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1  |  INTRODUC TION

Despite being one of the safest food systems, numerous food prod-
ucts in the United States are linked with foodborne illness, hospi-
talizations, and deaths (CDC, 2021). In developed countries like the 
United States, milk and milk- based product outbreaks represent 
about 1%– 6% of the total bacterial foodborne outbreaks (Claeys 

et al., 2013; Grace et al., 2020). Due to their unique composition 
and properties, milk and dairy products represent excellent growth 
media for many pathogens including Escherichia coli O157:H7 and 
Listeria monocytogenes (Cancino- Padilla et al., 2017). The frequent 
involvement of these pathogens in product recalls and outbreaks 
has reinforced the need for their rapid detection and identification 
methods in foods. Although conventional methods are still used for 
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Abstract
The objective of this foundational study was to develop and evaluate the efficacy of 
an affordable hyperspectral imaging (HSI) system to identify single and mixed strains 
of foodborne pathogens in dairy products. This study was designed as a completely 
randomized design with three replications. Three strains each of Escherichia coli 
O157:H7 and Listeria monocytogenes were evaluated either as single or mixed strains 
with the HSI system in growth media and selected dairy products (whole milk, and 
cottage and cheddar cheeses). Test samples from freshly prepared single or mixed 
strains of pathogens in growth media or inoculated dairy products were streaked onto 
selective media (PALCAM and/or Sorbitol MacConkey agar) for isolation. An isolated 
colony was selected and mixed with 1 ml of HPLC grade water, vortexed for 1 min, 
and spread over a microscope slide. Images were captured at 2000× magnification 
on the built HSI system at wavelengths ranging from 400 nm to 1100 nm with 5- nm 
band intervals. For each image, three cells were selected as regions of interest (ROIs) 
to obtain hyperspectral signatures of respective bacteria. Reference pathogen librar-
ies were created using growth media, and then test pathogenic cells were classified 
by their hyperspectral signatures as either L. monocytogenes or E. coli O157:H7 using 
k- nearest neighbor (kNN) and cross- validation technique in R- software. With the im-
plementation of kNN (k = 3), overall classification accuracies of 58.97% and 61.53% 
were obtained for E. coli O157:H7 and L. monocytogenes, respectively.
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detection and identification of foodborne pathogens due to being 
sensitive, inexpensive, and their ability to provide both qualitative 
and quantitative results (Doyle & Buchanan, 2013), these methods 
are time- consuming, laborious, and can take from 4 to 7 days to give 
confirmatory results (FDA, 2021). Any method that can reduce the 
analysis time by a day, or even several hours compared to the con-
ventional counterpart is considered a rapid test.

Hyperspectral imaging (HSI) is a novel technology in the field of 
food safety that has great potential in rapid, reliable, and inexpensive 
identification of foodborne pathogens. The HSI integrates conventional 
imaging and spectroscopy techniques to simultaneously gather both 
spatial (x-  and y dimensions of image) and spectral (wavelength, λ) infor-
mation of a sample to form a hyperspectral cube (Gowen et al., 2007). 
The hyperspectral cube can store vast amount of information in this 
three- dimensional (3- D) hyperspectral cube. In HSI, images of a speci-
men are acquired at various contiguous predefined wavelengths in the 
visible/near- infrared region (approximately 400– 1000 nm) at specific 
wavelength intervals. This results in dozens or hundreds of images, 
giving every pixel in a hyperspectral image its own spectrum or hy-
perspectral signature, over a contiguous wavelength range (Ariana & 
Lu, 2008). Hyperspectral cubes can be broken down to a single pixel, 
or a selection of a group of pixels known as a region of interest (ROI). 
The hyperspectral signature can then be used as a unique fingerprint 
for rapid identification of respective specimens. The HSI utilizes optical 
characteristics of the sample captured over a wide wavelength range 
for identification; therefore, HSI uses the interactions between light 
and the molecular structure of a sample for its identification.

The HSI was initially developed for remote sensing and has since 
been proven useful in a multitude of disciplines such as astronomy, 
agriculture, pharmaceuticals, and medicine (Gowen et al., 2007). In 
the food industry, HSI had been studied predominantly for food 
quality assessment, such as rapid detection of defects in agricul-
tural products. Food ranging from fruits, vegetables, meat, fish, and 
grains have had HSI applied to assess water and fat content, spoil-
age, and damage, and for product quality grading (Chen et al., 2020; 
Codgill, 2004; ElMasry et al., 2012; ElMarsy et al., 2008; Heia 
et al., 2007; Naganathan et al., 2008; Qin, 2005).

In terms of food safety, most of the previous HSI research for 
bacterial detection has been conducted at macroscale using bac-
terial colonies, but minimal research has been conducted at the 
single bacterial cell level (Eady & Park, 2016a). Using HSI, Michael 
et al. (2019) were able to identify foodborne pathogens at a cellular 
level (various strains of Cronobacter sakazakii, Salmonella spp., Shiga 
toxin producing Escherichia coli (STEC), and Listeria monocytogenes) 
with accuracy ranging from 66.66% to 100% within the respec-
tive genera. Michael et al. (2019) also demonstrated that HSI could 
differentiate cells treated with lauric arginate (antimicrobial) from 
healthy, untreated cells within each bacterium with high accuracy. 
Eady et al. (2019) used HSI to classify Salmonella in chicken rinsate 
and obtained an accuracy of 81.8% and 98.5%, without and with 
image preprocessing techniques, respectively.

Currently, what is stopping researchers from exploring this tech-
nology is the initial startup cost of acquiring HSI systems. Most 

preassembled and preprogrammed HSI systems cost over $100,000 
and have very little room for modification. The development of a 
cheaper and reliable HSI system by mounting a commercially avail-
able hyperspectral imaging camera on a regular laboratory com-
pound microscope and using commercially available software could 
encourage other researchers to explore this technology and could 
invoke more interest from the food industry in investing in this 
technology.

The first objective of this study was to develop an affordable 
HSI system using a basic compound microscope and an HSI cam-
era connected to a computer interface. The second objective was to 
evaluate the efficacy of the newly developed affordable HSI system 
to identify single and mixed strains of L. monocytogenes and E. coli 
O157:H7 in growth media, and selected dairy products (whole milk, 
and cottage and cheddar cheeses).

2  |  MATERIAL S AND METHODS

2.1  |  Development of an affordable HSI system

An affordable HSI system (Figure 1) was assembled by integrating a 
GoldenEyeTM snapshot hyperspectral imager (BaySpec Inc., San Jose, 
CA) with a B3- 223 trinocular microscope (VWR® International, Radnor, 
PA). Several engineering adjustments were performed to transform 
the above- mentioned technologies into one functional HSI system. 
Briefly, a dark field attachment (Motic®, Schertz, TX) was inserted 
below the condenser and above the halogen lamp of the microscope. A 
100× oil dark field plan objective with an adjustable iris (AmScopeTM, 
Irvine, CA) was installed on the revolving nose piece of the microscope. 
A custom- designed 20× adapter (Engineering Shop, Washington State 
University, Pullman, WA) built by installing a wide field 20× lens into a 
3- D printed adapter was used to connect the hyperspectral imager di-
rectly to the trinocular port on the microscope. Lastly, the hyperspec-
tral imager was connected through a USB (universal serial bus) port to a 
laptop computer (Dell®, Round Rock, TX). The price breakdown of the 
completed affordable custom- designed HSI setup is shown in Table 1.

2.2  |  Experimental design

This study was designed as a completely randomized design. To 
study whether the custom- designed affordable HSI system can be 
used for the rapid identification of various foodborne pathogens, 
three strains each of Escherichia coli O157:H7 and Listeria monocy-
togenes were used. Hyperspectral images of immobilized cells from 
isolated colonies were captured. These images were then used to 
generate hyperspectral graphs of respective bacterial cells. The hy-
perspectral graphs/signatures of cells of pure cultures obtained from 
respective selective agar were stored as a reference library and used 
to train the classification model. The k- nearest neighbor (kNN) clas-
sifier (with an optimal k determined by cross- validation) was used 
to classify unknown bacterial cells (Escherichia coli O157:H7 and 
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Listeria monocytogenes) from artificially inoculated dairy products. 
Three replications were conducted for both pure cultures and in-
oculated dairy product samples for generating hyperspectral graphs; 
and within each replication, hyperspectral images of various samples 
were obtained randomly.

2.3  |  Culture propagation

Escherichia coli O157:H7 and L. monocytogenes strains used in this 
study are presented in Table 2. All strains were selected on the basis 
of risk and involvement in foodborne disease outbreaks or isolated 
from the environment and food processing facilities. The cultures 
were propagated according to manufacturers’ instructions, indi-
vidually transferred onto glycerol protectant beads (MicrobankTM, 
Richmond Hill, ON), and stored in a −80°C freezer (Panasonic 
Healthcare Co., Ltd., Wood Dale, IL) until used. At the start of the 
study, a frozen bead of each culture was grown individually at 37°C 
for 24 h in 10 ml of brain heart infusion (BHI) broth (DifcoTM, Becton, 
Dickinson and Company, Sparks, MD) and stored at 4˚C as stock cul-
tures. All stock cultures were confirmed using API® 20E and API® 
Lister (bioM´erieux, Inc., Durham, NC) for E. coli O157:H7 and L. 
monocytogenes strains, respectively.

2.4  |  Sample preparation using selective media

For each replication, a loop of an individual stock culture was used 
to inoculate 10 ml of BHI broth and incubated at 37°C for 24 h. 
Incubated strains (8.3 ± 0.07 and 8.0 ± 0.05 log CFU/ml, for E. 
coli O157:H7 and L. monocytogenes strains, respectively) were in-
dividually streaked for isolation on MacConkey (Criterion, Hardy 
Diagnostics, Santa Maria, CA) or PALCAM (Difco, Becton, Dickinson 
and Company, Sparks, MD) agar for E. coli O157:H7 and L. mono-
cytogenes, respectively, and incubated at 37°C for 24 h. A mixed- 
culture cocktail (containing one strain of E. coli O157:H7 and one 
strain of L. monocytogenes) was prepared by mixing 1 ml of freshly, 
individually grown E. coli O157:H7 (strain 35,150) and 1 ml of freshly, 
individually grown L. monocytogenes (strain 19,111), vortexed for 

1 min, and was streaked on MacConkey and PALCAM agar and incu-
bated at 37°C for 24 h.

2.5  |  Dairy product preparation and inoculation

Dairy products (milk and cheeses) were purchased from a local 
store in Pullman, WA (Walmart, Pullman, WA). For each replication, 

F I G U R E  1  Affordable custom- designed hyperspectral 
microscope imaging setup. 1: GoldenEyeTM hyperspectral imaging 
camera; 2: custom- designed 20 × adapter; 3: adjustable numerical 
aperture 100 × objective; 4: dark field adapter; 5: halogen light 
source; 6: VWR compound microscope; and 7: computer

Item Company
Price (U.S. 
dollars)

Trinocular compound microscope VWR® International $1500

Dark field attachment Motic® $48

100 × oil dark field microscope plan objective 
w/ iris

AmScopeTM $345

Custom- designed 20 × adapter Engineering Shop, WSU $140

GoldenEyeTM Snapshot Hyperspectral Imager BaySpec Inc. $16,450

Laptop computer Dell® $480

ENVI license, tech support, and maintenance Harris Geospatial Solutions Inc. $1983

Total cost $20,946

TA B L E  1  Approximate price 
breakdown of the affordable custom- 
designed hyperspectral imaging setup
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a loop of individual stock cultures was used to inoculate 10 ml 
of BHI broth and incubated for 37°C for 24 h. As previously de-
scribed in Section 2.4, a mixed- culture cocktail was also prepared 
by mixing 1 ml of freshly, individually grown E. coli O157:H7 (strain 
35,150) and 1 ml of freshly, individually grown L. monocytogenes 
(strain 19,111), vortexed for 1 min. Dairy products were inoculated 
with individual cultures (8.3 ± 0.07 and 8.0 ± 0.05 log CFU/ml, 
for E. coli O157:H7 and L. monocytogenes strains, respectively), as 
well as the mixed- culture cocktail. For each replication, 10 ml of 
whole milk was inoculated with 0.1 ml of culture, 20 g of cottage 
cheese was inoculated with 0.2 ml of culture, and a slice (45.16 
cm2) of cheddar cheese was inoculated with a swab of respec-
tive cultures. All inoculated dairy samples were refrigerated at 
4˚C for 24 h. After incubation, the cheddar cheese samples were 
stomached for 1 min with 20 ml of 0.1% peptone water (BactoTM, 
Becton, Dickinson and Company, Sparks, MD), cottage cheese 
samples were stomached for 1 min, and milk samples were vor-
texed for 1 min. A sterile cotton swab (Puritan®, Guilford, ME) was 
used to streak for isolation on the respective selective agar for 
individual cultures (MacConkey or PALCAM) and was incubated 
at 37°C for 24 h. For mixed cultures, products were streaked on 
both MacConkey and PALCAM agar, and were incubated at 37°C 
for 24 h and 48 h, respectively.

2.6  |  Bacterial slides preparation

Bacterial cells from individual pure cultures, mixed cultures, or in-
oculated dairy products were obtained by just touching a loop 
(0.01 ml) (VWR® International, Radnor, PA) on an isolated colony 
on the respective agar plates and mixing in 1 ml of filtered (0.2 µm) 
sterilized HPLC grade water (J.T. Baker Inc., Phillipsburg, NJ) in mi-
crocentrifuge tubes by vortexing for 1 min. For each HSI analysis, 
a loop of vortexed cell solution was transferred onto a clean sani-
tized 1- mm glass slide (Fisherbrand, Fisher Scientific, Pittsburgh, PA) 
and immobilized by air drying in a biosafety cabinet for 5 min. These 
immobilized bacterial cells on glass slides were then used for HSI 
analysis.

2.7  |  Hyperspectral graph generation

The custom- designed HSI microscope system was used to capture 
hyperspectral images. Environment for Visualizing Images (ENVI) 
(Harris Geospatial Solutions Inc., Boulder, CO) software version 5.6 
was used for analyzing acquired hyperspectral images and generat-
ing hyperspectral graphs. Hyperspectral images of individual bac-
terial cells on air- dried glass slides were acquired by focusing the 

TA B L E  2  Bacterial cultures used in the study

Pathogen Strain no. Isolated from Source

Escherichia coli O157:H7 905 Human (Sheng et al., 2006) University of Idaho 
(Moscow, ID)

35,150 Human ATCC

43,895 Raw hamburger meat outbreak ATCC

Listeria monocytogenes 5414 Raw milk outbreak in Massachusetts ATCC

19,111 Poultry, England ATCC

19,115 Human ATCC

Abbreviation: ATCC®: American Type Culture Collection (Manassas, VA).

F I G U R E  2  Hyperspectral images of Escherichia coli O157:H7 cells at 2000 × magnification. (a) Hyperspectral image as it appears under 
the field of view of the microscope in Environment for Visualizing Images (ENVI). (b) Hyperspectral image after preprocessing technique has 
been applied in ENVI. (c) Hyperspectral image with three regions of interest (ROIs) selected (pink, red, and blue) in ENVI

(a) (b) (c) 
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microscope at 2000× magnification and ENVI settings at 50 ms ex-
posure time, and 0 gain. Hyperspectral images were acquired using 
the “snapshot” technique, which captures all spatial and spectral 
data simultaneously within one exposure, without any sample or de-
tector movement. Using ENVI, three bacterial cells were selected 
from the acquired image as regions of interest (ROIs). Average scat-
tering values at respective wavelengths of these three ROIs were 
used to generate hyperspectral graphs at wavelengths ranging from 
400 to 1100 nm (at wavelength intervals of 5 nm resulting in 141 
wavelength bands).

2.8  |  kNN classification and validation of 
hyperspectral graphs

An important step in statistical analyses and classification of a 
spectral data set is preprocessing; however, there are currently 
no well- established guidelines or rules for selecting a particular 
preprocessing technique for a specific type of data set (Scott 
et al., 2006). The preprocessing technique chosen for a particular 
data set should aim to provide the best possible classification ac-
curacy. For this study, hyperspectral graphs were preprocessed 
by normalizing the y- axis (scattering value) from 0 to 1 (Michael 
et al., 2019; Scott et al., 2006), with “1” being the brightest point 
on the ROI and “0” being the darkest point. The following equa-
tion was used to calculate normalized scattering values (Michael 
et al., 2019; Scott et al., 2006):

where Xj is a numeric vector and is the hyperspectral signature of the 
jth observation, xij the ith entry of Xj and is the scattering value at the 
ith wavelength; min (Xj) is the minimum scattering value of the hyper-
spectral signature Xj; and max (Xj) is the max scattering value of the 
hyperspectral signature Xj.

The k- nearest neighbor (kNN) classifier was used to classify the 
different pathogens using the normalized hyperspectral signatures, 
where the value of neighboring size k was chosen to be 3 (as ex-
plained below). The kNN classifier is a commonly used, nonparamet-
ric classification technique. This classification technique was chosen 
since each (normalized) hyperspectral signature in this study is a 
high- dimensional vector but there were only a few such signatures 
whose pathogen types were available to train a parametric classifier 
different than the kNN classifier. Specifically, the Euclidean distance 
between a pair of normalized hyperspectral signatures was used as 
a dissimilarity measure on these signatures. In order to determine an 
optimal neighboring size k, a training set was created and consisted 
of 18 normalized hyperspectral signatures of known pathogens, and 
a 5- fold cross- validation was applied to the training set. This gave 
an optimal value for k as 3. It should be noted that values for k from 
1 to 3, and 5-  or 10- fold cross- validation are commonly used, and 
considerable empirical evidence shows that these two choices of the 
number of folds for cross- validation work well in practice for a range 

of statistical learning methods including kNN classifiers (James 
et al., 2013; Scott et al., 2006). For this study, 5- fold cross- validation 
was chosen in order to more stably estimate the test error of an op-
timal kNN classifier since the training set had only 18 observations. 
The optimal 3- NN classifier was then applied to classify a total of 
78 normalized hyperspectral signatures, all different from those in 
the training set, to classify them into their corresponding pathogens.

3  |  RESULTS

An example of the hyperspectral image of bacterial cells as visible 
under the field of view of the microscope and acquired by the afford-
able custom- designed HSI system is presented in Figure 2a. Using 
the ENVI software, this image was clarified using various image- 
clarifying tools for better visualization of bacterial cells presented 
in Figure 2b; however, clarification of the images did not affect the 
hyperspectral signatures of these bacterial cells. The selection of the 
three individual cells as ROIs within the hyperspectral image is pre-
sented in Figure 2c.

To evaluate the efficacy of the assembled HSI system, hyper-
spectral images of different reference strains of E. coli O157:H7 and 
L. monocytogenes grown in nutrient growth media followed by isolat-
ing on selective agar were captured to develop a training data set to 
train the kNN classification model. The mean hyperspectral graphs 
from 400-  to 1,100- nm wavelength range for these reference strains 
are presented in Figure 3. The graphs presented in Figure 3 demon-
strated that there were overall differences in scattering intensities 
in the hyperspectral graphs of E. coli O157:H7 and L. monocytogenes. 
The main difference between E. coli O157:H7 and L. monocytogenes 
was observed in the wavelength range of 500– 700 nm, with the 
scattering intensities of L. monocytogenes being lower than those of 
E. coli O157:H7. Likewise, L. monocytogenes has lower scattering in-
tensities at the wavelength range of 900– 1025 nm in comparison to 
those of E. coli O157:H7.

The graphs in Figure 3 also demonstrate that the different strains 
within each genus vary slightly. The scattering intensity for E. coli 
O157:H7 strain 35,150 was lower at wavelength range 400– 705 nm 
and higher at wavelength ranges 710– 885 nm and 945– 1035 nm, 
compared to the other two E. coli O157:H7 strains. However, the 
scattering intensity for E. coli O157H7 strain 43,895 was higher at 
wavelength range 415– 750 nm and was lower at wavelength range 
885– 1070 nm, compared to the scattering intensities of the E. coli 
O157:H7 strains 35,150 and 905. Among the L. monocytogenes 
strains, the scattering intensity of L. monocytogenes strain 19,111 
was lower in the wavelength range 490– 655 nm and was higher in 
the wavelength ranges 665– 835 nm and 960– 1085 nm, compared to 
the scattering intensities of the other two L. monocytogenes strains.

The confusion matrix of the optimal 3- NN classifier of the in-
oculated dairy products and mixed cultures on respective selective 
agar is presented in Table 3. A confusion matrix is a table that is 
used to describe the performance of a classifier, such as kNN, on a 
set of test data for which true values are known. For mixed cultures 

yij =
[

xij −min
(

Xj

)]

∕
[

max
(

Xj

)

−min
(

Xj

)]
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grown on the respective selective agar and all the dairy products 
that were either single or mixed inoculated (as described in Sections 
2.4 and 2.5), the classification accuracies of E. coli O157:H7 and 
L. monocytogenes were 58.97% and 61.53%, respectively. In other 
words, out of the 78 total (39 of each pathogen) hyperspectral 
images, 23 E. coli O157:H7 and 24 L. monocytogenes images were 
classified accurately as the respective pathogens (Table 3). The 

classification results are impressive, since this study had only 18 
reference/standard hyperspectral signatures of pure cultures in the 
training set to build the optimal classifier but applied it to classify a 
total of 78 normalized hyperspectral signatures.

A breakdown of the classification results from the optimal 3- NN 
classifier of the inoculated dairy products is presented in Table 4. 
Overall, cheddar cheese had the highest classification accuracy 
for E. coli O157:H7 at 66.67% compared to whole milk and cottage 
cheese with accuracies of 58.33% and 50%, respectively. However, 
overall, whole milk and cottage cheese both had higher classifica-
tion accuracies for L. monocytogenes at 66.67% compared to ched-
dar cheese at 50%. The E. coli O157:H7 strain 43,895 had the worst 
classification accuracy in all three dairy products, with an accuracy 
of 33.33% in whole milk and cheddar cheese, and 0% accuracy in 
cottage cheese.

4  |  DISCUSSION

In a similar study, Michael et al. (2019) used HSI over the wavelength 
of 425.57– 753.84 nm (with 1.29- nm wavelength separation) for the 

F I G U R E  3  Hyperspectral graphs 
of: (a) individual Escherichia coli (EC) 
O157:H7 strains 905, 35,150, and 43,895 
(dotted curves), and mean of all E. coli 
O157:H7 strains (continuous curves); (b) 
individual Listeria monocytogenes (LM) 
strains 5414, 19,111, and 19,115 (dotted 
curves), and mean of all L. monocytogenes 
strains (continuous curves) captured at 
wavelength ranging from 141 wavelengths 
from 400 to 1100 nm (with 5- nm band 
intervals)

TA B L E  3  Confusion matrix for the optimal kNN classifier (with 
k = 3) to classify 78 bacterial hyperspectral images as Escherichia 
coli O157:H7 (EC) and Listeria monocytogenes (LM) using their 
normalized hyperspectral signatures that were obtained from 
the custom- designed hyperspectral imaging system from 400 
to1100 nm (with 5- nm band intervals)

Predicted

Actual

EC LM

EC 23a 15

LM 16 24a

a23 out of 39 EC samples and 24 out of 39 LM samples were classified 
correctly.
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identification and differentiation of four strains of Cronobacter saka-
zakii, five strains of Salmonella, eight strains of Escherichia coli, and a 
single strain of Listeria monocytogenes and Staphylococcus aureus at 
a cellular level using a commercial CytoViva HSI microscope setup. 
The author used principal component analysis and kNN classifiers to 
classify the hyperspectral signatures. Michael et al. (2019) reported 
100% classification accuracy in all but four strains when analyzed 
within their respective genera. However, the overall classification 
when all strains of different genera were analyzed together was not 
as accurate, leading to 100% classification in only five of the nine-
teen strains.

Eady et al. (2019) investigated and compared the ability of vis-
ible/near- infrared HSI with real- time PCR to classify Salmonella in 
chicken rinsate. Spectral signatures between 450 and 800 nm from 
341 images of bacterial cells from chicken rinsate samples were ac-
quired with a hyperspectral microscope imaging system. Quadratic 
discriminant analysis (QDA) was performed to classify cells as either 
Salmonella positive or Salmonella negative. The classification accu-
racy of the system was 81.8%, but with the application of prepro-
cessing techniques the classification accuracy rose to 98.5%.

Park et al. (2019) used hyperspectral microscope imaging at 450– 
800 nm to classify six bacteria: Bifidobacter longum, Campylobacter 

jejuni, Clostridium perfringens, Enterobacter cloacae, Lactobacillus sali-
varius, and Shigella flexneri, at a cellular level using their scattering 
intensities from the hyperspectral spectra. The overall accuracy of 
the QDA technique for classifying all six bacterial species was found 
to be 89% (Park et al., 2019).

Eady and Park (2016b) used metal halide and quartz halogen 
light sources within a hyperspectral microscope setup to obtain 
hyperspectral signatures of Salmonella serovars; Enteritidis and 
Typhimurium at a cellular level. The hyperspectral microscopic im-
ages were captured at the wavelength ranges from 450 to 800 nm, 
at 4- nm spectral intervals with exposure time of 250 ms and gain 
value of 9. The Salmonella serovars were grown on BGS (Brilliant 
Green Sulfa) and XLT4 (Xylose- Lysine- Tergitol4) agar plates and 
then colonies were suspended in filter- sterile phosphate- buffered 
saline (PBS) and utilized for slide preparation. The spectral peaks 
for respective Salmonella serovars were similar within the respec-
tive light sources, with Enteritidis and Typhimurium peaking at 
458, 498, 546, 590, and 670 nm when metal halide was used as 
light source. Likewise, the spectral peaks for respective serovars 
were obtained at 558, 646, 702, and 772 nm when halogen light 
source was employed for capturing the images. In comparison, the 
hyperspectral graphs or spectral peaks of the same bacterial cell 

Product Bacteria Strain
% Classification 
accuracy

Total % 
classification 
accuracy

Whole milk Escherichia coli 
O157:H7

905 66.67

35,150 66.67

43,895 33.33

Mixed (35,150) 66.67 58.33

Listeria 
monocytogenes

5414 66.67

19,111 33.33

19,115 100

Mixed (19,111) 66.67 66.67

Cottage 
cheese

Escherichia coli 
O157:H7

905 66.67

35,150 66.67

43,895 0

Mixed (35,150) 66.67 50

Listeria 
monocytogenes

5414 66.67

19,111 100

19,115 33.33

Mixed (19,111) 66.67 66.67

Cheddar 
cheese

Escherichia coli 
O157:H7

905 66.67

35,150 66.67

43,895 33.33

Mixed (35,150) 100 66.67

Listeria 
monocytogenes

5414 33.33

19,111 66.67

19,115 66.67

Mixed (19,111) 33.33 50

TA B L E  4  Classification accuracy of 
various strains of Escherichia coli O157:H7 
and Listeria monocytogenes in dairy 
products (whole milk, cottage and cheddar 
cheeses) obtained from the optimal kNN 
(k- nearest neighbor) classifier with optimal 
k = 3
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obtained using two different light sources were clearly different, 
demonstrating the variation induced by the type of light source 
being employed. Furthermore, the research studies by Michael 
et al. (2019) and Eady et al. (2019) in comparison with this current 
study substantiate the point of introducing a variation in hyper-
spectral signatures of respective pathogens, either due to the dif-
ferent hyperspectral imaging setup or due to light sources being 
employed. The decreased classification accuracies from previous 
studies could also be attributed to differences in wavelength sam-
pling intervals (Martinez et al., 2019). In previous studies, Eady 
et al. (2019), Eady and Park (2016b), and Michael et al. (2019) per-
formed classification using 4- nm, 2- nm, and 1.29- nm wavelength 
sampling intervals, respectively; however, this study used 5- nm 
wavelength intervals.

Several limitations of this system, and within the field of hy-
perspectral microscope imaging, include the requirement of prior 
hyperspectral information about the target organism and an enrich-
ment step. First, a reference library containing the target organisms’ 
hyperspectral signature is required to identify the unknown target 
organism (Gomez, 2002). Without previous hyperspectral informa-
tion, such as a reference library, the classification technique would 
not be able to identify the unknown organism. Second, an enrich-
ment step is necessary when looking to identify possible target 
organisms in food matrices (Bari & Yeasmin, 2015). The necessity 
of the enrichment step is due to the low concentrations of patho-
gens in foods and variability in cellular morphology due to various 
stresses encountered in the foods, such as pH, temperatures, and 
antimicrobials.

Currently, preassembled and preprogrammed HSI systems are 
expensive and can easily cost over $100,000, leading to limited 
research being explored using hyperspectral microscope imag-
ing for the identification and detection of foodborne pathogens. 
However, with the introduction of an affordable HSI microscope 
setup built in this study, the initial investment cost is reduced to 
a fifth of the average cost of commercially available HSI systems. 
After the initial cost of the HSI system, the cost of running HSI 
analysis is considerably low, which would include the cost of en-
richment and isolation media along with regular microbiological 
tools (such as loops, glass slides coverslips, and a biosafety cabi-
net). Once the bacterial colonies are isolated on appropriate agar, 
the time for the hyperspectral image acquiring and analyzing is 
less than 15 min. After developing an affordable, accurate, and 
precise HSI system, the HSI of the bacterial cells could be used as 
a rapid identification technique for specific pathogens or bacteria, 
at least at the presumptive levels.

In conclusion, the overall classification accuracy (60.25%) of this 
affordable custom- designed HSI system with kNN classification 
model still needs improvement to be considered a reliable detection 
and identification method for foodborne pathogens within a food 
matrix. Further work will be performed to improve the bacterial 
cells’ magnification and classification accuracy of the HSI system. 
Likewise, different preprocessing and classification methods will be 
examined to increase the classification accuracy. Future research will 

focus on building a stronger reference library for more pathogens 
such as Salmonella, Big Seven Shiga toxin producing E. coli (STEC), 
L. monocytogenes, and Staphylococcus aureus. Once a stronger ref-
erence library has been established, future research will focus on 
the identification of pathogens within different food matrices such 
as low moisture foods. This technology has shown promising results 
with E. coli O157:H7 and L. monocytogenes, and the development of 
diverse standard library in future and enhanced magnification will 
make this even more potent. Overall, HSI has a bright future for its 
application in food safety.
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