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Abstract: The eggshell membrane (ESM), mainly composed of collagen-like proteins, is readily
available as a waste product of the egg industry. As a novel biomaterial, ESM is attractive for its
applications in the nutraceutical, cosmetic, and pharmaceutical fields. This review provides the main
information about the structure and chemical composition of the ESM as well as some approaches
for its isolation and solubilization. In addition, the review focuses on the role and performance of
bioactive ESM-derived products in various applications, while a detailed literature survey is provided.
The evaluation of the safety of ESM is also summarized. Finally, new perspectives regarding the
potential of ESM as a novel biomaterial in various engineering fields are discussed. This review
provides promising future directions for comprehensive application of ESM.
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1. Structure and Chemical Composition of the Eggshell and Eggshell Membrane

The avian eggshell, representing about 10% of the egg weight, is composed of the
shell and shell membrane. The shell is a calcareous structure predominantly constituted
of calcium carbonate (CaCO3) (95%) and an organic matrix composed of proteins, gly-
coproteins, and proteoglycans (3.5%) [1,2]. The eggshell membrane (ESM) consists of
cross-linked collagens (I, V, and X), glycosaminoglycans (GAGs), egg white proteins (i.e.,
Ovotransferrin, Lysozyme) and eggshell matrix proteins (i.e., Ovocalyxin-36) [1–5]. The
ESM is the innermost component of the eggshell, lying in between the mammillary layer
and the egg white. It features a unique fibrous net structure, allowing the mineralization
process of the eggshell from the outer surface of the ESM, as well as keeping the egg white
from mineralization [6,7]. During the early stage of incubation, the ESM is firmly combined
to the mammillary cones, and it is difficult to separate through mechanical action. However,
this connection weakens as incubation progresses [8]. The ESM is divided into three layers:
the outer shell membrane, the inner shell membrane, and the limiting membrane. The
detailed structure of the egg shell and ESM is indicated in Figure 1, showing the triple-layer
structure with a spiral arrangement of these layers [9].

The outer shell membrane represents the outmost layer of the ESM and facilitates
the close attachment to the eggshell. Fibers in the outer shell membrane present bud-like
structures on top of the mammillary knob, allowing a strong binding between the ESM and
the eggshell [8]. The outer shell layer is also the thickest of the three layers, with a thickness
of approximately 50–70 µm [1,10]. The fibers in the inner shell layer intertwine with fibers
in the outer shell membrane, except in the air cell region [11]. The limiting layer is a slender
structure that directly covers the egg white [7]. Due to the presence of a great number of
fiber knobs, the outer shell membrane is rougher than the inner shell membrane [12]. In
addition, the fibers in the three layers of the ESM vary in diameter, decreasing from the
outermost to the limiting membrane [13].

Foods 2021, 10, 2178. https://doi.org/10.3390/foods10092178 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-3567-5556
https://doi.org/10.3390/foods10092178
https://doi.org/10.3390/foods10092178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10092178
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10092178?type=check_update&version=1


Foods 2021, 10, 2178 2 of 15Foods 2021, 10, x FOR PEER REVIEW 2 of 16 
 

 

 

Figure 1. Hen egg structure and scanning electron micrographs illustrating the morphology of the eggshell and eggshell 
membranes. (A) Eggshell cross-fractured to reveal the shell membrane (SM), mammillary layer (ML), and palisade layer 
(PL); (B) higher magnification of the membrane mammillary body interface: Outer shell membrane fibers (OSM); insert 
into the tips of the mammillary bodies (MB); inner shell membranes (ISM); (C) enlargement of the shell membrane fibers 
(SMF), revealing their interwoven and coalescing nature; (D) inner aspect of the inner shell membrane (ISM), demonstrat-
ing the limiting membrane (LM) that surrounds the egg white here removed during sample preparation. Scale bars: (A), 
50 mm; (B), 20 mm; (C,D), 2 mm. (adapted from M.T. Hincke et al., Matrix Biology, 19, 443–453, 2000, [5]). 

The outer shell membrane represents the outmost layer of the ESM and facilitates the 
close attachment to the eggshell. Fibers in the outer shell membrane present bud-like 
structures on top of the mammillary knob, allowing a strong binding between the ESM 
and the eggshell [8]. The outer shell layer is also the thickest of the three layers, with a 
thickness of approximately 50–70 μm [1,10]. The fibers in the inner shell layer intertwine 
with fibers in the outer shell membrane, except in the air cell region [11]. The limiting 
layer is a slender structure that directly covers the egg white [7]. Due to the presence of a 
great number of fiber knobs, the outer shell membrane is rougher than the inner shell 
membrane [12]. In addition, the fibers in the three layers of the ESM vary in diameter, 
decreasing from the outermost to the limiting membrane [13]. 

The ESM is rich in protein-based fibers, comprising of about 80–85% proteins [14]. It 
was reported that the ESM contains over 500 different types of proteins [15]. Collagens 
are the major structural basis of the fibers, making up 10% of the ESM [16]. The ratio of 
collagen I and V is about 100:1, with their contents in the outer and inner layers of the 
ESM significantly different [17]. While the inner ESM contains both collagen I and colla-
gen V, the outer ESM presents only collagen I [18]. Another type of collagen, collagen X, 
is found in both the outer and inner layers of the ESM. Collagen X is believed to inhibit 
the mineralization process, preventing both the egg white and yolk from mineralization 
[7,19]. However, such a hypothesis is in contradiction with the fact that collagen X is lo-
cated in the core of the fibers [6]. Fibronectin, a dimeric form glycoprotein with the func-
tion of activating or binding proteins, is another type of protein present in the ESM [20]. 
Osteopontin, which contains numerous binding sites for cell and calcium as well as vari-
ous serine/threonine phosphorylation sites is also present in the ESM [21]. In addition to 
these various proteins, CaCO3 minerals are also present in the ESM, along with sialic acid, 
uronic acid, and small amounts of saccharides [3,22]. The main chemical components of 
the eggshell membrane and their functions are summarized in Table 1. 

  

Figure 1. Hen egg structure and scanning electron micrographs illustrating the morphology of the eggshell and eggshell
membranes. (A) Eggshell cross-fractured to reveal the shell membrane (SM), mammillary layer (ML), and palisade layer
(PL); (B) higher magnification of the membrane mammillary body interface: Outer shell membrane fibers (OSM); insert into
the tips of the mammillary bodies (MB); inner shell membranes (ISM); (C) enlargement of the shell membrane fibers (SMF),
revealing their interwoven and coalescing nature; (D) inner aspect of the inner shell membrane (ISM), demonstrating the
limiting membrane (LM) that surrounds the egg white here removed during sample preparation. Scale bars: (A), 50 mm;
(B), 20 mm; (C,D), 2 mm. (adapted from M.T. Hincke et al., Matrix Biology, 19, 443–453, 2000, [5]).

The ESM is rich in protein-based fibers, comprising of about 80–85% proteins [14]. It
was reported that the ESM contains over 500 different types of proteins [15]. Collagens
are the major structural basis of the fibers, making up 10% of the ESM [16]. The ratio of
collagen I and V is about 100:1, with their contents in the outer and inner layers of the
ESM significantly different [17]. While the inner ESM contains both collagen I and collagen
V, the outer ESM presents only collagen I [18]. Another type of collagen, collagen X, is
found in both the outer and inner layers of the ESM. Collagen X is believed to inhibit the
mineralization process, preventing both the egg white and yolk from mineralization [7,19].
However, such a hypothesis is in contradiction with the fact that collagen X is located in the
core of the fibers [6]. Fibronectin, a dimeric form glycoprotein with the function of activating
or binding proteins, is another type of protein present in the ESM [20]. Osteopontin, which
contains numerous binding sites for cell and calcium as well as various serine/threonine
phosphorylation sites is also present in the ESM [21]. In addition to these various proteins,
CaCO3 minerals are also present in the ESM, along with sialic acid, uronic acid, and small
amounts of saccharides [3,22]. The main chemical components of the eggshell membrane
and their functions are summarized in Table 1.

Table 1. Main chemical components of the eggshell membrane and their functions.

Main Components Major Biochemical Functions

Collagens

- Optimum mechanical strength [23]
- Thermal stability [23]
- Wound healing [24]
- Osteocompatibity [25]
- Anchorage to nanohydroxyapatite [25]
- Biomineralization [26]
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Table 1. Cont.

Main Components Major Biochemical Functions

Osteopontin

- Affinity binding for hydroxyapatite and osteoblasts [27,28]
- Inhibitor of mineralization [28]
- Modulation of osteoclast differentiation [29]
- Recruitment of macrophages [30]
- Regulation of cytokine production [30]
- Inhibition of vascular calcification [30]
- Regulation of apatite crystal size and growth [31]
- Tissue remodeling [32]

Fibronectin
- Promotion of cell adhesion [33]
- Improving cell growth, migration, and differentiation [33]
- Wound healing [34]

Keratin - Self-Assembly [35]
- Promotion of cell adhesion [36]

Cysteine-rich eggshell membrane proteins
(CREMPs) - Wound healing [24]

Histones - Chromatin folding and compaction [37]
- Potent antimicrobial properties [38]

Avian beta defensins - Promotion of innate defense system [39]
- Reinforcement of the antimicrobial defenses associated with the ESM [40]

Ovocalyxin-36 - Potent antimicrobial properties [41]
- Positive immune-modulating effects [42]

Apolipoproteins - Binding and transport of lipids [43]

Protocadherin - Adhesion and differentiation functions [44]

Chondroitin sulfate

- Formation of porous hydrated gels [45]
- Immuno-inhibition property for articular cartilage repair [46]
- Binding Ca2+ [47]
- Molecules’ migration through the matrix [48]

Hyaluronic acid - Water-retaining property [49]
- Improving angiogenesis and tissue morphogenesis [50]

2. Isolation and Solubilization of the Eggshell Membrane

Generally, the ESM can be separated from the eggshell through mechanical, chemical,
or enzymatical treatment. The inner ESM and limiting membrane are embedded into the ES;
hence, they must be isolated manually [11]. However, the fibers in the outer ESM are firmly
combined to the mammillary cones in the eggshell, and the separation requires additional
operations [3]. Since CaCO3 is the major component of the eggshell, its dissolution under
acidic condition will break the strongly bounded structure and release the ESM [13,51,52].
Acid treatment with acetic acid, hydrochloric acid, or EDTA is commonly applied for
the separation of the ESM [53–56]. Another strategy consists of loosening the bounds
between the ESM and ES by immersing the ES in low acid solution followed by manual
separation [54,55,57,58]. During the acid treatment process, numerous parameters such as
the incubation temperature, reaction time, moisture content, and type of acid used will
influence the efficiency of this separation step [56,59].

The ESM is hard to dissolve in aqueous solution due to the various interactions be-
tween CREMPs [60], keratins, desmosines, and hydroxylysinonorleucine [61,62], impeding
its processing and application. However, the preparation of eggshell membrane protein
(SEP) in water-soluble solutions would strongly facilitate their utilization and maximize
the economic potential of ESM. Due to the protein composition of the ESM, the temperature
applied during the preparation of SEP must be controlled to avoid the denaturation of
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collagens and other fibrous proteins (50–70 ◦C) [63,64]. In previous studies, scientists
treated the ESM for reductive cleavage with aqueous 3-mercaptopropionic acid and acetic
acid [65]. The bioactivity of the SEP recovered by this technique was confirmed by growing
NIH3T3 cells in the presence of SEP. Additional investigations are conducted to improve
the suitability of SEP to specific practical applications, including the extraction of specific
ESM proteins. Jia et al. developed SEP/PLGA electrospun nanofibers, which can prevent
the invasion of epithelial tissue and provides enhanced cell attachment conditions, making
them an ideal biomaterial for tissue regeneration [66]. Zhang et al. have combined acetic
acid decalcification, EDTA decalcification, and phosphate buffer extraction to purify effi-
ciently the eggshell matrix proteins OC-17, OC-116, and OCX-36 [59]. Response surface
methodology is used for the extraction of pepsin-soluble collagen [67]. According to the
results, the optimum extraction conditions included alkali hydrolysis with 0.76 mol/L
NaOH for 18 h and enzymatical hydrolysis with 50 U/mg pepsin for 43.42 h. The extrac-
tion yield was 30.0% [67]. Shi et al. dissolved the ESM in alkaline 10% alcohol solution
at 70 ◦C and recovered soluble proteins with antioxidant activity [68]. Therefore, various
approaches for the processing of the ESM and the preparation of SEP have made possible
to find applications for the ESM in a wide range of fields.

3. Application of Eggshell Membrane as a Novel Biomaterial
3.1. ESM for Joint Health

Osteoarthritis (OA) is the most prevalent chronic joint disease, affecting significantly
the patients’ ability to function and quality of life. Very often, patients rely on dietary
supplements for pain relief. The eggshell membrane has been tested as a natural thera-
peutic for joint and connective tissue disorders and was reported to exert some beneficial
effects on joint pain, stiffness, and cartilage turnover induced by overexercise [69]. In a
randomized study, postmenopausal women were assigned to a placebo and intervention
group, with thirty women taking orally a commercial product, Natural Eggshell Membrane
(NEM®), 500 mg once per day for 2 weeks while conducting regular exercise on alternate
days. The results showed that the cartilage turnover was significantly reduced in the inter-
vention group. The consumption of the eggshell membrane product rapidly improved the
recovery from exercise-induced joint pain and stiffness as well as reduced the discomfort
immediately after exercise [69].

A double-blinded, placebo-controlled clinical trial was conducted to study the thera-
peutic effect and safety of water-soluble eggshell membrane hydrolysate using a dietary
supplement (BiovaFlex, 450 mg daily) [70]. Researchers observed the knee function, mobil-
ity, and the overall health condition of 88 OA patients randomized into intervention (n = 44)
or placebo (n = 44) groups. The clinical results were evaluated over a 12-week period.
Compared to the placebo group, the patients with the poorest initial conditions benefited
the most from the treatment with ESM hydrolysate with a significantly effect by Day 5,
measured during the six-minute walk test. Other patients saw some obvious improvement
by week 12 when compared with placebo group. Significant improvements were also seen
from the normalized Stiffness score of Western Ontario McMaster Osteoarthritis Index by
Day 5 [70]. These results indicated that the ESM hydrolysate can be used as a promising
dietary supplement to relieve OA symptoms and enhance the mobility of OA patients. Sim-
ilar conclusions have been presented in another double-blinded placebo-controlled ESM
intervention trial. A total of 150 OA patients, between 45 and 70 years old, were randomly
assigned to an intervention (n = 75) or placebo (n = 75) group [71]. After consuming 300
mg ESM powder on a daily basis for 12 weeks, patients self-reported that the treatment
was successful in relieving the pain from their OA knee and contributed to improved daily
life activities [71].

In addition to being used as a dietary supplement, ESM plays another important
role in joint health. A study has shown that silk fibroin and polyvinyl alcohol with 3%
autoclaved ESM presented similar magnitude of dynamic and compressive mechanical
properties as the cartilage in human meniscus [72]. In addition, such scaffolding was bene-
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ficial to primary human meniscal cellular proliferation and extracellular matrix secretion.
Researchers have discovered that ESM/silk fibroin hydrogels facilitated the adhesion and
differentiation of human articular chondrocyte cells. Therefore, such hydrogels can be
applied as cartilage substitute for tissue engineering in the future [73].

3.2. ESM for Wound Healing

ESM has been used as a biomaterial to promote the healing of skin wounds. Solubilized
ESM may facilitate the synthesis of type III collagen in the skin of hairless mice as well as
significantly improved the elasticity of human skin and reduced facial wrinkles [74].

Non-healing skin wounds are regarded as a major health problem globally, causing
high morbidity and mortality. Processed eggshell membrane powder (PEP) offers great
potential as a cost-effective wound-healing product. Using the mouse excisional wound-
splinting model, researchers showed that PEP facilitated wound closure faster in the
treated group than in the untreated groups [23,75]. Furthermore, sPEP stimulated matrix
metalloproteinases (MMP) activities in both dermal fibroblasts and mouse skin during a
10-day incubation period. PEP also enhanced the MMP-2 protein levels and promoted the
production of alpha-smooth muscle actin [76].

ESM patching may also offer a potential treatment for tympanic membrane (TM)
perforation [77]. Researchers randomized traumatic TM perforation patients into two
groups: the perforation edge approximation group and the eggshell membrane (ESM)
patch group. The results showed that ESM patching significantly shortened the healing
time, particularly in patients who were suffering from moderate to severe traumatic TM
perforations [78].

Physicochemical properties of the ESM such as hydrophilicity and hardness can be
modified using inorganic compounds. For instance, depositing copper (Cu)-containing
bioactive glass nano-coatings (Cu-BG) on the ESM produced Cu-BG/ESM films that were
able to significantly enhance angiogenesis in vivo, allowing the construction of constant
and uniform epidermis layer, leading to higher healing quality. In addition, a substantial
amount of Cu2+ ions released from these Cu-BG/ESM films significantly reduced bacte-
ricides and therefore prevented wound infection [79]. Researchers found that combining
EMS with silver nanoparticles improved re-epithelialization, granulation tissue construc-
tion, and wound healing by facilitating cell proliferation and inhibiting inflammation [80].

3.3. ESM for Gut Health

The benefits of ESM have been shown in many reports addressing various gut-related
diseases. In a murine model of dextran sodium sulfate-induced colitis, ESM powder was
proved to suppress the disease activity index and colon shortening. It was shown to reduce
intestinal inflammation by facilitating the restoration of the integrity of the epithelium
and mitigating the effects of microbial dysbiosis [81]. In an in vitro study, ESM inhibited
inflammatory cytokine production induced by lipopolysaccharide while ameliorated the
Caco-2 cell proliferation by up-regulating growth factors. These effects were related to
the significant improvements in gene expressions of inflammatory mediators, intestinal
epithelial cell proliferation, restitution-related factors, and antimicrobial peptides [77]. By
increasing the diversity of bacteria and decreasing the absolute numbers of pathogenic
bacteria such as Enterobacteriaceae and E. coli, ESM plays an essential role in limiting
dysbiosis. At the same time, ESM was also reported to regulate the expansion of Th17 cells
by inhibiting the overgrowth of segmented filamentous bacteria. ESM supplementation
in high-fat-diet-fed mice also decreased plasma triglycerides and liver total cholesterol
by altering lipid metabolism gene expression and modifying the composition of the gut
microbiota [82].

ESM hydrolysate also effectively suppressed pro-inflammatory cytokine IL-8 secretion
in vitro and alleviated in vivo the signs of colitis induced by dextran sodium sulfate.
Research demonstrated that ESM could relieve inflammation in a colitic mice model via the
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IL-6-mediated pathway and promotes T cells’ apoptosis to restore immune homeostasis in
the gut [83].

3.4. ESM for Anti-Inflammatory and Antioxidant Activity

The anti-inflammatory effects of ESM have been also investigated in several studies.
After being processed by cryo-grinding and homogenization into particles approaching
submicron dimensions, ESM powder exerted some anti-inflammatory activity, while its an-
timicrobial activity against skin-associated pathogens was also enhanced [84]. The aqueous
extract of ESM can also affect signaling events during responses to the T cell-specific mito-
gen phytohemagglutinin and pokeweed mitogen. This influence may be mediated through
a decrease in the level of the pro-inflammatory cytokine TNF-α, providing some insights
into the use of ESM as an anti-inflammatory product [85]. Vuong et al. also confirmed
that both processed ESM power and EMS-derived soluble fractions demonstrated anti-
inflammation and immunomodulation properties in lipopolysaccharide-triggered human
monocytes and macrophage-like cells through the intervention of NF-κB [86]. Yoo et al.
treated ESM with acetic acid and divided hydrolysate into fractions of different molecular
weights. They found that the whole ESM hydrolysate and the fractions with more than
10 kDa presented some anti-lipopolysaccharide and anti-IFN-γ-induced inflammation activ-
ities as well as an outstanding effect on suppressing skin inflammation [87]. Ovocalyxin-36
is a protein from ESM with immuno-modulating effects. In vivo, peptides derived from
ovocalyxin-36 are more effective at reducing LPS-induced inflammatory symptoms and
inhibiting the local production of pro-inflammatory mediators in the small intestine [42].
Hence, ESM hydrolysates offer some promising leads as an oral anti-inflammatory product.

In addition, ESM hydrolysates prepared using a variety of alkaline proteases pre-
sented some excellent radical scavenging activity and protected the intestinal epithelial
cells against oxidative stress induced by H2O2 [68]. The ESM hydrolysates prepared
by a combination of Alcalase and Protease S were able to suppress the formation of
H2O2-induced malondialdehyde and protein carbonyl. In addition, they improved the
antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2
cells [88]. After fermentation with Bacillus altitudinis, lactic acid bacteria or other bacteria,
ESM hydrolysates exhibited antioxidant and antihypertensive activities, preventing oxida-
tive stress in vitro [89,90]. Further investigation found that the degree of hydrolysis of ESM
hydrolysates showed a marked positive correlation with their antioxidant activity [91].

3.5. ESM for the Control of Bacteria

After modification by inorganic compounds, functionalized ESM exhibits a highly
efficient antibacterial activity. For instance, copper-containing bioactive glass/eggshell
membrane nanocomposites were able to maintain the sustained release of Cu2+ ions and
showed marked antibacterial activity [79]. Various studies have shown that ESM with a
series of silver nanoparticles (AgNPs) presented better antibacterial properties, suggest-
ing that AgNPs/ESM composites may be potential antimicrobial product candidates for
various therapeutic applications [80,92]. Preda et al. demonstrated that functionalized
ESM combined with metal oxides CuO-ZnO showed powerful antibacterial activity against
Escherichia coli when exposed to visible light due to an axial p–n junction [93]. Finally, the
combination of ESM and chitosan in wound-dressing films was shown to greatly enhance
their antibacterial activity [94].

3.6. ESM for Biomineralization

Biomineralization is a process in which specialized cells secrete and deliver inorganic
ions into confined spaces within organic matrices or scaffolds. Calcitic biomineralization is
essential in humans for the formation of otoconia, which is required to perceive linear accel-
eration and the effects of gravity. ESM can be applied as a biomineralization substitution of
CaCO3 nano-crystals [95], with extracellular matrix (ECM) proteins from the ESM influenc-
ing the process of biomineralization. There are 46 proteins associated with the membrane
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fibers, and most of them are candidates for regulating calcitic biomineralization [26]. As a
major component of the non-mineralized ESM, type X collagen has a controversial role in
the biomineralization process. Some scientists reported that type X collagen suppresses
cellular mineralization and limits the deposition of minerals [19], while others considered
that it facilitates the regulation of calcification [96].

Recently, more studies focused on modifying ESM to serve as a biotemplate for crystal
growth or as a biomineralization model. For example, ESM was a suitable biotemplate
allowing hydroxyapatite crystals to form flower-like agglomerates [97]. ESM can also
influence the type of CaCO3 polymorph during the initial stages of the repair process of
the shell of the land snail Helix aspersa after an injury [98]. After treatment with sodium
trimetaphosphate, phosphate groups were introduced onto the surface of type I collagen
and strengthen the mineralization of ESM by forming calcium phosphate crystals [99]. In
addition, it was shown that polycarboxylated ESM contained more surface nucleation sites
for CaCO3 mineralization [100].

3.7. ESM for Immobilisation

ESM is not soluble in water, but it is permeable to water and air, making for its
potential application as a biomaterial used for immobilization. ESM have proven to be
efficient materials for the development of novel biosensors. Several researchers have
shown the effectiveness of using ESM as a supporting matrix for the immobilization of
enzymes such as urease, D-amino oxidase, catalase, myrosinase, tyrosinase, and glucose
oxidase [101]. ESM treated with polyethyleneimine acquired polycation characteristics that
were used for the immobilization of urease during the development of a potentiometric urea
biosensor [102]. An amperometric horseradish peroxidase biosensor was also developed
based on gold nanoparticles depositing on a three-dimensional porous carbonized ESM,
proving to be remarkable for the detection of H2O2 detection both in terms of accuracy and
sensitivity [103]. Relying on fluorescence resonance energy transfer, a potent acriflavine-
immobilized ESM fluorescence biosensor was designed for the effective detection of Sudan
I–IV, showing several advantages such as rare detection constraints, high sensitivity and
selectivity, and perfect stability [103].

3.8. ESM for Tissue Engineering

ESM has been widely used as a low-cost and biodegradable natural material in tissue
engineering applications. It has been used to develop different types of scaffolds for
nerve tissue engineering that improved nerve regeneration [104,105]. Layered constructs
from poly (ethylene glycol) hydrogels and ESM cross-linked by glutaraldehyde have
shown heterogenic structures and mechanical properties comparable to heart valve leaflets,
making them potential candidates for artificial heart valves replacement [106]. ESM powder
(<100 µ in size) added into a collagen-based scaffold for 3D-tissue engineering improved
the mechanical properties and the promotion of cellular adhesion and growth during cell
regeneration [23]. ESM/thermoplastic polyurethane vascular graft with a wavy structure
promoted endothelial cell proliferation by mimicking the vascular intima surface and
reproducing the mechanical behavior of natural blood vessels [107].

3.9. ESM for Food Packaging

The edible films are safe and eco-friendly packaging materials to protect foods against
oxygen, carbon dioxide, lipids, aroma, flavors, and moisture [108]. ESM as a food by-
product contains abundant proteins, which has huge potential to be used in food packaging.
The ESM-derived gelatin has been applied to produce edible films with chitosan. The
addition of ESM in edible films showed that it could be an excellent material to improve
the mechanical and barrier properties of films [109]. The SEP has been proved to interact
with soybean protein isolate due to the hydrogen bonds. The protein-based composite film
containing SEP, soy protein isolate, and eugenol showed the satisfying mechanical, barrier,
water resistance, and hydrophobic features [110].
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3.10. ESM for Biosorbent Activities

Due to its potential for chemical modifications, ESM is also an excellent biosorbent
and is used to absorb various inorganic substances [111,112], dye [113–117], and other
substances in aqueous solution.

The applications of the ESM along with the corresponding preparation methods are
summarized in Table 2.

Table 2. Applications of ESM and its corresponding preparation methods.

Applications Methods Functions

Joint Health

- Partially hydrolyzed utilizing a gentle
enzymatic process

- Improving recovery from exercise-induced
joint pain and stiffness and also reduced
the discomfort from stiffness [69]

- ESM product suspended in 0.5% (w/v)
methylcellulose in water

- Exhibiting beneficial effects on multiple
indices of arthritis including
inflammation, pannus, cartilage damage,
bone resorption, and periosteal bone
formation [118]

- Fine ESM powder filled in
gelatine capsules

- Promoting joint health and reducing pain
and stiffness [71]

- Soluble ESM treated by with aqueous
3-mercaptopropionic acid at 90 ◦C in
presence of 10% (v/v) acetic acid

- Supporting growth, adhesion, and
differentiation of human chondrocyte
cells [73]

Wound healing

- Micronized ESM powder (<100 µm size)

- Improving wound closure through its
structural ECM-like constituents that
facilitated re-epithelialization [23]

- Enhancing fibroblast and keratinocyte
proliferation, myofibroblast
differentiation, and regulation of the
activity of various MMPs [76]

- Round ESM patch with diameter of
5 mm

- Reducing healing time in patients with
moderate to large traumatic tympanic
membrane perforation [77]

- ESM-chitosan blend film with 0.01 g
ESM/mL 1% (w/v) chitosan solution

- Improving water resistance, wound fluid
absorption, BSA absorption capacity, and
antibacterial activity [94]

- Incorporate AgNPs into
ESM microfibers

- Accelerating wound healing with good
biocompatibility [80]

- Natural ESM
- Providing a scaffold for the fibroblast

migration and reducing the lag phase for
wound healing [119]

- Copper-containing bioactive glass/ESM
nanocomposites

- Enhancing angiogenesis-related gene
expression as well as VEGF and HIF-1α
protein secretion of HUVECs [79]

Immobilization

- ESM powder suspended in 50 mM
sodium phosphate buffer (pH 7.0)

- Maintaining properties of β-galactosidase
and allowing the reutilization of the
immobilized enzyme to hydrolyze lactose
in the presence of skim milk serum [120]

- ESM/Tyr/AgNPs - Platform for interference-free sensing of
dopamine [121]

- Small strips of ESM - Use as energy-saving and biodegradable,
laccase-based biocatalysts [122]

- Natural ESM

- Excellent immobilized stability with a
long shelf-life of bi-enzyme for
highly-sensitive organophosphorus
pesticide biosensors [123]
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Table 2. Cont.

Applications Methods Functions

Antimicrobial activity

- Dried ESMs with dimensions of
2 cm × 3 cm functionalized only on one
side with metal oxide or/and metal

- Antibacterial activity against Escherichia
coli [93]

- KR-12 peptide-containing hyaluronic
acid immobilized fibrous ESM

- Good antibacterial activity against both
Gram-negative and Gram-positive
bacteria, including multi-drug-resistant
bacteria [124]

Gut health

- Fine ESM powder

- Regulating the cell proliferation and
restitution, improving energy metabolism
as well as alleviating intestinal microbiota
dysbiosis [81]

- 8% ESM powder with corn starch
and casein

- Altering lipid metabolism gene expression
and gut microbiota composition [82]

- ESM hydrolysate digested using a
combination of Alcalase and Protease S

- Ameliorating intestinal inflammation
induced by dextran sulfate sodium in
mice [83]

Anti-inflammatory and
antioxidant activity

- Micronized ESM powder (<100 µm size)
- Displaying anti-inflammatory activities

through NF-κB in LPS-triggered human
immune cells [86]

- ESM dissolved in 2 N NaOH and 40%
EtOH at 70 ◦C for 2 h

- Tyrosinase inhibiting and L-DOPA
oxidizing activities [87]

- ESM treated via in vitro digestion

- Regulating cytokine production in
cultures of peripheral blood mononuclear
cells and suppress tumor necrosis factor-α
levels [85]

- ESM fermented by lactic acid bacteria - Inhibiting DPPH scavenging radical [89]

- ESM dissolved in 1.25 M
3-mercaptopropionic acid and 10%
acetic acid at 90 ◦C for 6 h and digested
by 2% (w/w) pepsin at 37 ◦C for 4 h

- Inhibiting the H/R-induced and
H2O2-challenged injury of
cardiomyocytes and improving cardiac
ischemia-reperfusion injury [125]

- ESM treated by Na2SO3 and
alkaline protease

- ABTS scavenging activity and liposomal
peroxidation inhibitory activity [91]

- ESM hydrolysate digested using a
combination of Alcalase and Protease S

- Cellular antioxidant activity and
protecting intestinal epithelial cells against
oxidative stress [68]

Tissue engineering

- ESM tube conduit - Enhancing peripheral nerve
regeneration [105]

- ESM powder below 0.5 µm size
- Increasing surface area of the scaffold,

allowing better cellular infiltration and
proliferation [72]

- ESM guidance channel
containing lycopene - Increasing sciatic nerve regeneration [126]

- ESM with dimension of 10 mm × 40 mm
× 0.75 mm, soaked in the PCLF solution
containing bisacylphosphinoxide

- Promoting the intercellular signaling
leading to the enhanced cellular
proliferation [104]

- ESM soaked in 10% PCLF solution in
acetic acid containing 5%
bisacylphosphinoxide as the
photo-initiator to make three-layered
hollow tubular scaffold

- Enhancing nerve cell proliferation and
orientation [105]

Food packaging

- ESM-derived gelatin-chitosan blend
edible films

- Improving mechanical and barrier
properties of films [109]

- ESM powder mixed with soybean
protein isolate, eugenol, and glycerol

- Enhancing the mechanical, barrier, water
resistance, and hydrophobic
properties [110]
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Table 2. Cont.

Applications Methods Functions

Biosorbent

- ESM powder with size 0.5–0.6 mm - Removing cyanide ions [127]

- ESM powder immersed in methanol
containing 2% (v/v) HCl for 10 h at
80 ◦C for carboxymethylation

- Removing anionic sulfur dye [128]

- ESM powder with size 250–350 µm - Removing organic cationic dye Basic
Fuchsin [116]

4. Safety Evaluation of Eggshell Membrane

ESM as a novel dietary ingredient has been evaluated for safety in a series of in vitro
and in vivo studies. ESM-derived products have shown no cytotoxic effects at a dose of
100 µg in human cell viability assay after incubation for up to 20 h. ESM shows no genotoxic
effects in a mutagenicity evaluation using histidine-dependent Salmonella typhimurium and
tryptophan-dependent Escherichia coli at a dose of up to 5000 µg/plate. In animal studies,
ESM did not exhibit any signs of acute toxicity after a single oral dose of up to 2000 mg/kg
body weight. After the administration of repeated oral doses up to 2000 mg/kg body
weight per day for 90 days, ESM did not cause any sign of toxicity as evaluated by urinalysis,
hematology, clinical chemistry, or histopathological examinations [129]. The safety profile
of ESM strengthens its potential as a candidate for various applications with the medical
and food sectors.

5. Future Perspective

In addition to the applications presented previously, ESM offers more possible usages
combined or not to the eggshell. Among the most promising applications, we can consider
the use of ESM in electric devices. ESM is being investigated for the development of
batteries as an alternative to lithium-ion. Carbonized ESM-based platforms are used for
energy storage. Capacitors, electric components that are rapidly charged and discharged,
are in high demand with the increasing use of portable devices. Studies have investigated
the use of carbonised ESM for capacitors instead of carbon-based materials and conducting
polymers. ESM is also suitable for the production of solar cells, semiconductors, and fuel
cells [130].
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