
Using Motor Imagery to Study the Neural Substrates of
Dynamic Balance
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Abstract

This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded
cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along
the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI)
control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway
accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a
smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor
system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing
increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were
spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012),
in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate
a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous
reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in
patients with neurodegenerative disorders.
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Introduction

Neuroimaging has been used extensively to study the neuro-

physiology of human motor control, focusing mainly on hand,

arm, and foot movements [1,2,3,4]. Studying the cerebral bases of

whole body movements in humans has proven technically less

tractable, and this has hampered the acquisition of knowledge

about the mechanisms of gait and balance control. Neuroimaging

methods that allow for whole-body movements have either

superficial cortical coverage, as is the case with near-infrared

spectroscopy [5] or limited temporal resolution as is the case with

single-photon emission computed tomography or positron emis-

sion tomography [6,7]. Recently, new opportunities for under-

standing the cerebral control of human whole-body movements

have emerged from the combination of quantitative motor

imagery protocols and fMRI. This approach quantifies cerebral

activity while subjects imagine a particular movement. This

approach has been successful in studying static balance control

and gait in humans [8,9,10,11,12,13]. The use of motor imagery is

particularly relevant for studying the cerebral correlates of balance

because it leads to the selection of balance-related motor

programs, without the confounds of performance-related variation

in somatosensory reafference. Thus, motor imagery makes it

possible to distinguish feedforward control of balance from

changes in somatosensory feedback during balance performance.

This issue becomes particularly important for extending the

approach to clinical populations, e.g. Parkinson’s disease patients,

where interactions between motor execution and sensory reaffer-

ence from balance failures can be prominent. Besides specificity

for planning-related components of balance control, motor

imagery offers the possibility to study the selection of balance-

related motor plans in a recumbent position, i.e. in a position

compatible with techniques like fMRI. This is important for

exploiting the high spatial resolution and whole-brain coverage

afforded by those techniques. However, using motor imagery also

requires objective quantification of first-person motor imagery

during the scanning period. We developed an experimental

protocol to investigate dynamic balance control.

Surprisingly, indeed, dynamic balance control has not yet been

investigated, although it is a major function of the postural control

system. Instability should be thought of as context-specific, where

each individual is at risk of falling in different contexts [14,15].

The postural control system includes a number of components

underlying the ability to stand, walk and interact safely with the

environment. Understanding those components requires examin-

ing their individual neural activation patterns under controlled

task conditions. Accordingly, we explore the relation between

cerebral circuits supporting dynamic postural challenges (this
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study) and circuits supporting upright quiet stance [10,11] and gait

[8]. Furthermore, given the clinical relevance of understanding

failures of balance control, and given that those failures often

occur while moving, this study aimed at designing a motor

imagery protocol that would enable one to isolate the cerebral

circuits supporting dynamic postural challenges.

In contrast to the limited knowledge available on the neural

control of dynamic balance in humans, several studies have

investigated postural control in quadrupedal animal models,

revealing how portions of the brainstem, the pons, and the

mesencephalic locomotor region (MLR, including the pedunculo-

pontine and cuneiform nuclei) control postural muscle tone and

coordinate stepping movements along the midsaggital plane

[16,17,18]. In macaques, these regions receive projections from

the supplementary motor area (SMA) [19,20], and inhibition of

the SMA disturbs postural control [21]. Similar cortico-pontine

projections have been recently described in humans [22], but there

is no evidence for their role in balance control, either through

direct long-range connections or via thalamic mediation [23].

Here, we designed a behaviorally controlled motor imagery

protocol to isolate cerebral activity and connectivity involved in

dynamic balance control. Furthermore, we explored the spatial

relation between cerebral circuits supporting dynamic balance,

static balance and gait, by comparing our results with those of

previous studies on MI of stance and gait [8,12]. By moving

backward and forward along the midsaggital plane, participants

standing on a balance board aimed a laser dot (mounted on the

balance board) at targets of different sizes, placed at different

distances. In order to control for subjects engagement in motor

imagery during fMRI, we exploited the fact that both physical

performance and motor imagery of a given action are influenced

by task difficulty according to Fitt’s law [24,25]. Accordingly, the

designed postural aiming task manipulated the difficulty of

dynamic balance by varying the extent and accuracy of oscillations

on a trial-by-trial basis. Afterwards, the participants imagined

performing the same dynamic balance task while their BOLD-

fMRI responses and leg electromyography were recorded. They

pressed a button to indicate the onset and offset of their imagery.

Cerebral responses specific to dynamic balance control were

isolated by comparison with a visual imagery task involving the

same sensory input and motor output (index finger flexions

resulting in button presses), but in which participants did not

imagine swaying voluntarily.

Materials and Methods

Subjects
Twenty healthy right-handed subjects (10 men; age 20.261.8

years, mean 6 SD) took part in the study after giving written

informed consent according to the declaration of Helsinki. All

subjects had normal or corrected-to-normal vision, and no

neurological or orthopaedic disturbances. The study was approved

by the local ethics committee, Commissie Mensgebonden Onderzoek regio

Arnhem, Nijmegen (CMO2001/095). The ethical approval of the

abovementioned research protocol is valid until 12/31/2013.

Experimental settings
The subjects first physically performed a dynamic balance task

(DBT), followed by imagery of this very same task in the MR

scanner. The DBT used a forward/backward swaying balance

board, with a laser pointer secured to the front (Figure 1a). The

pointer projected a red laser dot on a 906120 cm whiteboard

located at a distance of 1.5 meter in front of the subject. When

subjects were in their resting balance position on the board, the

laser would point at a given position on the whiteboard, in

between the two targets. This position was set as the starting

position. When subjects actively swayed forward or backward, the

red laser dot would move downward or upward on the board,

respectively. Pairs of circular targets of two different diameters

(8 cm: large target size; 2 cm: small target size) were vertically

aligned on the whiteboard. The large target allowed subjects to

sway with fewer constraints when reaching the target. The small

target forced subjects to sway carefully to land and remain within

the target area. To normalize task difficulty between participants,

the distance between the two targets of a pair was individually

adjusted for each subject, based on the maximal forward and

backward sways that each subject was able to perform without

losing balance.

Experimental design
The difficulty of the task was manipulated via three factors: sway

amplitude, target size and initial direction of sway. Regarding

sway amplitude, two distances were selected: 80% (large amplitude

sway) and 60% (small amplitude sway) of the subject’s maximal

forward and backward sway, measured at the onset of the

experiment. The average distance between the targets across

subjects was 61.4 cm [range: 41.0–73.0 cm] for the large

amplitude sway condition and 46.1 cm [range: 30.5–54.5 cm]

for the small amplitude sway condition. To manipulate initial

direction of sway, each target pair included a dark and a light grey

target (first and second target to aim at, respectively). Combination

of these three factors (two sway amplitudes, two target sizes and

two initial directions of sway) yielded a total of eight different

conditions.

Experimental procedure
There were two experimental sessions, performed on a single

day. In the first session, the subjects were administered the Revised

Version of the Vividness of Motor Imagery Questionnaire

(VMIQ-2, 10 min) [26] and physically performed the Dynamic

Balance task (45 min). In the second session, the subjects

performed two imagery tasks in counterbalanced order across

subjects. In one of the imagery tasks, the subjects had to perform

motor imagery of the very same dynamic balance task they just

physically performed. The other imagery task was a visual imagery

control task.

VMIQ-2
This questionnaire screens subjects’ ability to perform motor

imagery. The subjects are required to rate the vividness of their

imagery on a 5-point Likert scale for a set of 12 actions. Three

different imagery perspectives are considered, including kinaes-

thetic imagery, our perspective of interest. In this imagery

perspective, subjects are instructed to imagine themselves

performing a given action from ‘within’, that is, trying to mentally

perceive the associated sensations and muscle contractions [27].

This perspective recruits the neural networks involved in

programming the actual actions. Motor imagery can otherwise

be ‘‘external’’, referring to self-visualisation of a movement from

either the first person (ie, seeing the movement from one’s own

point of view) or the third person (ie, seeing oneself carrying out

the task from outside) perspective (see Maillet et al., 2012 for a

review on motor imagery of gait). The subjects of this study were

informed about these different imagery perspectives, and their

score on the VMIQ was collected. They were specifically

requested to adopt the kinaesthetic perspective to perform motor

imagery of balance. The cut-off score for the inclusion of

individuals in imagery studies is 36 for each perspective (from
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12: ‘‘perfectly clear and as vivid as normal feel of movement’’ to

60: ‘‘no sensation at all, you only know that you are thinking of the

skill’’) [26]. The subjects had a mean score of 24.467.1 and no

one had a score greater than 36. Therefore, all the 20 subjects

were considered able to perform motor imagery using the

kinaesthetic perspective and were included in the second part of

the study.

Dynamic balance task
The subject stood barefoot on the balance board, with feet

parallel at shoulder width, and a stopwatch in the right hand. The

subject was asked to sway forward or backward on the board and

aim the red laser dot at the darker target first, then at the lighter

target, and then return the red laser dot to its starting position.

Each trial therefore consisted of a sequence of three sway

directions, the order of which differed as a function of the initial

direction of sway: Forward-Backward-Forward or Backward-

Forward-Backward. Subjects pressed a button to mark the

beginning and the end of the movement to allow recording of

the trial duration.

The subject was asked to actively sway forward or backward

while keeping the knees and trunk extended, heels and toes on the

board, and arms at the sides. The subject’s body had to remain

orthogonal to the balance board, and not to the floor in order for a

trial to be valid. The laser beam had to remain within the

perimeter of each target for about 1 second before the subject

could move to the next target. Trials with obvious knee or trunk

flexion, or lack of proper stabilization of the laser beam within the

target were excluded and repeated. Before the start of the

measurements, subjects were given a few practice trials until they

were able to comply with these requirements (<10 min). Trials for

each experimental condition were repeated three times, with a

Figure 1. Experimental setup. Examples of photographs of the setup presented to the subjects during the a. motor imagery (MI), and b. visual
imagery (VI) tasks. Both photographs show a whiteboard with circle targets in the middle and a black line with the red dot from the laser (highlighted
here) in between. During MI trials, a balance board is present in front of the whiteboard. During VI trials, a blue carpet replaces the balance board. In
these examples, the trajectory length is long (80% of subjects’ maximal sway) and the target size is large (8 cm of diameter); c. Time course of motor
imagery trials. During each trial, after a short inspection of the photo on display, the subjects closed their eyes and imagined standing on the balance
board. The subjects were asked to press a button with the index finger of their right hand to signal that they had started imagining swaying on the
balance board. The subjects were asked to press the button again when they imagined the balance board was back to the starting position, after
having aimed the laser dot at both targets. Following the second button press, a fixation cross was presented on the screen and the subjects could
open their eyes. The duration of the inter-trial interval (ITI) was 3–6 s.
doi:10.1371/journal.pone.0091183.g001
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pseudo-randomized order, for a total of 24 trials (8 conditions 63

repetitions).

Motor imagery task; visual imagery task
Subjects performed the imagery tasks while lying supine in the

MR scanner, starting with a few practice trials to make sure they

understood and followed the instructions before onset of the MRI

measurements. Head movements were minimized by an adjust-

able padded head holder. Each trial started with the presentation

of a photograph of one of the experimental conditions experienced

during the DBT (Figure 1). The photograph was projected onto a

screen at the back of the scanner and was seen through a mirror

above the subjects’ heads. Stimuli presentation was controlled

through a PC using the Presentation software (Neurobehavioural

systems, Albany, USA).

During motor imagery (MI) trials, the photograph showed the

balance board used during the DBT (Figure 1a). Subjects were

asked to imagine swaying on the board (using first-person

kinaesthetic perspective) to aim at the targets, as was done during

the DBT, including sway corrections due to over and undershoot-

ing of the targets. During visual imagery (VI) trials, the photograph

showed a blue carpet instead of the balance board (Figure 1b).

Subjects were asked to imagine seeing the laser dot smoothly

moving at a constant speed from the middle of one target to the

middle of the other target, without overshooting the targets. A

video showing the red laser dot autonomously moving on the

whiteboard was first shown to the subjects in order for them to

have an experience on which to ground visual imagery, and to

provide them with background knowledge comparable to that

existing for MI (in which subjects experience the balance board

before engaging in the MI task). The video of the red laser dot

illustrated the type of motion (i.e. a smooth velocity profile), and

each subject was only shown the video of a single trial so as not to

influence their imagery duration.

A trial started with displaying a photograph that subjects could

inspect as long as needed. Subjects then closed their eyes and

pressed a button to mark the onset of their imagery period. Motor

responses (i.e. index finger flexions resulting in button presses)

were recorded via a button box positioned on the right of the

subject’s abdomen. Subjects pressed the button again (and opened

their eyes) when they imagined either reaching the initial position

of the balance board (MI trials) or seeing the laser dot aiming at

that position (VI trials). The difference between the two

subsequent button presses represented the imagery duration. After

the second button press, a fixation cross was presented on the

screen until the onset of the next trial (inter-trial interval, ITI, 3 to

6 seconds). The MI and VI tasks were performed in two

experimental sessions, separated by a break outside the scanner.

For each imagery task, subjects performed 80 trials, in pseudo-

randomized order across the eight experimental conditions. The

two experimental sessions were matched for length after MR

acquisition, considering the first 15–20 minutes of performance for

each task.

Data collection
MR images were acquired on a 3 T Trio MRI system (Siemens,

Erlangen, Germany), using a 32 channel head coil. A multi-echo

sequence with four echoes (TE: 9.4, 21.2, 33, 45 ms, TR:

2410 ms) was used to improve signal to noise and reduce

inhomogeneities [28], with 37 transversal slices; ascending

acquisition; voxel size 3.563.563.0 mm3; FOV = 224 mm2).

High-resolution anatomical images were acquired using an

MPRAGE sequence (TR/TE 2300/3.92 ms, 192 sagittal slices,

voxel size 1.061.061.0 mm3, FOV 256 mm2). The Brainamp

ExG amplifier was used to collect muscle activity to control for

overt leg movements during task performance in the MR-scanner

(MI and VI). Silver/silver-chloride electrodes were placed on the

right tibialis anterior in a belly tendon montage. The right patella

was used as reference electrode. Following amplification and A/D

conversion (Brain Products GmBH, Gilching, Germany), an

optical cable fed the EMG signal to a dedicated PC outside the

MR room for further off-line analysis (sampling rate: 5000 Hz).

MR artefact correction followed the method previously described

[29,30], including low-pass filtering (400 Hz), and down-sampling

(1000 Hz). Finally, we applied high-pass filtering (10 Hz, to

remove possible movement artefacts), and rectification.

Eye closure/opening were measured during task performance in

the MR-scanner with a video-based infrared eyetracker (Senso-

motoric Instruments, Berlin, Germany). Movements of the left eye

were sampled at 50 Hz and fed to a dedicated PC outside the MR

room. Eye closure/opening at imagery onset/offset respectively

was visually inspected online to make sure that the subjects

followed the instructions to perform the imagery task.

Behavioural analysis and statistical inference
For each trial, we measured the time between the two button

presses that marked the start and the end of the DBT, imagined

visual, or balance movements (trial duration). We considered four

experimental factors: TASK (three levels: DB, MI, VI); SWAY

AMPLITUDE (two levels: Short, Long); TARGET SIZE (two

levels: Small, Large); INITIAL DIRECTION OF SWAY (two

levels: Forward, Backward). The significance of the experimental

factors was tested within the framework of the General Linear

Model using a 3626262 repeated measures ANOVA. When

interactions were significant, the origin of the interaction was

investigated using planned comparisons. Specifically, we hypoth-

esized to find an effect of amplitude sway across the three tasks,

but an effect of target size (reflecting increased control of balance

accuracy) only for the DB and MI tasks. The alpha-level of all

behavioural analyses was set at p,0.05.

In addition, to ascertain MI of dynamic balance during

scanning, we examined whether the trial duration obtained in

each task conformed to Fitts’ law (Fitts, 1954): Trial duration = a

+ b log2 (2*SWAY AMPLITUDE/TARGET SIZE). In the

equation, a and b are constants. The term log2 (2*SWAY

AMPLITUDE/TARGET SIZE) is called the index of difficulty

(ID). It describes the difficulty of the motor tasks. We calculated ID

for each of our 4 experimental conditions [i.e., target size (2 levels)

and sway amplitude (2 levels)]. Fitts’ Law states that trial duration

increases linearly with increasing ID. We examined how well trial

durations conformed to Fitts’ Law by calculating the linear

regression of trial duration over ID for each TASK (3 levels, DB,

MI and VI) and for each subject separately. Finally, we examined

whether the degree to which trial durations conformed to Fitts’

Law was different for the different tasks, by considering the effect

of TASK (DB, MI and VI) on the variance in trial duration that

could be explained by ID (r2) after log transformation, using a

repeated measures ANOVA.

EMG analysis and statistical inference
For each trial of the imagery experiment, we considered the root

mean square (rms) of the pre-processed EMG signals measured

during the imagery epoch and during the ITI. For each subject,

the average rms values of the EMG measured during the imagery

epoch was normalized to the average rms values of the ITI epoch

on a subject by subject basis, testing for an effect of TASK (MI, VI)

with a paired sample t-test. We also tested whether for both MI

and VI, the EMG activity differed from the resting condition by

Neural Substrates of Dynamic Balance

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91183



comparing the EMG activity evoked during motor imagery and

visual imagery with the EMG activity evoked during the inter-trial

intervals, using a paired sample t-test on the average root mean

square values of the EMG.

fMRI analysis — pre-processing
Functional data were pre-processed and analyzed with SPM8

(Statistical Parametric Mapping, www.fil.ion.ucl.ac.uk/spm). The

first 30 volumes of each participant’s data set were discarded to

allow for T1 equilibration and calculation of the weighting factor

for the multi echo sequence [28]. Afterwards, the image time series

were spatially realigned using a sinc interpolation algorithm that

estimates rigid body transformations (translations, rotations) by

minimizing head-movements between each image and the

reference image [31]. Subsequently, the time-series for each voxel

was temporally realigned to the acquisition of the first slice. Images

were normalized to a standard EPI template centred in MNI

(Montreal Neurological Institute) space [32] and resampled at an

isotropic voxel size of 2 mm. The normalized images were

smoothed with an isotropic 8 mm full-width-at-half-maximum

Gaussian kernel. Anatomical images were spatially coregistered to

the mean of the functional images [32] spatially normalized by

using the same transformation matrix applied to the functional

images and finally segmented into grey matter, white matter, CSF

and other non-brain partitions [32].

fMRI analysis — statistical inference (first level)
The ensuing pre-processed fMRI time series were analyzed on a

subject-by-subject basis using an event-related approach in the

context of the General Linear Model [31]. We considered two

models. The first model was aimed at finding regions in which the

cerebral response changed as a function of TASK (MI, VI),

TARGET SIZE (Large, Small), and SWAY AMPLITUDE (Long,

Short), which gave rise to a model with eight different regressors of

interest. The model also included a separate regressor of no

interest, modelling BOLD activity evoked by button presses,

separately for each session. Each effect was modelled on a trial by

trial basis as a concatenation of square-wave functions convolved

with a canonical haemodynamic response function, down sampled

at each scan, generating a total of 10 task-related regressors. For

the regressors of interest, onsets of the square-wave functions were

time-locked to the button press marking the onset of imagery, and

durations corresponded to the imagery time of each separate trial

(e.g. time between the two button presses). For the button press

regressor, onsets were time locked to the button press marking the

onset of imagery, and duration was set to zero. The potential

confounding effects of residual head movement-related effects

were modelled using the time series of the estimated head

movements during scanning. We included the original time series,

the squared, the first-order derivatives of the originals and the first-

order derivatives of the squared [33]. Data were high-pass filtered

(cutoff, 128 s) to remove low-frequency confounds such as scanner

drifts. The statistical significance of the estimated evoked

hemodynamic responses was assessed using t-statistics in the

context of the General Linear Model. For each subject, we

calculated contrasts of the parameter estimates for the effects of

TASK (i.e. MI, VI), TASK and TARGET SIZE (i.e. MI-Small,

MI-Large, VI-Small, VI-Large) and TASK and SWAY AMPLI-

TUDE (i.e. MI-Short, MI-Long, VI-Short, VI-Long). As the

behavioural analysis revealed a main effect of Task, correlations

between behavioural and neural effect size were assessed by

investigating Pearson correlations with alpha level set at p,.05.

fMRI analysis — statistical inference (second level)
The group-level random effects analysis modelled the experi-

mental variance described by the contrasts involving the TASK

and TARGET SIZE factors for each subject by means of a one-

way between-subjects analysis of variance (ANOVA), with non-

sphericity correction. First, we considered the main effect of

TASK (MI, VI). This refers to differential cerebral activity

between the two tasks (MI.VI; VI.MI). Second, we looked for

MI-specific effects of target size, namely differential cerebral

activity evoked during MI between the large and small targets (MI-

Small.MI-Large; MI-Large.MI-Small), as compared to the

corresponding trials during visual imagery (i.e. a TASK X

TARGET SIZE interaction). SPMs of the t statistic for the effects

corresponding to these contrasts were created. We report the

results of a random effects analysis, with inferences drawn at the

voxel level, corrected for multiple comparisons across the whole

brain using family-wise error (FWE) correction (p,0.05).

Region of interest analysis
Besides whole brain analyses, statistical inference was also

performed on one particular region of interest: the mid-

mesencephalon. In a previous study by our group [12], we

showed that this region (coordinates: [0 228 220]) which includes

the MLR (including the pedunculopontine nucleus and the

cuneiform nucleus) showed increased activity during MI of gait

in PD patients with freezing of gait. A recent study also showed

activation of the same region (local maxima coordinates: [22 230

220]) during MI of gait in healthy subjects [9]. We therefore

considered these local maxima and drew a spherical region of

interest centred at these coordinates ([0 228 220] and [22 230

220]) with a radius of 10 mm. Statistical inference was performed

at the voxel-level, with a family-wise error correction for multiple

comparisons over the search volume (p,0.05).

Effective connectivity analysis
After having identified the left thalamus and the MLR as being

involved in MI of balance, we performed a post-hoc analysis to

explore which brain areas increased their correlation with these

two regions during MI of balance. The thalamus was chosen in

particular because it is an important relay in the subcortico-

cortical motor loop, it plays a central role in sensorimotor

integration and is specifically involved in balance control.

Therefore, MI of balance was expected to modulate the coupling

of the thalamus with the pallidum, the SMA and the MLR.

Likewise, based on several connectivity studies [22,34,35,36,37],

we tested the hypotheses that MI of balance modulates the

interregional coupling of the right MLR with the thalamus, the

SMA and the cerebellum.

During MI, those brain regions could operate independently, or

they could increase their correlation as compared to periods of

visual imagery. To test for these task-related modulations of inter-

regional connectivity, we used the psychophysiological interaction

(PPI) method described by Friston et al., [38]. PPI analysis makes

inferences about regionally specific responses caused by the

interaction between the psychological factor (in this case,

performing the MI or the VI task) and the physiological activity

in a specified source region. Following functional anatomical

considerations (see above), we considered two source regions: the

thalamus and the MLR. We also considered a series of target

regions: pallidum, MLR, and SMA when considering the

thalamus as a source region; and SMA, thalamus, and cerebellum

when considering the MLR as a source region.

Each source area was described by a BOLD timeseries that was

the first eigenvariate of the timeseries of all voxels within a 6 mm

Neural Substrates of Dynamic Balance
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radius sphere centred on the regional local maximum of the

SPM{t} relative to MI versus VI in each of the two source regions.

First, a PPI analysis for each source region was performed on each

subject. Then, for each source region, PPI contrast images of each

subject were entered into a one-sample paired t-test at the second

level. In addition to a whole brain analysis, we assessed significant

voxel-level effects (FWE corrected for multiple comparisons,

p,0.05) within the different regions hypothesized to show

increased coupling with each of the two source regions, using a

search volume defined by those voxels that were activated in the

contrast MI.VI (as defined above).

fMRI analysis — anatomical inference
Anatomical details of significant signal changes were obtained

by superimposing the statistical parametric maps on the anatom-

ical sections of a representative subject of the MNI series. When

applicable, Brodmann Areas were assigned on the basis of the

SPM Anatomy Toolbox [39], i.e., the anatomical position of our

significant clusters and local maxima was formally tested against

published three dimensional probabilistic cytoarchitectonic maps.

Finally, we compared our results to those of a previous study on

MI of gait [8], to assess the relative anatomical segregation of the

MLR for gait and balance functions. More specifically, we

compared the anatomical locations of the cerebral activity found

for balance to that of cerebral areas showing increased activity

during MI of gait in healthy subjects, as previously reported [8].

Results

Behavioural performance
Trial durations were significantly shorter for the VI task than for

the MI and DB tasks [main effect of TASK: F(2,38) = 3.32,

P,0.05; Figure 2A]. Trial durations increased with increasing

sway amplitude [main effect of SWAY AMPLITUDE:

F(1,19) = 62.73, P,0.001] (Figure 2B) and with decreasing target

size [main effect of TARGET SIZE: F(1,19) = 103.73, P,0.001].

There was a significant TASK * SWAY AMPLITUDE interac-

tion: F(2,38) = 5.71, P,0.01. Planned comparisons revealed that

the difference in trial durations between the small and large sway

amplitude was significant for all three tasks [DBT: F(1,19) = 5.70,

p,0.027; MI: F(1.19) = 79.5, p,0.001; VI: F(1.19) = 33.37,

p,0.001]. Crucially, the effect of target size was different for the

different tasks [TASK * TARGET SIZE interaction:

F(2,38) = 45.81, P,0.001; Figure 2C]. Planned comparisons

revealed that the increase in trial duration with smaller target

size was larger during DB than VI [F(1,19) = 113.19, P,0.001],

during MI than VI [F(1,19) = 9.40, P,0.01], and during DB than

MI [F1,19) = 41.18, P,0.001]. As predicted from Fitts’ law (Fitts,

1954), trial durations correlated linearly with ID for the DB

(r2 = 0.960.1) and MI (r2 = 0.660.3) tasks but not for VI

(r2 = 0.260.2). Likewise, the variance in trial duration that could

be explained by ID (r2) was different for the different tasks [main

effect of TASK: F(2.38) = 10.1, P = 0.00031, Figure 2D]. The r2

was greater for MI than for VI (P = 0.002), and for DB than for VI

(P = 0.000), but the r2 did not differ between MI and DB

(P = 0.27).

Finally, trial durations were longer in the forward than in the

backward initial direction of sway (main effect of INITIAL

DIRECTION OF SWAY, F(1,19) = 9.11, P,0.01) although this

effect was not modulated by any other factor.

There was similar EMG activity during the two imagery tasks

(t(1,17) = 0.83, p = 0.42). In addition, there were no statistically

significant differences between the average rms values of the EMG

evoked during the imagery epochs and the rest epochs, both for

MI (p = 0.97) and for VI (p = 0.89). Hence, differences in actual

movements related to overt leg movements during MI of balance

did not account for changes in differential (MI compared with VI)

cerebral activity.

Cerebral activity — task effects
We first identified cerebral regions showing significant differ-

ential activation during MI compared to VI (Figure 3, Table 1).

BOLD signal increased in the right medial frontal cortex and left

precentral gyrus. Both clusters were within BA6 [39], with the

right medial frontal cortex cluster falling within the SMA-proper

and the left precentral cluster falling in the caudal part of the

dorsal premotor cortex [40] A third cluster was located in the

middle cingulate cortex (CMA), with its local maximum in the

right rostral cingulate zone posterior (RCZp) [1,41]. Significant

effects were also found in the left insula, in the left superior parietal

lobule (7M, 7P, 7A), in the left thalamus (ventral lateral nucleus,

with a trend for its contralateral equivalent, p = 0.078), in the

putamen (bilaterally), and in the left globus pallidus. Finally, the

cerebellar vermis (culmen, lobule V bilaterally and right tonsil,

lobule VIII) also showed increased neural activity during MI as

compared to VI.

We performed a further analysis on the putamen and the SMA

specifically involved in MI, to test whether there was a direct

relationship between behavioral (imagery durations) and neural (b
values) changes as a function of Task. We exploited the fact that

different subjects of our group showed differences in imagery

durations. Figure 3 shows that subject-by-subject variance in

imagery durations was not correlated with the neural Task-related

effects for both MI (putamen: r = 0.025, p = 0.917; SMA:

r = 20.062, p = 0.793) and VI tasks (putamen: r = 0.248,

p = 0.291; SMA: r = 0.254, p = 0.279).

Setting a ROI on a portion of the brainstem recently found

using fMRI to be involved in the neural control of gait in humans

[9,12] revealed increased activity during MI of balance. The local

maximum is located slightly anterior, lateral and rostral (6 224

216) to previously reported gait-related effects found in PD

patients with freezing of gait (0 228 220, [12]) and in healthy

subjects during MI of gait (22 230 220, [9]) (Figure 4).

Differential activity between MI and VI was also found in the pons

(2 222 216). A post-hoc test for the presence of effects within the

location previously found during MI of static balance (212 214

214, [11]) did not reveal any significant effect, suggesting that a

different part of the MLR might be involved during dynamic

balance.

There were no supra-threshold cerebral differences driven by

differences in target size or initial direction of sway during MI

compared to VI.

Cerebral activity — effective connectivity
The results described above indicate that the left thalamus and

the right antero-rostral part of the MLR were involved in MI of

balance. We used PPI analyses to examine whether their activity

influenced the cerebral regions supporting the MI process. There

were no significant whole-brain effects, but the volume of interest

analysis showed that the left thalamus increased its coupling with

the left lateral globus pallidus ([218 26 2]; t = 3.95, p = 0.025) as a

function of TASK (MI.VI); similarly, the right MLR increased its

coupling with the right SMA during MI of balance ([8 26 62];

t = 3.90, p = 0.032). The connectivity between the thalamus and

the MLR ([8 218 212], t = 2.95; p = 0.123) was not significantly

modulated by the motor imagery task.
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Discussion

This study investigated the neural substrates of dynamic balance

using a new experimental protocol that combined fMRI with

controlled performance of motor imagery (MI). We characterized

cerebral regions sensitive to motoric effects related to dynamic

balance control, over and above generic imagery-related effects.

Imagery of dynamic balance control recruited cortical and

subcortical portions of the motor system, including frontal and

parietal cortices, basal ganglia and cerebellum. After pointing out

some methodological issues, we discuss the significance of the

behavioural data, then examine the brain regions specifically

involved in dynamic balance control, and explore their relation to

brain regions showing quiet stance and gait-related effects.

Methodological considerations
There are several methodological issues that should be

considered when trying to generalize the findings of the current

study. First, the postural incongruency between the imagined

movement and the actual position of the subject in the scanner

might have increased the cognitive demands of the task and is

therefore a clear limitation to the present study. Second, The

dynamic balance task used in this study is focused on a particular

aspect of active balance control in the mid-sagittal plane, and we

do not address possible interactions with other elements of balance

control. However, it should be emphasized that body oscillations

in the mid-sagittal plane are particularly relevant for clinical

practice as, for instance, most of the falls in Parkinson’s disease

occur for movements along that plane, and especially in the

backwards direction [42]. A third issue relates to the interpretation

of the results from the spatial comparison between dynamic

balance and gait control. Indeed, absence of a gait imagery

condition in the design of this study precludes directly contrasting

imagery of gait and imagery of balance within the same subjects.

These results therefore need to be replicated intra-subjects.

Behavioural performance
This study was designed to isolate imagery-related effects driven

by motoric constraints of dynamic balance, rather than by visual

imagery alone or by somatosensory re-afference (that is inherent to

actual task performance). The behavioural data recorded during

the imagery tasks indicate that the participants were effectively

engaged in the imagery tasks, performing different imagery

activities under the MI vs. VI conditions. Indeed, imagery times,

as actual DB times, increased when participants performed trials

with larger sway amplitude and smaller target size. Furthermore,

the increase in trial duration with smaller target size was

significantly greater during MI and actual performance of the

DBT task than during the corresponding visual imagery task.

Figure 2. Behavioural results. Trial durations across tasks and conditions. A. Trial duration measured in each task [dynamic balance (DB), motor
imagery (MI) and visual imagery (VI)]; B. Trial duration measured for each trajectory lengths within each task [short (60% of subjects’ maximal sway)
and long (80% of subjects’ maximal sway)]; C. Trial duration measured for each target size within each task [large (8 cm) and small (2 cm)], Data
represent mean 6 SEM; D. Average r2 of the correlation between trial duration and ID for each of the different tasks (post hoc comparison of r2
across the different tasks). Data represent mean 6 SD; * indicates p,0.05.
doi:10.1371/journal.pone.0091183.g002
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Figure 3. Brain regions activated during motor imagery of dynamic balance. A. Cerebral activity during motor imagery of balance.
Statistical parametric map (SPM) of increased activity in the supplementary motor area (red), the dorsal premotor cortex (pink), the middle cingulate
cortex (orange), the superior parietal lobule (cyan), the thalamus (green), the putamen (yellow) and the cerebellum (purple), during MI compared to
VI [corrected for multiple comparisons (p,0.05) using family wise error (FWE)], superimposed on a 3D rendered brain (upper part) and on axial
sections (lower part). B. Putamen activity; a. b values as a function of Task; b. Relationship between behavioral (imagery durations) and neural (b
values) changes as a function of Task. Subject-by-subject variance in imagery durations was not correlated with the neural Task-related effects for
both the MI (putamen: r = 0.025, p = 0.917) and VI tasks (putamen: r = 0.248, p = 0.291). C. Supplementary motor area activity; a. b values as a function
of Task; b. Relationship between behavioral (imagery durations) and neural (b values) changes as a function of Task. Subject-by-subject variance in
imagery durations was not correlated with the neural Task-related effects for both the MI (SMA: r = -0.062, p = 0.793) and VI tasks (SMA: r = 0.254,
p = 0.279).
doi:10.1371/journal.pone.0091183.g003

Table 1. Stereotactic coordinates of the local maxima activated in the contrast ‘‘MI.VI’’.

Search volume Anatomical label Funct. label Hemi. t-value p-value x y z

Whole brain Medial frontal gyrus (BA6) SMA R 5.87 0.006 2 212 60

Precentral gyrus (BA6) PMd L 5.85 0.006 218 222 68

Insula L 5.52 0.017 228 20 220

Superior Parietal Lobule (7M, 7P, 7A) L 6.19 0.002 24 272 38

Middle cingulate cortex RCZp R 5.98 0.004 8 6 38

Middle cingulate cortex RCZp L 5.62 0.013 28 8 40

Thalamus (ventral lateral nucleus) R 5.02 0.078 14 216 4

Thalamus (ventral lateral nucleus) L 5.89 0.005 216 214 10

Putamen R 7.58 0.000 28 4 8

Putamen L 7.67 0.000 224 2 14

Lateral Globus Pallidus L 6.5 0.001 220 26 10

Cerebellum (Lobule V, Culmen) R 5.21 0.045 14 242 218

Cerebellum Lobule V, Culmen) L 6.32 0.001 24 254 22

Cerebellar tonsil (Lobule VIIIb) R 5.52 0.017 22 242 250

Region of interest Mesencephalon MLR R 4.83 0.002 6 224 216

Pons R 4.49 0.002 2 222 216

Results are corrected for multiple comparisons across the whole brain (FWE,0.05). Stereotactic coordinates are reported in MNI (Montreal Neurological Institute) space.
Details on the anatomical and functional labeling can be found in the Results section. L = left; R = right; Funct = Functional.
doi:10.1371/journal.pone.0091183.t001
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Finally, both DB and MI trial duration was significantly correlated

with the motoric index of difficulty of the task. Such correlation

did not hold true regarding VI durations. This effect was centrally

generated, since EMG activity was well matched across the two

imagery tasks. Thus, these behavioural recordings confirm that the

current task captures motoric processes also involved in the actual

performance of the balance task, and different from basic

phenomena shared with the visual imagery task (e.g. processing

of the visual stimuli, production of the button presses). It therefore

validates our dynamic balance protocol, providing a control for

the mental activity deployed by the participants during scanning.

A distributed cerebral circuit for dynamic balance control
Several portions of the motor system were differentially active

during motor imagery of dynamic balance (Table 1). These effects

were independent from differences in imagery durations between

MI and VI imagery. Cortically, both medial and lateral portions of

the frontal cortex were significantly activated (SMA-proper, dorsal

premotor cortex), as were a portion of the cingulate motor areas

(RCZp), the left insula and the left superior parietal lobule (7M,

7P, 7A). Subcortically, we found differential balance-related effects

in the ventrolateral part of the thalamus and in the putamen

(bilaterally), in the left globus pallidus, in the cerebellar vermis

(culmen, lobule V bilaterally and right tonsil, lobule VIII), in the

right anterior part of the MLR, and in the right medial pons.

These findings fit with observations from human clinico-patho-

logical reports, and imaging studies of postural control contrasting

standing with lying [10,11], as discussed hereafter. For instance,

parietal, frontal and thalamic regions were activated during both

dynamic balance (present study) and quiet stance [10,11]. Diffuse

brain MRI abnormalities including white matter hyperintensities

[43] and gray matter atrophy [44] have been reported in the

frontal and parietal cortices of individuals with balance impair-

ments. The present findings extend the known role of frontal and

parietal cortex in visual guidance and control of limb movements

[45,46] to axial balancing movements, including a role in the

integration of somatosensory signals into representation of body

parts and the guidance of movements in space.

The importance of the thalamus for maintaining upright

posture is supported by clinical reports of body tilts and falls

following ischemic infarction of its posterolateral part [23]. Barra

et al. [47] found that the sense of verticality required the integrity

of the posterolateral thalamus encroaching mostly on the ventro-

posterior lateral nuclei. Finally, reduced activation of the thalamus

was reported in a fMRI study of MI of standing in patients with

progressive supranuclear palsy with prominent postural imbalance

and falls. In these patients, higher sway values and frequency of

falls were also associated with decreased regional glucose

metabolism in the thalamus [48]. Our finding of bilateral,

although asymmetrical, activation in the ventral lateral part of

the thalamus concur with these observations, further confirming

the role of the ventral part of the thalamus in postural control.

The clinical relevance of balance centers in the brainstem is

supported by the description of a patient who was unable to stand

(astasia) following an hemorrhage into the tegmentum of the

posterior midbrain involving the right pedunculopontine area

[49]. Further evidence for a role of the MLR in modulating

posture and gait in humans rests on post-mortem studies of

cholinergic cell groups showing (a) a cholinergic neuronal loss in

the pedunculopontine of patients with advanced Parkinson’s

disease or with progressive supranuclear palsy [50] in whom gait

disorders, postural instability and falls are dominant from the onset

of the disease, and (b) that the extent of the degeneration of the

pedunculopontine neurons correlates with the patients’ levels of

premortem axial dysfunction [51]. In addition, improvements of

postural stability following deep brain stimulation of the

pedunculopontine nucleus area have been reported [52], suggest-

ing possible functionally specific subterritories for gait and balance

within the MLR, as previously reported in the animal [53].

Compared to MI of quiet stance, a few differences likely

inherent to the dynamic aspect of our balance task are worth

mentioning. First, we observed a strong activation of the basal

ganglia, which was not consistently reported during quiet standing

[10]. The basal ganglia could be involved in the release of

automatic postural responses to balance threats, or to the subjects’

anticipation of postural instability while approaching the stability

limits. Some neurons in the putamen have been shown to

discharge in apparent anticipation of predictable events (Mink,

1996), a finding that has been extended to balance control using a

task involving recognition of unstable postures in a dynamic

context [54].

In addition, while the SMA was inconsistently activated during

MI of quiet standing, it showed a strong response during MI of

dynamic balance, possibly reflecting the coordination of postural

adjustments to the voluntary sway movements.

Lastly, while Jahn et al. (2008) reported activation in the

cerebellar hemispheres, the dynamic balance task used in this

study seemed to preferentially recruit the median cerebellum. Both

extensive research on balance and clinical pathological studies

have clearly demonstrated that the cerebellum plays a central role

in postural control [55,56]. Its median part, the vermis, was shown

to be particularly involved in the active maintenance of body

balance [55], while its lateral part could be less specifically linked

to motor control [54].

Relation between dynamic balance and gait control
The motor imagery effects captured in the current study for

motor imagery of dynamic balance and in Bakker et al [8] for

motor imagery of gait are spatially contiguous. This is true both at

the cortical and subcortical levels, lending further support to the

idea of functionally specific subterritories in various brain regions,

or reflecting their somatotopic organization. Assuming that the

Figure 4. Comparison of gait and dynamic balance related
activations in the mesencephalon. Statistical parametric map (SPM)
of differential activity between motor imagery of gait (blue) [9,12] and
motor imagery of balance (red).
doi:10.1371/journal.pone.0091183.g004
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trunk is the primary motor effector for balance, and the legs are

the primary motor effectors for gait, then the relative positions of

the frontal effects reported in Bakker’s and our studies fit with

previously reported somatotopic maps of the trunk and the legs

[57,58,59]. The trunk is represented more laterally than the legs

on the precentral gyrus [58,59], and more rostrally in the SMA

[57].

The effects observed in medial parietal and cingulate cortex are

congruent with a recent report of gray matter changes in these

regions following improved performance on a dynamic balance

task [60]. They also fit with a few sparse reports on trunk-related

activity in these regions [61], although previous work has largely

focused on orofacial, forelimbs and hindlimbs representations,

omitting the trunk. Subcortically, we found differential balance-

related effects in the ventrolateral part of the thalamus and in the

putamen (bilaterally), in the left globus pallidus, in the cerebellar

vermis (culmen, lobule V bilaterally and right tonsil, lobule VIII),

in the right anterior part of the MLR, and in the right medial

pons. The latter effect is congruent with the idea of a

topographical organization of the pons and of the MLR. In the

pons, the trunk would be represented medially, as reported in

physiological mapping of the primary motor cortex projections to

the pons in the monkey [62], and the hindlimbs laterally [63]. In

the MLR, we report a gradient between a medio-caudal part

involved in gait [9,12] and a latero-rostral part involved in balance

(Figure 4). It remains to be seen whether this spatial segregation is

function-specific, related to different control parameters between

balance and gait (postural muscle synergies versus interlimb

coordination respectively), or different rhythms (low versus fast

respectively), or effector specific, related to different effectors

(trunk versus legs respectively). We speculate that the overlap

between these two functional poles could reflect coordinated leg

and trunk movements evoked during both gait and balance control

[64], in line with the known functional organization of this region

[65,66]. Deciphering the organization of the MLR at this level of

functional resolution in healthy subjects advances our knowledge

of this structure, and it might improve targeted stimulation of the

pedunculopontine nucleus in patients with Parkinson’s disease

[52,67,68]. However, it remains to be seen whether the spatial

relation of the cerebral substrates of gait and balance, observed

here at the group-level and through qualitative comparisons across

studies, can be confirmed within individual subjects and within the

same study.

Mesencephalic locomotor region (MLR) - supplementary
motor area (SMA) connectivity

The MLR is directly connected to the supplementary motor

area in humans [22,34,36,69]. Here we show a dynamic aspect in

the connectivity of these two structures, namely increased

connectivity between MLR and SMA when the imagery content

involves balance control.

We failed to observe task-related modulations of connectivity

between the MLR and the thalamus, although there are

anatomical connexions between these structures [34,35,36].

Instead, increased functional connectivity was found between the

thalamus and the globus pallidus. Overall, although our data

cannot resolve the anatomical direction of these connectivity

changes, we suggest that the supplementary motor area, the MLR,

the thalamus and the basal ganglia are part of a network working

interactively to control dynamic balance.

Conclusions

This study builds on the approach used by Bakker et al. [70] for

mapping cerebral structures involved in human gait control,

extending it to the control of dynamic balance. Our results

confirmed the involvement of cerebral regions previously identi-

fied in human clinico-pathological reports and in imaging studies

on postural control. Fronto-parietal regions, basal ganglia and

medial cerebellum are involved during MI of dynamic balance.

We also provide some evidence for at least partly spatially

segregated cerebral circuits supporting gait and dynamic balance

control. The approach used in this study opens the way for directly

studying the pathophysiology underlying dynamic balance im-

pairments in older individuals, and in patients with motor

disorders.
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