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Introduction
Despite the plethora of wound care options cur-
rently available to treat diabetic foot ulcers, lower 
extremity amputations have increased 63% since 
2009.1 This is the first resurgence in over 20 years.2 
An objective biomarker that could monitor response 

to therapy and predict healing, especially early in 
the disease course, would be a major addition to 
the armamentarium of limb salvage teams.3,4 It 
would allow providers to rapidly identify and 
employ the most effective wound care strategy for 
a given patient’s ulcer, minimizing the risk of 
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Abstract
Background: Lower extremity amputations from diabetic foot ulcers (DFUs) are rebounding, 
and new biomarkers that predict wound healing are urgently needed. Anaerobic bacteria have 
been associated with persistent ulcers and may be a promising biomarker beyond currently 
recommended vascular assessments. It is unknown whether anaerobic markers are simply 
a downstream outcome of peripheral arterial disease (PAD) and ischemia, however. Here, 
we evaluate associations between two measures of anaerobic bacteria—abundance and 
metabolic activity—and PAD.
Methods: We built a prospective cohort of 37 patients with baseline ankle brachial index 
(ABI) results. Anaerobic bacteria were measured in two ways: DNA-based total anaerobic 
abundance using 16S rRNA gene amplicon sequencing and resulting summed relative 
abundance, and RNA-based metabolic activity based on bacterial read annotation of 
metatranscriptomic sequencing. PAD was defined three ways: PAD diagnosis, ABI results, 
and a dichotomous definition of mild ischemia (versus normal) based on ABI values. Statistical 
associations between anaerobes and PAD were evaluated using univariate odds ratios (ORs) or 
Spearman’s correlations.
Results: Total anaerobe abundance was not significantly associated with PAD diagnosis, 
ABI results, or mild ischemia (ORPAD = 0.47, 95% CI = 0.023–7.23, p = 0.60; Spearman’s 
correlation coefficientABI = 0.24, p = 0.17; ORmild ischemia = 0.25, 95% CI = 0.005–5.86, p = 0.42). 
Anaerobic metabolic activity was not significantly associated with PAD diagnosis, ABI 
results, or mild ischemia (ORPAD = 1.99, 95% CI = 0.17–21.44, p = 0.57; Spearman’s correlation 
coefficientABI = 0.12, p = 0.52; ORmild ischemia = 0.90, 95% CI = 0.03–15.16, p = 0.94).
Conclusion: Neither anaerobic abundance nor metabolic activity was strongly associated with 
our three definitions of PAD. Therefore, anaerobic bacteria may offer additional prognostic 
value when assessing wound healing potential and should be investigated as potential 
molecular biomarkers for DFU outcomes.
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amputation. Without such a marker, providers are 
currently left with subjective wound assessments 
sometimes spanning weeks before being able to 
tailor therapy.3–8 The Food and Drug 
Administration recently addressed this gap by 
redefining clinical endpoints in trials of new 
wound therapies.9 Concurrently, the National 
Institutes of Health cited the lack of biomarkers 
that predict wound healing as a major hurdle to 
developing effective therapies and earmarked spe-
cific funds for their development.10,11

Peripheral arterial disease (PAD) is one of the 
strongest risk factors for non-healing wounds and 
amputation among those with diabetic foot 
ulcers.12 PAD may also increase the abundance of 
anaerobic bacteria in the ulcer because of down-
stream ischemia. It is unclear whether high anaer-
obic abundance and metabolic activity is simply a 
sequela of PAD, however. The introduction of 
culture-independent high-throughput sequencing 
technologies to characterize ulcer microbiomes 
has revealed that ulcers have higher microbial 
diversity and colonization by anaerobic bacteria 
than detection by traditional culture–based labo-
ratory methods. Studies employing these meth-
ods have reported associations between the 
abundance of anaerobes and healing out-
comes.13–16 Thus, the anaerobic component of an 
ulcer’s microbiome is emerging as a potential bio-
marker that may be useful for monitoring thera-
peutic response and predicting wound healing.16–19 
If anaerobes are solely a microbiologic manifesta-
tion of PAD, however, they may not offer addi-
tional prognostic value beyond currently 
recommended vascular assessments.20,21

The aim of this study is to determine whether 
anaerobic abundance and metabolic activity 
within the microbiome of diabetic foot ulcers are 
strongly associated with PAD. If not, efforts to 
develop an anaerobic biomarker may be more 
likely to offer new, valuable information for the 
more than two million Americans who develop a 
foot ulcer annually.22

Methods

Prospective cohort
We constructed a prospective cohort of patients 
with diabetic foot ulcers presenting to the William 
S. Middleton Memorial Veterans Hospital 

podiatric clinic in Madison, WI, USA, between 12 
March 2019 and 4 February 2020. We included 
patients who were: (1) able to provide informed 
consent, (2) older than 18 years, (3) diagnosed 
with diabetes based on medical records review, 
and (4) being seen for a foot ulcer. We excluded 
patients who were not undergoing sharp debride-
ment or who were scheduled to have a skin substi-
tute applied. Patients receiving a skin substitute 
were excluded because this therapy would have 
prevented longitudinal sampling of the ulcer, a 
goal of the overall cohort study independent of 
the current analysis. When patients presented 
with more than one ulcer at the time of enroll-
ment, the treating clinician identified the ulcer 
that he or she thought would be the most chal-
lenging to heal, and this was selected for sam-
pling. Patients who were initially enrolled in the 
study and later developed a second foot ulcer 
were excluded from participating again to pre-
serve independence between observations. For 
this analysis, the cohort was further restricted to 
patients with baseline ankle brachial index (ABI) 
testing (Figure 1). 

At baseline, patients reported their age, sex, race, 
ethnicity, and smoking status (categorized as 
never, former, or current). We solicited informa-
tion on systemic antibiotics taken within 30 days 
of sample collection, including those prescribed 
outside the Veterans Administration (VA) sys-
tem. We abstracted the presence of the following 
baseline comorbidities from the VA medical 
chart: peripheral neuropathy, neuroarthropathy, 
PAD, coronary artery disease, hypertension, and 
hyperlipidemia. Patients were classified as having 
peripheral neuropathy if either one of two criteria 
was met: peripheral neuropathy was included in 
their problem list, or patients had a documented 
abnormal three-site Semmes–Weinstein monofil-
ament test within a podiatry clinic note.23 Patients 
undergo routine monofilament testing when they 
present with a foot ulcer to the podiatry clinic, 
and documentation is standardized using a note 
template. Patients were classified as having PAD 
if any one of the following three criteria were pre-
sent: (1) PAD was included in their problem list, 
(2) a vascular surgeon diagnosed the patient with 
PAD in a clinic note or within their interpretation 
of the ABI testing, or (3) the patient had under-
gone a lower extremity revascularization. The 
ulcer laterality, largest dimension, Wagner grade, 
and location (categorized as digit, metatarsal, 
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tarsal, or calcaneus) were recorded.24 The Wagner 
grade was determined by the treating clinician, a 
podiatrist or infectious disease physician who par-
ticipated in a multidisciplinary team within the 
podiatry clinic. Clinicians used Infectious Disease 
Society of America criteria to diagnose soft tissue 
infection: at least two classic symptoms or signs of 
inflammation (non-dependent erythema, warmth, 
tenderness, pain, or induration) or purulent 
secretions.25 They also used these guidelines to 
diagnose ulcers complicated by osteomyelitis, 
typically based on a probe-to-bone test or positive 
culture/histopathology from a bone sample. 
Finally, we abstracted baseline ABI results, focus-
ing on the ipsilateral leg and noting whether ves-
sels were non-compressible. We swabbed the 
ulcer base following baseline sharp debridement 
and used this specimen in our microbiome analy-
sis detailed below. We followed patients for 
3 months with in-person study assessments dur-
ing their podiatric appointments and chart reviews 
to determine whether the ulcer healed, persisted, 
or required amputation.

Microbiome analysis
Sample collection. Deep wound swabs were col-
lected using Levine’s technique into 300 μl of 
DNA/RNA Shield (Zymo Research, Irvine, CA, 
USA) and stored at −80°C until further process-
ing. Swabs were spun down using DNA IQ Spin 
Baskets (Promega, Madison, WI, USA), and the 

liquid was split in half for parallel DNA and RNA 
extractions from the same sample.

DNA/RNA extraction, library construction, 
sequencing. DNA extraction was performed as 
previously described with minor modifica-
tions.16,17,26,27 Briefly, 300 μl of yeast cell lysis 
solution (from Epicentre MasterPure Yeast DNA 
Purification kit, Madison, WI, USA), 0.3 μl of 
31,500 U/μl Ready-Lyse Lysozyme solution (Epi-
centre, Lucigen, Middleton, WI, USA), 5 μl of 
1 mg/ml mutanolysin (M9901, Sigma-Aldrich, St. 
Louis, MO, USA), and 1.5 μl of 5 mg/ml lyso-
staphin (L7386, Sigma-Aldrich, St. Louis, MO, 
USA) were added to 150 μl of swab liquid before 
incubation for 1 h at 37°C with shaking. Samples 
were transferred to a 2-ml tube with 0.5 mm glass 
beads (MoBio, Carlsbad, CA, USA) and bead 
beat for 10 min at maximum speed on a Vortex-
Genie 2 (Scientific Industries, Bohemia, NY, 
USA), followed by a 30-min incubation at 65°C 
with shaking, 5-min incubation on ice. The sam-
ple was spun down at 10,000 rcf for 1 min, and 
the supernatant was added to 150 μl of protein 
precipitation reagent (Epicentre, Lucigen) and 
vortexed for 10 s. Samples were spun down at 
maximum speed (~21,000 rcf) and allowed to 
incubate at room temperature for 5 min. The 
resulting supernatant was mixed with 500 μl iso-
propanol and applied to a column from the Pure-
Link Genomic DNA Mini Kit (Invitrogen, 
Waltham, MA, USA) for DNA purification using 

Figure 1. Flow chart for patient cohort selection criteria.
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the recommended protocol. 16S rRNA gene V4 
region amplicon libraries were constructed using 
a dual-indexing method at the University of Min-
nesota Genomics Center and sequenced on a 
MiSeq with a 2 × 250 bp run format (Illumina, 
San Diego, CA, USA). Reagent-only negative 
controls were carried through the DNA extrac-
tion and sequencing process.

RNA extraction was performed using 1 ml of 
chilled (4°C) TRIzol (Invitrogen) with bead beat-
ing (single 5 mm steel bead) using a FastPrep-24 
Classic tissue homogenizer (MP Biomedicals, 
Irvine, CA, USA) for five cycles of 4 s at 4.0 m/s 
with samples resting on ice for 5 min between 
cycles. 200 μl of chloroform was added to each 
sample, mixed, and allowed to incubate for 3 min 
at room temperature. Samples were spun for 
15 min at 12,000 rcf at 4°C. The aqueous phase 
was transferred to the gDNA eliminator column 
from the RNeasy Plus Micro Kit (Qiagen, Hilden, 
Germany) and processed using the kit’s instruc-
tion thereafter. Libraries were constructed using 
the Smarter Stranded Total RNA-Seq Kit v2 – 
Pico Input (Takara Bio, Mountain View, CA, 
USA) with mammalian rRNA depletion at a con-
centration of 10 ng in 8 μl. Libraries were pre-
pared without fragmentation because of 
low-quality input RNA. Samples were sequenced 
on a NovaSeq 6000 with a 2 × 100 bp run format 
(Illumina) at the University of Wisconsin Biote-
chnology Center.

Sequence analysis. The QIIME2 environment28 
was used to process DNA-based 16S rRNA gene 
amplicon data. Paired end reads were trimmed, 
quality filtered, and merged into amplicon 
sequence variants (ASVs) using DADA2.29 Tax-
onomy was assigned to ASVs using a naive Bayes 
classifier pre-trained on full length 16S rRNA 
gene 99% operational taxonomic unit reference 
sequences from the Greengenes database (version 
13_8).30 ASVs classified as Propionibacterium acnes 
were manually renamed to Cutibacterium acnes to 
reflect the reclassification and renaming of this 
organism.31 Using the qiime2R package, data 
were imported into RStudio (version 1.4.1106)32 
running R (version 4.1.0)33 for further analysis 
using the phyloseq package.34 The data set was 
decontaminated with the decontam package35 
using prevalence-based contamination at a 0.5 
threshold to remove ASVs that were more preva-
lent in negative DNA extraction and sequencing 
controls than in true samples. Abundances were 

normalized proportionally to total reads per 
sample.

Transcriptomic reads were trimmed of adapter 
sequences and quality filtered with fastp (version 
0.20.0)36 using default parameters. Kraken2 
(version 2.0.8-beta)37 was used to assign reads  
to taxonomic labels based on exact kmer matches 
to the National Center for Biotechnology 
Information (NCBI) Refseq indexes that 
included Standard (archaeal, bacterial, human, 
UniVec_Core, and viral genomes, along with 
plasmid sequences), protozoan, and fungal 
genomes (PlusPF collection). The database was 
curated to classify reads assigned to plasmid 
sequences as ‘plasmid’ regardless of the bacterial 
taxonomy of the plasmid source. Reads were re-
estimated to species level abundances using 
Bracken.38 Bracken outputs were imported into 
R and reads annotated within the kingdom 
Bacteria were analyzed with phyloseq. 
Abundances were normalized proportionally to 
total bacterial reads per sample.

Custom R scripts were used to merge 16S rRNA 
gene amplicon and transcriptomic abundance 
data sets for each sample at the genus level. 
Anaerobic bacteria in the genera Cutibacterium, 
Propionibacterium, Anaerococcus, Finegoldia, 
Peptoniphilus, Clostridium, Peptoclostridium, Pepto­
streptococcus, Peptococcus, Helcococcus, Bacteroides, 
Parabacteroides, Porphyromonas, Prevotella, Fuso­
bacterium, and Veillonella were summed for analy-
sis. Figures were produced using the package 
ggplot2.39

Statistical analysis
We calculated descriptive statistics for the cohort 
and built a Kaplan–Meier graph to show the pro-
portion of patients with persistent ulcers over the 
12-week follow-up period. We modeled PAD 
three ways: clinical diagnosis (dichotomous), 
numeric ABI values (continuous), and normal 
versus mild ischemia based on ABI values (dichot-
omous). Specifically, we classified patients as 
having normal vascular status if their ABI values 
ranged from >0.9 to 1.4. Those with ABI values 
0.90–0.50 were classified as having mild 
ischemia.40 We modeled anaerobes two ways, 
both of which were continuous: the percent of 
total DNA (abundance) and the percent of total 
RNA (metabolically active) in the wound micro-
biome. We began exploring correlations between 
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arterial disease and anaerobes by plotting scatter 
graphs. Next, we used Spearman’s correlation to 
compare ABI and anaerobic values (correlation 
between two continuous variables).41 We used 
univariate logistic regression to determine whether 
there was an association between anaerobic val-
ues and (1) the clinical diagnosis of PAD or (2) 
our classification of normal versus mild ischemia 
(association between dichotomous and continu-
ous variables).42 We performed a sensitivity anal-
ysis restricting the sample to those who were not 
on antibiotics with anaerobic activity. Two-tailed 
p-values were calculated in all cases. Statistics 
were performed using R (version 4.1.0).33

Results
Our prospective cohort consisted of 48 patients, 
37 (77%) of whom had baseline ABI data and 
were included in the main analysis (Figure 1). 
Nearly all patients were male and identified as 
non-Hispanic White. Glycemic control was sub-
optimal, with a mean hemoglobin A1C of 8.0%. 
Comorbidities were prevalent. Over 90% of 
patients were diagnosed with hypertension, 
hyperlipidemia, and neuropathy. Only five 
patients (14%) were lifetime non-smokers (Table 
1). Most ulcers were classified as Wagner grade 1 
or 2 and were located in the forefoot (Table 1). 
Patients who were excluded from this study owing 
to missing ABI values had less comorbidities and 
less severe, forefoot ulcers compared with 
included patients (Table 1). Seven patients 
received antibiotics with anaerobic activity within 
30 days of sample collection, including: amoxicil-
lin–clavulanate acid (n = 3), clindamycin (n = 2), 
and piperacillin–tazobactam (n = 2). Our sensitiv-
ity analysis excluded these seven patients. Twenty 
(54%) patients had persistent ulcers at the end of 
the 12-week follow-up period (Figure 2). Only 
two (5%) were lost to follow-up.

Regarding PAD, 11 (30%) patients carried this 
diagnosis. ABI values ranged from 1.38 to 0.65 
among the 34 patients with compressible vessels. 
Eight patients, or 24% of those with ABI values, 
met our definition of having mild ischemia. 
Regarding anaerobic results from the baseline 
wound sample, the mean percentage of bacterial 
DNA that was attributable to anaerobes was 
27.9%. The mean percentage of bacterial RNA 
that was attributable to anaerobes was 22.7%. 
Both metrics had large variance across the cohort 
samples, reflected in their standard deviations 

(Table 1). Anaerobe relative abundances were 
strongly correlated within samples across the 
DNA and RNA data sets (Spearman’s rho = 0.84, 
p < 1E−07; data not shown), supporting the use 
of either method of detection for determining the 
proportion of anaerobic bacteria in wound 
samples.

Univariate logistic regression did not demonstrate 
a statistically significant association between the 
clinical diagnosis of PAD and the percent of 
anaerobic DNA or RNA in the baseline sample 
(odds ratio (OR)DNA = 0.47, 95% CI = 0.023–
7.23, p = 0.60; ORRNA = 1.99, 95% CI = 0.17–
21.44, p = 0.57; Figure 3(a)). Similarly, no 
statistical associations between mild ischemia and 
anaerobic metrics were found (ORDNA = 0.25, 
95% CI = 0.005–5.86, p = 0.42; ORRNA = 0.90, 
95% CI = 0.03–15.16, p = 0.94; Figure 3(b)). 
Spearman’s correlation coefficient provided no 
statistical evidence to suggest a significant corre-
lation between ABI values and the percentage of 
anaerobic bacterial DNA (rs = 0.24, p = 0.17) and 
RNA (rs = 0.12, p = 0.52; Figure 3(c)). When 
restricting the sample to patients who did not 
receive an antibiotic with anaerobic activity within 
30 days of baseline sample collection, results did 
not substantially deviate from the main analysis.

Discussion
We found no evidence to suggest a positive asso-
ciation between anaerobic abundance and meta-
bolic activity with PAD. Therefore, further 
pursuit of an anaerobic biomarker to monitor 
therapeutic response and predict wound healing 
may be fruitful. Such a biomarker is likely to pro-
vide data independent of currently available vas-
cular testing.

Initially, our results may seem counterintuitive. 
Patients with PAD, by definition, have ischemia. 
Anaerobic bacteria prefer ischemic environments. 
Therefore, one might logically assume that 
patients with PAD have wound microbiomes with 
higher anaerobic abundance and activity. We did 
not find evidence to suggest such a relationship, 
however. One reason for this discrepancy is that 
the microbiome assessment occurs on a much 
smaller scale than the vascular assessment. The 
microbiome can exist as a biofilm at the interface 
between the patient and environment.43 Oxygen 
availability varies across a gradient within the bio-
film, with a central area of oxygen depletion.44–46 
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Table 1. Patient characteristics.

Characteristic Total cohort (n = 37) Patients without ABIs (n = 11)

Demographics

Age, m (range) 67.08 (50–81) 67 (50–82)

Malea 36 (97.30) 11 (100)

Race, n (%)

 White 33 (89.19) 9 (81.82)

 Black 1 (2.70) 1 (9.09)

 Other 3 (8.11)b 1 (9.09)c

Hispanic ethnicity, n (%) 2 (5.41) 1 (9.09)

Comorbidities, n (%)

 Neuropathy 35 (94.59) 10 (90.91)

 Neuroarthropathy 10 (27.03) 2 (18.18)

 Peripheral arterial disease 11 (29.73) 1 (9.09)

 Coronary artery disease 21 (56.76) 6 (54.55)

 Hypertension 35 (94.59) 9 (81.82)

 Hyperlipidemia 37 (100) 8 (72.73)

Tobacco use, n (%)

 Never 5 (13.51) 3 (27.27)

 Former 25 (67.57) 7 (63.64)

 Current 7 (18.92) 1 (9.09)

Baseline A1C, m (range) 8.03 (5.1–12.6) 7.35 (5.2–12.5)d

Baseline ulcer characteristics

 Largest dimension, millimeter, m (SD) 14.24 (12.42) 12.89 (9.12)

Wagner grade, n (%)

 1 14 (37.84) 6 (54.55)

 2 16 (43.24) 4 (36.36)

 3 7 (18.92) 1 (9.09)

 4 0 (0) 0 (0)

Location, n (%)

 Digit 12 (32.43) 4 (36.36)

 Metatarsal 16 (43.24) 7 (63.64)

 Tarsal 3 (8.12) 0 (0)

(Continued)
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Microbiologists hypothesize that this center con-
tains persister cells, which function to impair 
wound healing and maintain local inflamma-
tion.47,48 We do not yet know whether anaerobes 
are key persister cells. Given a microenvironment 
favorable to anaerobic metabolism and early data 
linking anaerobes to delayed wound healing, 
however, this may be true.16,49 As we start to 
explore potential microbiome-based biomarkers, 
we need to recalibrate our frame of reference. As 
providers, we are accustomed to thinking on a 
scale appropriate for human physiology. This 
served us well during the advent of endovascular 
surgery, which drove down amputation rates in 
the early 2000s.50–52 Now, infection commonly 
serves as the tipping point between limb salvage 
and amputation.53 We need to respond by shift-
ing our thinking to a microbiologic scale. Doing 
so will allow us to capitalize on microbiome data 
so that we are better equipped to address infec-
tion and rising amputation rates.

Our results are robust. We examined associations 
between anaerobic bacteria measured in terms of 
both DNA and RNA, and PAD defined three 
ways. We found no positive relationship between 
PAD and anaerobic markers. Results held in the 
sensitivity analysis that excluded patients whose 
anaerobic results might have been impacted by 

prior antibiotic use. Furthermore, wounds dis-
played a high degree of variation in anaerobic val-
ues. Variation is useful when developing 
biomarkers. Dispersed results allow for easier 
detection of clustering that may indicate one clin-
ical phenotype (e.g. prone to healing) from 
another (e.g. prone to persistent ulceration).54

Figure 2. Kaplan–Meier curve for proportion of patients with persistent 
ulcers after 12 weeks (n = 37).

Characteristic Total cohort (n = 37) Patients without ABIs (n = 11)

 Calcaneus 6 (16.21) 0 (0)

Ankle brachial index

 Non-compressible, n (%) 3 (8.12) –

 Calculated index, m (range) 1.07 (0.65–1.38) –

 Meets ischemic definition, n (%)e 8 (23.53) –

Baseline anaerobic characteristics

 Percent total abundance, m (SD) 27.9 (26.3) 23.7 (28.6)

 Percent of metabolically active microbes, m (SD) 22.7 (29.3) 20.0 (29.0)

ABI, ankle brachial index; SD: standard deviation.
aOne (3.33%) patient had an unreported sex.
bThe other racial category consisted of one individual identifying as Asian, one identifying as Native American or Alaska 
Native, and one identifying as both Caucasian and Native American or Alaska Native.
cThe other racial category consisted of one individual identifying as Native Hawaiian or Other Pacific Islander.
dOne individual did not have an A1C value.
eDenominator equals 34 patients with ABI values.

Table 1. (Continued)
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As with any study, ours has limitations. Although 
our cohort was similar to the general population of 
patients with diabetic foot ulcers, it did not con-
tain patients with moderate-to-severe PAD. 
Patients with a high degree of vascular disease 
would not have undergone sharp debridement 
owing to concerns of exacerbating their ulcers. 
Without debridement, we could not collect a sam-
ple of the wound base for analysis. These patients 
are already known to be at high risk of amputa-
tion, hence; the prognostic utility of an anaerobic-
based biomarker in this group may be limited.12 
Because there may be a role for biomarkers to 
assess conservative response to therapy in patients 
with moderate-to-severe PAD, we plan to include 
these patients in future cohorts. This may require 
changing the sampling technique to swabbing the 
ulcer without sharp debridement. Assessment of 
the wound microbiome before and after revascu-
larization procedures may also offer key insights. 
Few of our patients had toe-brachial index testing 
or transcutaneous oxygen pressure testing to 
assess their microvascular status. Therefore, we 
cannot rule out a correlation between microvascu-
lar disease and high anaerobic markers. 
Microvascular assessments are technically more 
challenging, less accurate, and more difficult to 
utilize in clinical practice, however.55 Even if there 
was a correlation between transcutaneous tissue 
pressure values and anaerobes, there may still be a 
niche for an anaerobic biomarker if it was more 
readily available and reliable.

An additional limitation of our cohort, typical of 
current genomic and transcriptomic studies, is 

our small sample size.16,56–58 We may have been 
unable to detect a moderate degree of correlation 
between vascular disease and anaerobic abun-
dance or activity. Second, our Veteran population 
was largely composed of males. Further inclusion 
of women would be welcome to ensure there are 
no sex-based differences; greater representation 
of individuals identifying as a racial or ethnic 
minority would also be welcome and increase 
generalizability of our findings.

Culture-based methods are the gold standard to 
identify pathogenic microbes. Standard clinical 
microbiology workflows, however, have been 
shown to underestimate the diversity of chronic 
wounds and diabetic foot ulcers, especially of 
fastidious bacteria such as obligate anaer-
obes.43,49,59 Molecular-based approaches are 
able to detect bacteria via the nucleic acid con-
tent of microbial cells without the need for culti-
vation.60 We used two different high-throughput 
sequencing methods that together are able to 
describe both taxonomy and gene expression 
activity of microbial communities. Using the 
16S rRNA gene as a DNA-based marker, we 
were able to use amplicons of the hypervariable 
V4 region as a molecular barcode for taxonomi-
cal assignment. It is important to note that these 
amplicon-based methods are limited in their 
classification beyond the genus level. Thus, we 
have chosen to limit our analysis to the genus 
level. Also, DNA-based methods are unable to 
distinguish live bacteria from dead cells and are 
similarly unable to discern dormancy versus tran-
scriptional activity. Therefore, we used total 

(a) (b) (c)

Figure 3. Anaerobic bacterial abundance (DNA) and activity (RNA) in DNA and RNA data sets are not associated with (a) PAD 
diagnosis, (b) mild ischemia, and (c) ABI. Each datapoint represents a sample from a single patient. For (a) and (b), boxplots show 
the interquartile range with median while whiskers represent the top and bottom quartiles up to 1.5 times the interquartile range. 
p-values reported for logistic regressions. For (c), dashed lines represent the (non-significant) linear regression lines, and p-values 
are reported for Spearman’s correlation coefficient (rs).
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RNA sequencing to assess gene expression activ-
ity. Dead or dormant cells do not actively tran-
scribe RNA, and therefore do not contribute to 
the RNA pool. Our DNA and RNA data sets are 
strongly correlated, indicating that the most 
abundant species tend to also be the most tran-
scriptionally active. We do note that we are sum-
marizing anaerobe activity in terms of overall 
contribution to the total RNA pool sequenced. 
We anticipate that further functional annotation 
of the sequenced RNA will lead to a better 
understanding of the microbial lifestyle within 
wounds and lead to potential biomarkers for 
patient wound healing outcomes.

Conclusion
Neither anaerobic abundance nor metabolic 
activity strongly associated with our measures of 
PAD in our cohort of Veterans with normal vas-
cular status to mild ischemia. Therefore, anaero-
bic biomarkers may offer unique prognostic 
information regarding diabetic foot ulcers, inde-
pendent of peripheral vascular disease.
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