our collective knowledge of the toxicological effects of
exposure to biologically active substances. This transition
requires a formal language to describe the causal nature of the
interactions between nodes to complement the gene ontology70

that already provides a coherent framework for the description of
the nodes themselves. The recent development of the biological
expression language (BEL), for instance, enables this transition
because it allows the semantic representation of life-science
relationships in a computable format71 and thus the development
of computable BN models composed of cause-and-effect
relationships. BEL was designed to capture biological cause-
and-effect relationships with associated experimental context
from disparate sources. BEL thereby facilitates the encoding of
directional relationships within computable biological network
models. The BEL framework is an open-source technology for
managing, publishing, and using structured life-science knowl-
edge (http://www.openbel.org/).71 This is unlike the Biological
Pathway Exchange (BioPAX), which focuses on the integration
and exchange of biological pathway data across a large array of
existing pathway resources.72

Building causal computable BN models is a process that has
been previously described in several publications and is briefly
summarized below.73−77 These models consist of qualitative
causal relationships to represent biological processes and are
coded in BEL. The model-building process starts with the
definition of its contents and boundaries by including all
necessary mechanistic building blocks relevant to the BN under
consideration. This step is guided by literature investigations of
the signaling pathways relevant to the BN model under
construction. These network boundaries are then used to screen
the literature and to derive a collection of cause-and-effect
relationship statements describing the relevant and known
biology linked to the BN model in a given tissue context. From
this, a literature model is constructed. The model consists of
nodes, representing biological entities, such as mRNA expression
or protein abundance, and edges, representing causal relation-
ships between the nodes. During this model-building process,
reverse causal reasoning (RCR)78 analysis of relevant gene-
expression data sets is used to guide the selection of nodes for
model building. RCR interrogates the experimental data against a
knowledgebase of possible causal relationships for all of the
context-specific nodes and edges in the literature model to
identify upstream controllers of the mRNA state changes (gene-
expression changes) observed in the data set. The potential
upstream controllers identified by RCR are statistically
significant potential explanations for the observed mRNA state
changes. These potential upstream controllers are then included
as new nodes in the BNmodel if they have literature support for a
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mechanistic role in the biological process and context of interest.
This allows uncovering relevant nodes and edges that were not
identified during the construction of the literature-based
network. RCR-based augmentation of the network model can
be performed using proprietary or publicly available gene-
expression data sets (e.g., GEO or ArrayExpress). As a final step
in the construction of the network model, the nodes and edges
are manually reviewed and refined to include relevant context
and pathways (e.g., by additional literature review), producing
the final network model.
The review process should be conducted with each model

periodically to ensure that newly available data sets and new
literature are taken into account and thereby ensure that each
model is kept up to date. Furthermore, BN models need to be
verified to prove that they capture context-specific nodes and
edges that are supported by experimental observations. This
verification can be achieved on three levels. First, existing data
sets not considered during model building can be used to verify
specific areas of the model. This approach is, however,
constrained by the availability of relevant publicly accessible
data sets that fulfill the context-specific boundary criteria.
Second, the structure of the model can lead to the design and
conduct of new experiments designed for verification purposes,
as exemplified by recent work on the computable cellular
proliferation network model for normal lung cells.79 Finally,
research communities can be engaged to curate network
models80 as implemented in WikiPathways81 or through
collaborative competition leveraging the wisdom of the crowd.82

By systematically investigating and describing the major
mechanisms involved in toxicology, the scientific community
will gradually build a compendium of computable BN models
covering the crucial mechanisms involved in toxicity. Three
layers of information and knowledge need to be addressed to
tackle this daunting task. First, the molecular entities (i.e., the
nodes in the BN models) will need to be further characterized,
and their often diverse biological functions need to be captured in
curated knowledge bases such as UniProt.83 Second, BN model
construction will need to focus on the identification of new nodes
and connections in a context-sensitive manner, where cell type
and tissue environment are taken into account. Finally, identified
mutations and their contributions to adverse manifestations need
be the catalogued and mapped into the BN models in a
consistent manner. This is essential to Systems Biology in general
and Systems Toxicology in particular and will require the
coordination of efforts80 that can easily dwarf the Human
Genome Project.
5.3. Network-Based Biological Impact Assessment.The

ability to predict the potential health risk of long-term exposure
to biologically active substances is an ultimate goal in Systems
Toxicology. Such risks are typically assessed a posteriori with
epidemiological studies. However, disease or population-level
responses might take decades to manifest, at which point changes
in therapeutic regime, life style, or exposure would not prevent
disease onset. It is therefore necessary to develop methods that
are predictive and quantitative for risk assessment. It is well-
understood that exposure to biologically active substances leads
to modifications in the abundance of molecular entities within a
living system, and, in some cases, modifications in the very nature
of these entities, such as splice variants and post-translational
modifications of proteins, lead to BN perturbations, which in
turn can later lead to tissue-level changes and adverse events or
disease. As described earlier, causal computable BN models are
designed to describe these causal links between biological entities

and thus provide a possible quantitative framework for biological
impact assessment. Indeed, these models can be used to derive a
data-driven quantitative assessment of the perturbation of a given
BN. Recent toxicogenomics approaches84 have proven the
potential of mechanism-based assessment methods by using a
simple scoring method to evaluate the overall gene set-level
expression changes to profile biologically active substances.
Although the use of gene sets provides a first assessment based on
gene lists derived from, for example, KEGG and other pathway
databases, BN models will provide a more accurate and detailed
analysis of the mechanistic effects of the exposure as well as a
quantitative evaluation of the perturbation of each model under
consideration and an overall pan-model biological impact. By
way of example, we have published a five-step approach to derive
such a biological impact factor (BIF)85 for a given exposure or
stimulus. This approach employs causal computable BN models
as the substrate to analyze high-throughput data sets derived
from in vitro and in vivo dose−response and time-course
experiments. Briefly, quality-controlled measurements generated
in vitro or in vivo constitute systems response profiles (SRPs) for
each given exposure in a given experimental system. These SRPs
express the degree to which each individual molecular entity is
changed as a consequence of the exposure of the system. These
SRPs are then analyzed in the context of a collection of BN
models designed to cover the molecular mechanisms perturbed
by the exposure. This analysis is designed to answer questions
about the completeness of the models (i.e., whether additional
nodes and edges need to be added to the model to cover all of the
exposure effects and to identify any new mechanisms not yet
reported in the literature). This analysis employs RCR, by which
downstream measurements (e.g., gene expression) are causally
mapped as effects of an activity of individual elements in the
model. Once this step is completed, we apply specific algorithms
to derive the specific network perturbation amplitude (NPA)
scores.86 Specifically, the NPA algorithm translates gene fold-
changes (or other downstream measurements) into the
perturbation of individual elements in the model and finally
aggregates these perturbations into a BN-specific score.86,87 By
providing a measure of biological network perturbation, NPA
scores allow correlation of molecular events with phenotypes
that characterize the network at the cell, tissue, or organ level.
Finally, the overall biological impact88 of a perturbing agent can
be estimated by aggregating the NPA scores from several BN
models into one holistic value, the BIF, that expresses the overall
impact on the entire biological system. This BIF can be readily
correlated with other measurable end points (e.g., collected at a
higher level of biological organization through phenotypic
changes) or used to generate testable hypotheses that could
provide new insight into mechanisms of disease onset or
progression.85,89

5.4. From Biological Network Models to the Virtual
Organism and Beyond. The BN models described above
provide either a static or a computable environment to
contextualize experimental data in the framework of current
knowledge. Although these approaches enable a detailed
understanding of molecular processes and the identification of
new nodes and edges to supplement existing BN in a context-
sensitive manner (e.g., particular cell type in a specific tissue
environment), they do not exhibit the simulation capabilities
necessary to understand the dynamic response of a molecular
system to an exposure or more importantly to predict the effect
of new exposures a priori. Key to this transition from descriptive
to executable biology is the development of mathematical models
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that represent the dynamic properties of biological processes and
their corresponding computational models that can be executed
in silico. Therefore, the ultimate objective of computational
Systems Toxicology is to develop dynamic (executable)
mathematical models of these BNs in such a way that their
simulation correctly represents the observed behavior of the
biological process (Figure 3). Such models will eventually permit
true predictions, such as the emergence of new network
behaviors following in silico perturbations. The development of
such models is currently still in its infancy and represents a major
frontier in Systems Biology and Systems Toxicology. One effort
in this area has been initiated by the U.S. EPA and aims to build a
virtual embryo model90 in silico to predict the potential for
environmental chemicals to affect embryonic development. The
predictive power of the model will be tested with a selection of
well-characterized chemicals with known health effects in animal
studies. Another example of predictive modeling is provided by
the PhysioLab platform developed by Entelos (Foster City, CA,
USA). Several large-scale dynamic mathematical models were
developed and include both human and mouse models of
diseases: (1) virtual NOD mice (Type 1 Diabetes PhysioLab),91

(2) virtual ApoE−/− mice (ApoE−/− Mouse PhysioLab),92 (3)
virtual humans in both Rheumatoid Arthritis93 and (4) the Skin
Sensitization PhysioLab.94 All of these PhysioLab platforms are
large multiscale biological models where molecular and cellular
interactions are generally represented by ordinary differential
equations, the numerical solution of which simulates the dynamic
response of the biological system across several layers of
organization. Although most of these computational systems
are primarily designed to plan and understand, for example,
clinical studies, two of them are sample applications for Systems
Toxicology. For instance, the ApoE−/− PhysioLab was designed
to understand the toxicological effects of cigarette smoke and
cessation on atherosclerotic plaque growth.92 The objective was
to build a framework to translating experimental ApoE−/−mouse
results to the human setting despite the uncertainty around the
mechanisms underlying disease etiology, the relative importance
of these mechanisms as drivers of progression, and how these
roles change in response to lifestyle changes. This model may be
used to optimize in vivo experiments and to pave the way for a
similar modeling approach for human disease. The second
example is the DILIsym modeling software, a multiscale
representation of drug-induced liver injury (DILI)95,96 that is
associated with SimPops (see http://dilisym.com/Products-
Services/simpops.html), a collection of simulated individuals
that match a particular range and distribution of parameters and
patient characteristics, allowing the exploration of the
interindividual variability in response to potential DILI-causing
drugs. The third example is driven by recent changes in European
Union legislation, prohibiting the use of in vivo experimental
animal models for testing cosmetics (EU Cosmetics Regu-
lation).5 As a consequence, nonanimal approaches to provide the
data for skin sensitization risk assessment need to be further
developed. In this context, Maxwell and MacKay94 have
developed an in silicomodel of the induction of skin sensitization
to characterize and quantify the contribution of each pathway to
the overall biological process. The resulting Skin Sensitization
PhysioLab is thus an important attempt to integrate data derived
from different forms of nonanimal hazard data to inform new
skin sensitization risk-assessment decisions and demonstrates
how computational Systems Toxicology can contribute to hazard
evaluation in a new framework for consumer safety risk
assessment.94 Predictive model development has also been

started in nonhumans, namely, fish, and focuses on the
reproductive effects resulting from disturbance of the endocrine
axis by environmental chemicals in a research program led by the
U.S. EPA.97

The development of dynamic (executable) mathematical
models of AOPs linking exposure to individual and population-
wide adverse outcomes is the grand challenge of computational
Systems Toxicology. Although new computational methods and
mathematical tools are certainly needed, the major challenge in
building such models is our limited understanding of how BN
perturbations are linked to the KEs in the AOPs at a higher level
of biological organization. Although this obviously requires a
deep understanding of the dynamic behavior of the causal link
between BN perturbations and KEs, it also requires a far deeper
understanding of the causal link between these KEs and the
adverse outcome for the individual and how these translate to the
population. Although the dynamic models described above are a
step toward understanding the links between BN perturbations
and individual adverse outcomes, the last step could be achieved
by creating large sets of mechanistically distinct virtual humans
that, upon simulation, statistically match the prevalence of
phenotypic variability reported in human studies. The recently
reported algorithm termed mechanistic axes population
ensemble linkage (MAPEL),98 which utilizes a mechanistically
based weighting method to match clinical trial statistics, may be
an approach enabling such population-based risk assessment and
expands on the concept of SimPops. Similar model can be
developed for other organisms, such as fish or plants. Such
dynamic models will eventually allow for simulating the behavior
of biological systems at both the individual and population levels
to generate new hypotheses and insights into the potential effect
of an exposure a priori. Their validation will eventually provide a
computational foundation for risk assessment.

6. SYSTEMS TOXICOLOGY AND RISK ASSESSMENT

The needs of risk assessment are context-dependent and can vary
from simple classification of a substance for hazard (e.g., is it
genotoxic or not) to prioritization by the nature and severity of
hazard for further investigation to quantitative estimates of risk to
determine the urgency and nature of any risk-management
action. Although existing approaches have served society well,
there is increasing concern, some real and some hypothetical,
that there may be important weaknesses in the assumptions used
in current risk assessment. These include the shape of the dose−
response relationship under human-relevant exposures, whether
biological thresholds exist and for what end points, the extent of
population variability in toxicological response, and the influence
of factors such as life stage on response. Despite a substantial
amount of research, some in large groups of animals, it has not
been possible to resolve these concerns. This shortcoming is due
to the intrinsic limitation of all experimental observations by the
power of the study. Hence, robust resolution of these questions
will require a mechanistic approach. As discussed above, Systems
Toxicology has real potential to provide the data as well as the
quantitative mechanistic models to address these issues. In this
sense, Systems Toxicology can provide a deep mechanistic
understanding of toxicological effects, permitting prediction of
responses to chemicals. If adequately described, a systems
description should enable prediction of responses for which
experimental data were not available (i.e., the system will exhibit
emergent properties entailing novel patterns and properties
arising from the inherent structure of the system).
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The development of such models is a major and complex
undertaking. Hence, it will be some time before they can be used
in risk assessment. Furthermore, risk assessors are not often well-
trained in relevant mathematical procedures and hence there is
inherent reluctance to adopt computationally intensive ap-
proaches with which they are poorly familiar. Thus, a phased
transition will be necessary. One way in which this might be
achieved is by adapting the more familiar mode of action/adverse
outcome pathway paradigm. A MOA/AOP comprises a series of
quantifiable key events that are necessary but individually usually
not sufficient for a toxicological response to a chemical. It should
be possible to use a modular approach to the development of
Systems Toxicology, where one starts with a systems-based
model of a single key event and incorporates that into a
quantitative biological model with dose−response data for the
other key events at an operational level. In this way, one could
progressively add systems-based modules describing each key
event until a full systems-based description of the response is
achieved. This approach has the major advantage that each stage
is readily verifiable experimentally. This will also allow
incorporation of Systems Toxicologically in a progressive fashion
into risk assessment, while providing risk assessors the
opportunity to become familiar and comfortable with evaluating
such data.
Major efforts are underway to develop nonanimal test

methods, such as the high-throughput ToxCast program
discussed earlier. However, in themselves, these platforms are
unlikely to meet the needs of risk assessment beyond hazard
identification. Taking a further step will require additional
quantitative approaches, for which Systems Toxicology would be
ideally suited. However, development of suitable models will be a
complex and time-consuming undertaking. Mode of action can
provide a translational bridge, enabling the incorporation of
information from in vitro and other approaches into a systems-
based description of key events, thereby enabling the stepwise
development of a full Systems Toxicology characterization of the
organ and eventually the organism

7. OUTLOOK
We stand at the edge of an unprecedented transformation in the
conduct of toxicological evaluations. A central tenant of the new
toxicology involves applying modern molecular analysis
techniques to elucidate mechanisms of toxicity and is being
enabled by several factors. The first is the increasing power and
availability of molecular measurement tools able to probe the
functioning of biological networks inside organisms, organs,
tissues, and cells. The second is the increasing affordability of
high-throughput and high-content characterization approaches
that can be applied to thousands of chemicals in short time
periods rather than the chemical-by-chemical approach of the
past 4 decades that involves thousands of animals and perpetual
high costs and years of duration. The third enabler is the
increasing computational power, data-storage capacity, and
information-management tools now available to the scientific
community that has facilitated the ability to employ complicated
Systems Biology models. The fourth enabler is the acceleration in
the development of adequate in vitro test systems to complement
and gradually replace animal models.3 The fifth enabler is that of
significant resource investment by governments throughout the
world in funding efforts to develop the scientific foundation of
Systems Toxicology. For example, DARPA (the Defense
Advanced Research Projects Agency, USA) recently invested
$70 million to develop up to 10 “organs on chips”within the next

5 years. Likewise, the EU has invested several hundred million
Euros in FP7 (see http://www.axlr8.eu/) for various supporting
projects such as SEURAT-1 (Safety Assessment Ultimately
Replacing Animal Testing, see http://www.seurat-1.eu), with
prospects to continue the investment in the European funding
framework, Horizon 2020. Ultimately, these international efforts
need to be combined to produce a real shift in the risk-
assessment paradigm that not only assures the highest levels of
protection of public health and the environment but also enables
economic growth and global trade. Finally, a key requirement in
addressing the challenge is that contributors and stakeholders,
whether from government, academia, industry, NGOs, regu-
latory bodies, or the public at large, reach a consensus that new
approaches based on Systems Toxicology reach the standards
they demand.
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