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Abstract: Crowdsensing has emerged as an efficient and inexpensive way to perform specialized
tasks by leveraging external crowds. In some crowdsensing systems, different tasks may have
different requirements, and there may be precedence constraints among them, such as the Unmanned
Aerial Vehicle (UAV) crowdsensing systems. Moreover, minimizing the total execution time is a
regular target for finishing the crowdsensing tasks with precedence constraints. As far as we know,
only a few existing studies consider the precedence constraints among crowdsensing tasks, and none
of them can minimize the total execution time simultaneously. To tackle this challenge, an efficient
allocation mechanism for tasks with precedence constraints is first proposed, which can minimize
the total execution time. Then, a case study is given to show how to fit our mechanism in the UAV
crowdsensing system. Finally, the simulation results show that the proposed mechanisms have
good approximate optimal ratios under different parameter settings and are efficient for the UAV
crowdsensing system as well.
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1. Introduction

With the emergence of various wireless technologies (4/5G, DSRC, and etc.), ubiquitous terminal
equipment, such as smartphones, vehicles and UAVs, can collect real-time data from the environment
and transmit the data to the IoT central server effectively [1–3]. As an important application of IoT,
crowdsensing can leverage the power of large crowds to complete the complicated sensing tasks
by using their smartphones or other mobile devices [4,5]. Compared with the conventional data
collection methods, crowdsensing provides a low-cost and time-efficient solution for large-scale
sensing tasks. With the dramatic proliferation of mobile devices, a set of crowdsensing systems have
been implemented in recent year [6–17]. For instance, Kumar Rana et al. implemented an Ear-Phone
system for monitoring the environmental noise pollution in urban areas through crowdsensing data
collection [18].

Task allocation mechanism is crucial for crowdsensing, which directly decides the performance
of the crowdsensing system. A variety of task allocation mechanisms have been proposed for
crowdsensing systems [19–31]. For example, Reddy et al. proposed to maximize the spatial coverage

Sensors 2019, 19, 2456; doi:10.3390/s19112456 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2768-6607
http://www.mdpi.com/1424-8220/19/11/2456?type=check_update&version=1
http://dx.doi.org/10.3390/s19112456
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2456 2 of 18

with limited resource [19]. Jaimes et al. designed a budget-constrained incentive mechanism for
task allocation [20]. He et al. took travel time into consideration and proposed to maximize the
spatial coverage [21]. Considering that crowdsensing tasks may have various requirements (such
as the type of data, sensing periods, etc.) and workers have different skills and reliability levels.
Li et al. proposed to dynamically select appropriate workers for given tasks while keeping the
constraints satisfied [22], Jin et al. incorporated quality of data to design the incentive mechanisms for
MCS systems [25]. Iijima et al. considered the individual preference in distributed environments and
proposed an adaptive task allocation mechanism that maximizes the social utility [32].

However, all these studies assume that the tasks in the crowdsensing system can be performed
simultaneously and ignore that the sensing tasks may have precedence constraints in some applications.
A crowdsensing task with precedence constraints cannot be executed before its pre-order tasks
are finished. Actually, many crowdsensing applications have multiple steps, which will cause the
precedence constraints of sensing tasks. UAV crowdsensing system is a typical system with precedence
constraints, where exist mainly six types of tasks: WASD (Wide Area Search and Destroy), ISR
(Intelligence Surveillance and Reconnaissance), CAS (Close Air Support), SEAD (Suppression of
Enemy Air Defense), AR (aerial refueling), and PS (precision strike) [33,34]. In this system, there exists
an execution sequence among tasks. Another example is the MCS based traffic congestion monitoring
system, which monitors the traffic condition through collecting the sensing data of vehicles on different
major roads. When a traffic jam occurs, the system will publish tasks to find out the reason that causes
this congestion, to monitor the progress of the events that cause traffic congestion or to verify the
effectiveness of the traffic grooming strategy. Obviously, these tasks have precedence constraints, i.e.,
the system needs to find out the congestion reason before monitoring the progress of the events.

Designing an efficient task allocation mechanism for tasks with precedence constraints meets
more challenge than the existing ones. First, time efficiency, i.e., the total execution time of all the
tasks, is usually important for these crowdsensing systems. Generally, task requesters want the total
execution time as short as possible, such as in the UAV system [35–38]. However, different tasks may
have different requirements for users, and each user can only meet the requirements of some tasks.
The platform can only allocate tasks to the user who meets their requirements. Since all the constraints
are taken into account, it is a hard job to allocate the tasks to users optimally, especially for the case users
arrive online. As far as we know, only a few studies [39–44] have considered the precedence constraints
among different tasks. For example, Schwarzrock et al. proposed a task allocation mechanism for UAV
system, which can increase the amount of performed tasks [45]. However, none of these studies can
minimize the total execution time of all the tasks at the same time.

To address this challenge, the crowdsensing task allocation problem with precedence constraints
is studied in this paper, and an efficient allocation mechanism with the goal of minimizing the total
execution time of tasks is designed. The NP-hardness of the studied problem can be proved by
reducing the problem studied in this work to a classic NP-hard problem of multiprocessor scheduling
problem (the details are as shown in Section 2.3), which means the studied problem does not exist a
polynomial-time algorithm to get the optimal solution. Therefore, a near-optimal allocation mechanism
is proposed to solve it. The designed mechanism includes four steps, which are task level division,
final task set construction, allocation priority sequence construction, and task allocation. In order to
minimize the total execution time of tasks, the mechanism first divides the level of tasks based on their
precedence constraints and computes expected finish time of each task by assuming that there are
enough users for all the tasks. Since the total execution time of the tasks is bounded by the critical task
tc with the maximum expected finish time, the platform should first allocate a task to a user which can
minimize the expected finish time of tc. Based on this principle, the algorithm constructs an allocation
priority sequence for tasks. When a user arrives, it greedily chooses the task with the highest priority
in the allocation priority sequence to allocate until all the tasks have been finished. Then, a case study
is given to show how to fit the proposed mechanism in the UAV systems by considering the features
of the UAV system. Finally, the simulation results show that the proposed mechanisms are efficient for
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crowdsensing systems with task precedence constraints. The main contributions of this work are listed
as follows:

• An efficient task allocation algorithm for tasks with precedence constraints is designed. As far
as we know, this is the first work which considers the precedence constraints of tasks and the
proposed algorithm can minimize the total execution time of all the tasks.

• A case study is given to show how to fit the proposed mechanism in the UAV system,
by considering the features of UAV task allocation problem.

• Extensive simulations are conducted to evaluate the performance of the proposed algorithm,
and the results show that the proposed algorithm has good approximate optimal ratios under
different parameter settings.

The remainder of the paper is organized as follows. The description of the system model is
presented in Section 2. Then, the details of the proposed approximation algorithm are given in
Section 3. Next, a case study is given to show how to fit the proposed mechanism in the UAV system
in Section 4. Afterward, a variety of simulations are conducted to evaluate the mechanism in Section 5.
Lastly, the conclusion of the whole work is presented in Section 6.

2. Preliminaries

In this section, the system model is first introduced in Section 2.1, and then, the formal formulation
of the task allocation problem is in Section 2.2. After that, the NP-hardness of the studied problem is
proved in Section 2.3.

2.1. System Model

The crowdsensing system studied in this work is shown in Figure 1, which including a
crowdsensing platform, a task requester and a set of mobile device users U = {u1, u2, ..., un}.
At the beginning of the task allocation, the requester will submit a set of tasks, which is denoted
as T = {t1, t2, t3, . . . , tm}, to the crowdsensing platform. Each task tj ∈ T can be presented as
tj = {Cj, hj, lj, Dj}, where Cj denotes the conditional task set of tj, hj is the expected performing time
of task tj, lj is the location of task tj, Dj is the description of tj. Due to the precedence constraints
among tasks, only when all the tasks in the conditional task set Cj have been finished, can the task tj
be assigned to a user to perform. However, if the conditional task set Cj = φ (i.e., the task tj has no
conditional task), the task tj can be allocated by the platform at any time.

Crowdsensing platform

One task requester

Mobile device users

sensing
tasks

sensing 
data

request
results

Figure 1. The structure of the crowdsensing system.
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After receiving the task request from the requester, the platform will publish all the description of
tasks to the users. The users arrive online, and each available user ui will submit a set of interested
tasks Ti to the platform. Based on the requirement of tasks and users, the platform will allocate the
tasks to users one by one. Assume that each task only needs to be performed by one user, and the
platform will allocate no more than one task to each user at each round. After finishing the allocated
task, the platform will add the still available users to the waiting list, and treat it as a new arrival user.
Use ui = {Ti, PHi} to present user ui, where PHi is the expected execution time set of ui, and each
phi,j ∈ PHi is the expected execution time of ui for performing task tj.

In the UAV crowdsensing system, the task requester is the carrier, and each user is a UAV.
The flight duration from the location of one task to another for different UAVs may be varied, which is
an essential factor for the expected execution time of UAVs. Consider a UAV ui has finished task tj at
the location lj and is assigned to perform next task tk at the location lk. The travel duration of ui can be
presented as tdi,k = TD(ui, lj, lk), where TD(ui, lj, lk) is a function to calculate how long it generally
takes for ui to fly from lj to lk. Furthermore, if a UAV ui is going to finish its first task tk, the travel
duration starts from its initial location li and it is denoted as tdi,k = TD(ui, φ, lk) = TD(ui, li, lk). Notice
that hk is the expected performing time of task tk. Then, phi,k is mainly decided by tdi,k and hk in the
UAV system.

2.2. Problem Formulation

The goal of this work is to minimize the total execution time of the tasks with the
precedence constraints.

For facilitate reading, we summarize some symbols that are used in this paper in Table 1.

Table 1. The descriptions of notations used in this paper.

Notation Description

U a set of mobile device users
ui a mobile device user i
Ti interested tasks submitted by user i

PHi the expected execution time set of user i
phi,j the expected execution time of user i for performing task j
T the task set submitted by requester
tj a task j
Cj the conditional task set of task j
hj the expected performing time of task j
lj the location of task j
Dj the description of task j

tdi,k the travel duration of user i to the location of task k
yj binary variable to represent whether task j is finished
aj binary variable to represent if task j is permitted to be allocated
xi,j binary variable to represent whether task j is allocated to user i
sj the earliest time that the platform can allocate the task j to a user
Lj the level of task j
F the final task set
f j the order of task j in allocation priority sequence
he

j the expected finishing time of task j
ct

j the recorded task with maximum expected finishing time in Cj

Let yj = {0, 1} represent whether the task tj is finished. If the task tj is a finished task, yj = 1,
otherwise, yj = 0. Use aj = {0, 1} to denote if the task tj is permitted to be allocated, and it has
aj = ∏tk∈Cj

yk. If task tj satisfies the constraint aj = 1, tj can be allocated to a user. Further use
xi,j = {0, 1} to indicate whether the platform allocates task tj to user ui. If tj is assigned to the
user ui, xi,j = 1, otherwise, xi,j = 0. Suppose sj is the expected beginning time of task tj, (i.e.,
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the earliest time that the platform can allocate task tj to a user). Obviously, each sj should satisfy that
sj ≥ maxtk∈Cj(sk + ∑ui∈U phi,kxi,k). Define the total time that the users finish the tasks in the task set
as the execution time of a task set. Then, the goal of this work is to minimize the execution time of the
task set T .

Definition 1 (The Studied Task Allocation Problem(STAP)). The studied crowdsensing task allocation
problem can be defined as follows:

min max
tj∈T

(sj + phi,jxi,j)

s.t. sj ≥ maxtk∈Cj(sk + ∑ui∈U phi,kxi,k)

. . .

The first constraint shows that the studied allocation mechanism should satisfy the precedence
constraints of tasks. Therefore, tj can be performed only when all the tasks in its conditional task set
have been finished.

2.3. Analysis of the NP-Hardness

In the following, it will prove that the studied task allocation problem can be reduced to the
multiprocessor scheduling problem, which is a well-known NP-hard problem [46]. The description of
the multiprocessor scheduling problem is as follows: given a set of jobs and m processors, the goal
of the multiprocessor scheduling problem is to find the minimum possible time required to schedule
all jobs in the job set on m processors such that there is none overlap, where each job has a fixed
processing time.

Theorem 1. The studied task allocation problem (STAP) is NP-hard.

Proof. Consider a simple case of the studied problem, where there is no precedence constraint among
tasks, and each user is interested in all the tasks. Then, the task set in this problem can be viewed as
the job set in the multiprocessor scheduling problem, and the users in the studied problem can be
viewed as the processors in the multiprocessor scheduling problem. The performing time of tasks in
this problem is equal to the processing time of jobs in the multiprocessor scheduling problem. Then,
the goal of the problem is equivalent to find the minimum possible time required to schedule all jobs
on the processors such that there is none overlap. As is known to all, the multiprocessor scheduling
problem is NP-hard. Therefore, the problem studied in this work is also NP-hard, which finished
the proof.

3. Algorithm Design

It has been proved that the studied task allocation problem (STAP) is NP-hard, which means an
approximation mechanism with polynomial-time is demanded to solve it. The proposed mechanism
includes four steps, which are task level division, final task set construction, allocation priority
sequence construction, and task allocation. In the first step, the levels of tasks are divided based on
their conditional task sets. Define a task that is not in any conditional task set of other tasks as a
final task. The total execution time of all the tasks is determined by the finishing time of final tasks.
Thus, the second step of the mechanism is the construction of the final task set. Next, the mechanism
achieves its design goal by sorting the tasks in descending order based on their expected finishing
time. Finally, the tasks are allocated to users according to the allocation priority sequence constructed
in the third step.
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3.1. Task Level Division

The level in the algorithm is used to denote the precedence constraints among tasks. In the
studied model, tasks can be allocated to users only when all the tasks in their conditional task set have
been finished. Thus, the level of all the tasks in Cj should be less than the level of tj. Symbol Lj is
used to denote the level of tj. Obviously, each task tj with Cj = φ is in the lowest level ( i.e., Lj = 1 ).
The details of how to divide the level of tasks are as shown in Algorithm 1.

Algorithm 1 task level division
Require:

the task set T
Ensure:

L = {Lj}tj∈T
1: Set T ′ = T ;
2: for each tj in T do

3: Set C′j = Cj;
4: Set k = 1;
5: while T ′ 6= φ do

6: for each task tj ∈ T ′ do

7: if C′j = φ then

8: Set Lj = k;
9: for each task tj ∈ T ′ do

10: for each task tq ∈ C′j do

11: if Lq = k then

12: Delete tq from set C′j ;
13: if Lj = k then

14: Delete tj from set T ′;
15: k ++;
16: return L = {Lj}tj∈T ;

In Algorithm 1, it first makes a copy for each conditional task set Cj, which is denoted as C′j.
Initially the current task level k = 1. The task level division algorithm runs in an iterative way. In each
iteration, it scans all the tasks in temporary task set T ′. When tj is scanned, it will check whether the
temporary conditional set C′j = φ or not. If C′j = φ, set the task level of tj equal to k (i.e., set Lj = k).
After all the tasks in T ′ have been scanned, it will delete the tasks with level k from the temporary
conditional set of other tasks and delete tj from the temporary task set T ′. Finally, the algorithm sets
k = k + 1, and starts the next iteration until the task set T ′ = φ.

The following instance is given to express the algorithm more clearly. Suppose the task set
T = {t1, t2, t3, . . . , t6} in Figure 2.

According to Algorithm 1, the level of each task in the task set T is gotten. Apparently, tasks
are divided into three levels. t1, t2, t3 are in the first level, t4, t5 are in the second level and t6 is in the
last level.
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𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟒

𝒕𝟓

𝒕𝟔

Level 1

Level 2

Level 3

AB:  A is the conditional task of B

Figure 2. The instance for Algorithm 1.

3.2. Final Task Set Construction

Definition 2. Define the tasks that don’t exist in any other tasks’ conditional task set as final tasks. There exists
at least one final task tj in T . If tj is a final task, then tj /∈ Ck stands for all the tk ∈ T .

Since the total execution time of the tasks is bounded by final tasks, construction of the final task
set is performed before sorting the allocation priority of tasks. In Algorithm 2, all the tasks in T are
firstly assumed as final tasks. Then, they are checked one after another. When task tj is checked, it will
be deleted from the final task set F if it exists in the conditional task set of at least one task. The details
are as shown in Algorithm 2.

Algorithm 2 Final task set construction
Require:

the task set T
Ensure:

the final task set F
1: Set F = T ;
2: for each task tj ∈ F do

3: for each task tk ∈ T do

4: for each task tq ∈ Ck do

5: if tj = tq then

6: Delete task tj from the final task set F ;
7: return the final task set F ;

Consider the instance in Section 3.1. There is no conditional task set Ck(k ∈ [1, 6]) in this example
contains task t6. Thus, the constructed final task set F = {t6}. Obviously, all the tasks in T should be
done when all the final tasks in F have been finished, and it is the feature of the final task.

3.3. Allocation Priority Sequence Construction

The optimization objective is bounded by the final tasks with the maximum expected finishing
time. Thus, all the expected finishing time of the final tasks should be computed when tasks are
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allocated to users. To achieve the designed goal, the algorithm sorts the tasks with their expected
finishing time and constructs an allocation priority sequence. In the following, some important
definitions are given first.

Definition 3. Task Sequence: A task sequence is sequence of tasks which satisfies the l-th task in the sequence
should be in the conditional task set of the l + 1-th task and this sequence ends in a final task.

Since the tasks can only be performed one by one in the task sequence, the expected finishing
time of a task sequence is equal to the expected finishing time of the final task in the sequence.

Definition 4. The Critical Task Sequence: The critical task sequence is defined as the task sequence with
maximum expected finishing time.

The allocation priority sequence construction algorithm runs in iterations. In each iteration,
the critical task sequence of the task set T has to be found first, then the algorithm puts the task with
the lowest level in the critical task sequence into the allocation priority sequence. The details are as
shown in Algorithm 3.

Suppose f j is the order of task tj in the allocation priority sequence. In each iteration, the algorithm
aims to find a task sequence and its value is greater than any other task sequences. Note that the value
of a task sequence is equal to the expected finishing time of the final task in the sequence. To get the
expected finishing time of the final tasks, the expected finishing time of the tasks in their conditional
task set should be calculated. Thus, Algorithm 3 first computes the expected finishing time of each
task in T .

Let he
j be the expected finishing time of task tj. Note that the expected execution time of different

users for the same task may be different. However, users arrive online in this work. Thus, it hardly to
get the expected execution time of tasks before allocating. In order to solve this problem, the mechanism
assumes the expected execution time of task tj is hj in this step. Then, it has he

j = hj when Lj = 1.
When Lj ≥ 2, he

j = hj + max{he
p}tp∈Cj . Notice that the algorithm computes the expected finishing time

of tasks from low level to high level, and the levels of tasks in Cj are lower than tj. Thus, {he
p}tp∈Cj

are known when it computes he
j . ct

j is used to record the task with maximum expected finishing time
among tasks in Cj, which can help to construct the critical task sequence.

After computing the expected finishing time of all the final tasks at the start of the algorithm,
the mechanism begins to construct the priority sequence in iterations. As the expected finishing
time of all the final tasks is calculated, the task tq with maximum expected finishing time can be
found, and construction of the critical task sequence of task tq is available with the help of recorded ct

j .
Suppose tp is the task with lowest level in the critical task sequence of final task tq, tp is put into the
allocation priority sequence by setting fp = l. Then, tp is deleted from task set T . If tp is a final task, tp

should also be deleted from the final task set F . Afterward, the algorithm finds tasks that are directly
or indirectly related with the deleted tp and computes their expected finishing time. Finally, the next
iteration begins until T = φ.

Based on the information of tasks in Figure 2, the allocation priority sequence is gotten by
continuously finding a new critical task sequence for a changed task set T . Figure 3a is the situation of
task set T when the first task in allocation priority sequence has been found, and Figure 3b corresponds
to the second task in the sequence. In Figure 3a, the task sequence < t3, t5, t6 > is the critical task
sequence, then, the task t3 is the first task in allocation priority sequence. In Figure 3b, the task
sequence < t2, t4, t6 > is the critical task sequence in the changed task set T − {t3}, and the task t2 is
the second task in the allocation priority sequence. Furthermore, in order to find the third task in the
allocation priority sequence, the mechanism ought to find the critical task sequence in the changed
task set T − {t2, t3}.
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Algorithm 3 Allocation priority sequence construction
Require:

the task set T , the final task set F ,

the refresh task sequenceR;
Ensure:

the allocation priority sequence { f j}tj∈T ;
1: for k = 1 to max{Lj}tj∈T do

2: for each task in T do

3: if Lj = k then

4: Set ct
j is the task with the maximum expected finishing time among all the tasks in Cj.

5: Compute the expected finishing time he
j ;

6: Set l = 1;
7: while T 6= φ do

8: Find the final task tq ∈ F with maximum expected finishing time;
9: Construct the critical task sequence of task tq;

10: Set fp = l;
11: Find the task tp with the lowest level in the critical task sequence of task tq;
12: Delete tp from T ;
13: if tp ∈ F then

14: Delete tp from F ;
15: Gather all the rest tasks that have priority relationship with tp in the sequenceR;
16: for each task tj inR do

17: Set ct
j is the task with the maximum expected finishing time among all the tasks in Cj.

18: Compute the expected finishing time he
j ;

19: Add all the rest tasks that have priority relationship with tj to the back of sequenceR;
20: Set l = l + 1;

Level 1

Level 2

Level 3

𝒉𝟏 = 𝟑

𝒉𝟐 = 𝟓

𝒉𝟑 = 𝟐

𝒉𝟒 = 𝟑

𝒉𝟓 = 𝟕 𝒉𝟔 = 𝟓

(a) Find the first critical task

Level 1

Level 2
Level 3𝒉𝟏 = 𝟑

𝒉𝟐 = 𝟓 𝒉𝟒 = 𝟑

𝒉𝟓 = 𝟕

𝒉𝟔 = 𝟓

(b) Find the next critical task

Figure 3. The instance for Algorithm 3.

3.4. Task Allocation

After constructing the allocation priority sequence, the platform allocates tasks to users according
to the order in the constructed allocation priority sequence. The proposed task allocation mechanism
runs iteratively. In each iteration, the platform greedily allocates one task to a user, which will minimize
the expected total execution time of all tasks. The details are as follows:

Step 1: Sort the tasks in T according to the allocation priority sequence.



Sensors 2019, 19, 2456 10 of 18

Step 2: In each iteration, the task with the highest priority in the sorted task list should be found
first, and its conditional task set is φ. Assume this task is tj. Next, compute the expected execution
time of all users interested in task tj. Then, the user ui who interested in tj with the minimum pti,j can
be found. The platform allocates tj to ui in this iteration. After that, the platform deletes ui from the
available user set and deletes tj from the task set T . Then, the next iteration begins until the task set
T = φ. In the case of there is no task can be allocated to users, and all the tasks and users remain in T
andW should wait for new arrive users or some of the allocated tasks finished.

Step 3: When an allocated task tj has finished by ui, the platform deletes tj from all the conditional
task sets that include tj. If ui is still available, the platform adds ui into the available user set, and
views it as a new arrival user. Then, run step 2.

Note that the expected total execution time will be minimized if the tasks are performed in the
order of the constructed allocation priority sequence. The proposed allocation mechanism greedily
choose the task with the highest priority to allocate in each iteration, which means the mechanism can
achieve a near-optimal total execution time.

4. A Case Study: Task Allocation Mechanism for UAV System

This section is to show how to fit the proposed task allocation mechanism in the UAV system.
Consider a Crowdsensing based UAV system, there exists a carrier, a control platform and a

group of UAVs embedded with different kinds of sensing devices. At the beginning of each round
allocation, the carrier first submits the tasks to the platform. The platform has an available UAV list,
and each available UAV submits a set of tasks that it can perform to the platform. Then, the platform
runs Algorithms 1 and 2 to compute the level of each task and construct the final task set.

As is introduced in Section 2.1, the expected execution time of a UAV for task tj is mainly decided
by the flight duration from the current location to Lj and the expected performing time of tj in the
UAV system. Although the flight time of different UAV may be varied, the expected performing time
of different UAVs is similar for a fixed task. Therefore, the expected performing time of tj can be
assumed to equal to hj for all the UAVs that have ability to perform tj. In the step of constructing the
allocation priority sequence, set he

j = hj + max{he
p}tp∈Cj . By running Algorithm 3, the platform can

get the allocation priority sequence of tasks.
Then, the platform adds the UAVs in a waiting list, and allocates the tasks to them based on the

allocation priority sequence. In each iteration of allocation, the platform allocates a task to a user that
can minimize the total execution time of all the tasks, i.e., allocates a task with the lowest level in the
critical sequence to the user with minimal expected execution time. Based on the proposed mechanism
of constructing the allocation priority sequence, the task with the lowest level in the critical sequence
is the task with the highest priority in the sequence. Assume tj is this specific task. The expected
execution time of a UAV ui for performing tj is phi,j = tdi,j + hj.

When a UAV has finished an allocated task tj, it will be added to the waiting list again. Moreover,
the platform will delete tj from all the conditional task sets that include tj. This process goes on, until
all the tasks have been finished.

5. Simulation

In this section, the settings of all the parameters are introduced first, and then extensive
simulations are conducted to evaluate the proposed mechanisms.

5.1. Simulation Setting

A task is not always allocated immediately once it is available. More in details, when a task
is available to be allocated, it might wait some time before being allocated. Furthermore, the total
execution time of all the tasks is not likely to equal the theoretically optimal value of the allocation
for the task set. Thus, the approximate optimal ratio is related to the performance of the algorithm
in simulations.
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Definition 5. The parameter Alg denotes the execution time of task set T under the allocation of an algorithm,
and Opt represents the theoretically optimal value of the allocation for the task set T . Then, the approximate
optimal ratio: η = Alg

Opt .

The setup of the simulation is as follows. In order to show the performance of the proposed
algorithm, it varies the number of the released tasks, the number of the involved mobile device
users and the level of the tasks set T with the symbol of m, n, l. Besides, m = |T |, n = |U | and
l = max {Lj}tj∈T

. The number of total tasks in each level is uniformly distributed in [m/l− 5, m/l + 5].

For any task tj in task set T , it has attributes of expected performing time hj, conditional task set Cj,
and its location lj. The size of Cj is always distributed in [1, 4] at random. In Figures 4–9, the parameter
hj appears to follow the uniform distribution in U[20, 40]. And in Figures 10 and 11 simulations, the
parameter hj can also be U(30, 50) uniformly distributed. Each user ui submits a set of tasks Ti that
he is interested in performing, and the size of Ti is randomly generated in [4, 10] or [8, 14] in different
experiments. Furthermore, in Figures 4, 5, 8–11, the parameter |Ti| always follows U[4, 10] uniform
distribution. And in Figures 6 and 7 simulations, the parameter |Ti| is also set as U(8, 14) uniformly
distributed. What’s more, to show that the proposed mechanism is available to be applied to the UAV
system, settings about both tasks and users’ location are also made. In Figures 4–7, 10 and 11, both the
locations of tasks and users are uniformly distributed in U(0, 100). And in Figures 8 and 9, the location
can also be normally distributed in N(50, 3). If a user ui is assigned to finish the task tj, calculate the
Euclidean distance of the user and task, and relate it to the travel duration of the user ui for the task tj.
After that, the requested performing time of a user ui to perform task tj is determined.

In each case of < m, n, l >, the simulation generates 2000 instances and takes the average value of
them. The average value is the outcome of the case finally. The settings of all cases and the outcomes
of simulations are shown in Tables 2 and 3.

Table 2. The description of different cases.

Case
Description

Fixed Parameter
m |Ti| hj (lj)x and (lj)y

A 200 U(4, 10) U(20, 40) U(0, 100)

l = 6 or n = 70

B 300 U(4, 10) U(20, 40) U(0, 100)
C 400 U(4, 10) U(20, 40) U(0, 100)
D 400 U(8, 14) U(20, 40) U(0, 100)
E 300 U(4, 10) U(30, 50) U(0, 100)
F 300 U(4, 10) U(20, 40) N(50, 3)

Table 3. The approximate optimal ratios under different cases.

Approximate Optimal Ratios

Case
Number of Mobile Device Users (n) Number of Levels (l)

50 60 70 80 90 100 110 6 8 10 12 14 16

A 1.413 1.316 1.236 1.209 1.183 1.163 1.117 1.234 1.160 1.133 1.116 1.094 1.084
B 1.679 1.521 1.500 1.387 1.362 1.292 1.234 1.511 1.414 1.332 1.267 1.211 1.165
C 1.999 1.801 1.708 1.610 1.503 1.429 1.357 1.702 1.541 1.431 1.331 1.286 1.252
D 1.802 1.715 1.529 1.455 1.344 1.293 1.249 1.607 1.425 1.293 1.251 1.223 1.204
E 1.743 1.620 1.520 1.453 1.381 1.308 1.246 1.553 1.432 1.352 1.305 1.235 1.201
F 1.586 1.462 1.380 1.351 1.262 1.238 1.172 1.387 1.292 1.217 1.185 1.151 1.127
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Figure 4. The approximate optimal ratio of the proposed algorithm vs. different n when m = 200, 300, 400.
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Figure 11. The approximate optimal ratio of the proposed algorithm vs. different l when hj ∼ U(20, 40)
or U(30, 50).

5.2. Simulation Results

In Figures 4, 6, 8 and 10, the performance of the proposed algorithm is validated by changing the
number of released tasks in different parameter settings. Regardless of other parameters’ settings, it is
obvious that when the number of involved users increases, the approximate optimal ratio decreases.
As the theoretically optimal value of the allocation for the task set T is only in connection with the
structure of the task set T , and the theoretically optimal value is fixed no matter how involved users
change. When the number of involved users increases, the time of task’s waiting to be allocated is likely
to decrease, which would make the execution time of the task set T decrease. Then, the approximate
optimal ratio decreases. Therefore, the approximate optimal ratio decreases as the number of involved
users increases.

In Figures 5, 7, 9 and 11, the performance of the proposed algorithm is shown by changing the
level of the tasks set in different environment setting. Apparently, the approximate optimal ratio will
decrease if the levels of the task set increases. It is because more levels of task set make the number of
tasks in each level less, the tasks are more likely to be allocated once they are available, and the waiting
time of tasks in task set T is likely to decrease, which would make the execution time of the task set
T closer to the theoretically optimal value of the allocation for the task set. Thus, the approximate
optimal ratio decreases as the level of task set increases.
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In Figures 4 and 5, the performance of the algorithm is illustrated by changing the number
of released tasks. In both two settings, the number of released tasks m ranges in {200, 300, 400}.
In Figure 4, it changes the value of involved users n from 50 to 110 while the level of task set l is set to
be 6. And in Figure 5, it changes the level of the task set l from 6 to 16 while the number of involved
users n is set to be 70. Both two simulations show that the approximate optimal ratio increases with the
increasing number of released tasks. As the theoretically optimal value of the allocation for the task set
T is only in connection with the structure of the task set T , and the theoretically optimal value is fixed
no matter how the number of released tasks changes. When the number of released tasks increases,
the time of each task waiting to be allocated is likely to increase, and the execution time of the released
task set is also to increase, which would increase the execution time of the task set T .

In Figures 6 and 7, the size of involved users’ interested task set Ti is in different range. In these
two simulations, the performance of the algorithm is validated by changing the size of user’s submitted
task set. Furthermore, the size of user’s submitted task set is uniformly distributed in U(4, 10) or
U(8, 14). In both two settings, the number of released task m is fixed in 400. In Figure 6, the number of
involved users n is changed from 50 to 110 while the level of task set l is set to be 6. And in Figure 5,
it changes the level of task set l from 6 to 16 while the number of involved users n is set to be 70.
Both two simulations show that the approximate optimal ratio decreases with the increasing number
of user’s submitted tasks. As the theoretically optimal value is fixed no matter how the number of
released tasks changes. When the number of submitted tasks increases, and there exists some users in
the available user list, the time of each task’s waiting to be allocated is more likely to decrease, and the
execution time of the released task set is also to decrease, which would make the execution time of the
task set T decrease.

In Figures 8 and 9, the performance of the algorithm is shown by changing the area of region that
the released tasks and involved users locate in. In both two settings, the number of released task m
is fixed to 300. In Figure 8, the number of involved users n ranges from 50 to 110 while the level of
task set l is set to be 6. And in Figure 9, the level of task set l ranges from 6 to 16 while the number
of involved users n is set to be 70. Both two simulations show that the approximate optimal ratio
increases with the increasing of the area of regions. It is because when the area of region increases,
the performing time of released tasks increases, then the time of each task waiting to be allocated
is likely to increase, and the execution time of the released task set is also to increase, which would
increase the execution time of the task set T .

In Figures 10 and 11, the performance of the algorithm is illustrated by changing the expected
performing time of released tasks. In both two settings, the number of released task m is fixed to 300.
In Figure 10, the number of involved users n is changed from 50 to 110 while the level of task set l is
set to be 6. And in Figure 11, it changes the level of task set l from 6 to 16 while the value of involved
users n is set to be 70. Both two simulations show that the approximate optimal ratio increases with
the increasing expected performing time of released tasks. When expected performing time of released
tasks increases, the time users have to wait for each task to be allocated may increase, and the execution
time of the released task set is also to increase, which would make the execution time of the task set
T increase.

6. Conclusions

In this paper, the precedence constraints of tasks are considered, and an efficient task allocation
algorithm is designed for crowdsensing systems with the goal of minimizing the total execution time
of the tasks. The proposed algorithm first divides tasks into multiple levels and finds all the final tasks.
Then, it constructs an allocation priority sequence according to the expected finishing time of tasks,
and allocates the tasks to users based on the constructed allocation priority sequence. Finally, a case
study is given to show how to fit the designed mechanism in the UAV system. The simulation results
verify the efficiency of the designed mechanism.
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In future work, the deadlines of tasks and the available time intervals of users will be taken
into consideration when designing an efficient task allocation mechanism for tasks with precedence
constraints. Moreover, the plans for designing a mobile crowdsensing based traffic congestion
monitoring system and exploring real-world experimentation for the proposed task allocation
mechanism also deserve to be carried out.
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