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Abstract: Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and
reproducible manner represents a major challenge. This study reports the use of tangential flow
filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared
to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more
efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned
cell culture media revealed that the former concentrates EVs of comparable physicochemical
characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size),
and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then
successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of
high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells.
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1. Introduction

Extracellular vesicles (EVs) are cell-secreted nanoparticles that are primarily involved in
inter-cellular communication processes [1]. In the past few years, EVs have garnered increasing interest
from the scientific community, becoming a multidisciplinary field of research. EVs are characterized
by unique physicochemical properties that arise due to nanosized dimensions and bioactive content.
EVs are able to cross several biological barriers, such as the cell membrane and blood-brain barrier,
and they are involved in many pathological processes [2]. For these reasons, EVs have promising
applications as drug targets [3], therapeutic agents [4], biomarkers [5,6], and delivery vehicles [7–9].

A major challenge for the use of EVs for scientific and medical applications is the isolation
process, as EVs can be found in various complex biological matrices that are composed of a plethora of
nanosized biomaterials that overlap in size and density [10]. Common isolation techniques for the
separation of EVs from other fluid components are ultracentrifugation (UC) [11,12], density gradients
(DG) [13], and size exclusion chromatography (SEC) [14]. However, these methods can be limited
by input volume, time consumption, and EV yield. For example, UC protocols are able to process
relatively large volumes (up to 1.5 L), but they result in low recovery rates [15,16], have time-consuming
centrifugation steps [17,18], frequently damage the EV structure [18,19], and cause the coprecipitation
of contaminants [20]. Although DG and SEC usually result in EV formulations with high purity,
these protocols are time-consuming, result in poor yields, and require small volumes (less than
5 mL) [13,17,18]. Moreover, clinical translation of the above-mentioned methods is challenging due to
sterility and scale-up requirements for clinical-grade manufacturing. Therefore, improved techniques
that enable EV concentration in a scalable, reproducible, and sterile manner, are necessary for future
clinical translation.

In the past years, techniques that are utilized for purification of synthetic nanoparticles, proteins,
and viruses from liquid suspensions have also been adapted for EV separation. These emerging
EV isolation methods primarily exploit antigen-antibody binding affinity, high-performance liquid
chromatography, or filtration. For example, field flow fractionation (FFF) [21,22] and asymmetrical flow
field-flow fractionation (AF4) [23,24] rely on a field applied to a liquid suspension that flows through
tubular filters. Tangential flow filtration is another emerging technique that couples permeable
membrane filtration and flow to obtain an efficient concentration of EVs from a colloidal matrix.
Tangential flow filtration (TFF) differs from conventional dead-end filtration, as fluid flows tangentially
across the surface, avoiding filter cake formation (Figure 1a). In fact, with dead-end filtration,
larger particles usually clog the pores of the membrane, leading to impaired particle separation
that is based on the original pore size.

In this study, TFF was evaluated as a size-based EV concentration method that is capable of
processing scalable volumes of biological fluids. A side-by-side comparison of UC and TFF for
processing large volumes of conditioned cell culture media was performed. Finally, the ability of TFF
to process fluids derived from patient lipoaspirate was assessed. Among various clinically relevant
biological matrices, adipose tissue is of particular relevance. Adipose tissue regulates several metabolic
processes and is a source of mesenchymal stem cells that secrete a broad selection of soluble factors
and EVs with regenerative properties [25,26].



Cells 2018, 7, 273 3 of 11

Cells 2018, 7, x 5 of 11 

 

3. Results 

UC is the most common protocol for concentrating EVs from biological fluids [11]. Despite the 
widespread use of this method, several reports have highlighted the major limitations of this 
technique, especially in regard to clinical translation of EVs. In the past years, UC protocols have 
been partially replaced by new techniques, such as FFF and high-performance liquid 
chromatography (HPLC) that improve EV isolation in regard to time, yield, purity, or scalability. 

The concentration efficiency of UC and TFF processing of supernatant preparations from 
MDA-MB-231 cells was compared. Cell culture media is a commonly used biological fluid that is 
characterized by a predictable composition. The results, which refer to three independent replicate 
experiments, are summarized in Figure 1. When compared to UC, TFF resulted in a one to two 
orders of magnitude increase in EV recovery per million cultured cells (approximately 1010 EVs/106 
cells for TFF and 108 EVs/106 cells for UC) (Figure 1b). Accordingly, the yield of EVs from the same 
amount of media (100 mL) was improved approximately five-fold with TFF (Figure 1b). 

 
Figure 1. Biophysical and biochemical characterization of extracellular vesicles (EVs) isolated from 
MDA-MB-231 breast cancer cell culture media using ultracentrifugation (UC) or tangential flow 
filtration (TFF). (a) Schematic illustrating the difference between dead-end filtration and TFF; (b) EV 
yield; (c) Size distribution (0–650 nm) of EVs isolated with UC (dashed lines) and TFF (continuous 
lines); (d,e) Transmission electron microscopy (TEM) of EVs obtained with UC (d) or TFF (e); (f) 
Western blot of characteristic intracellular (calnexin) and EV (CD63, CD81) markers in samples 
isolated by TFF; (g) Levels of albumin contaminants in EV samples. Cellular homogenate (H) was 
used as a control. Data are presented as mean ± s.d. of three biological replicates (b,c) or experimental 
replicates (g). Statistical significance was evaluated by Student’s t-test. **, p < 0.01. 
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Figure 1. Biophysical and biochemical characterization of extracellular vesicles (EVs) isolated
from MDA-MB-231 breast cancer cell culture media using ultracentrifugation (UC) or tangential
flow filtration (TFF). (a) Schematic illustrating the difference between dead-end filtration and TFF;
(b) EV yield; (c) Size distribution (0–650 nm) of EVs isolated with UC (dashed lines) and TFF (continuous
lines); (d,e) Transmission electron microscopy (TEM) of EVs obtained with UC (d) or TFF (e); (f) Western
blot of characteristic intracellular (calnexin) and EV (CD63, CD81) markers in samples isolated by TFF;
(g) Levels of albumin contaminants in EV samples. Cellular homogenate (H) was used as a control.
Data are presented as mean ± s.d. of three biological replicates (b,c) or experimental replicates (g).
Statistical significance was evaluated by Student’s t-test. ** p < 0.01.

2. Materials and Methods

2.1. Cell Culture

MDA-MB-231 human breast cancer cells (ATCC, HTB-26) and human primary brain microvascular
endothelial cells (Cell System, ACBRI 376) were cultured at 37 ◦C in 5% CO2 and used at passage 2–20.
MDA-MB-231 cells were maintained in high glucose Dulbecco’s modified eagle’s medium (DMEM)
(Life Technologies, Gaithersburg, MD, USA), supplemented with 10% fetal bovine serum (FBS) (Sigma,
St. Louis, MO, USA), 1% penicillin/streptomycin (Gemini Bioproducts, West Sacramento, CA, USA),
and 1% glutamine (Life Technologies), while endothelial cells were maintained in Complete Classic
Medium Kit with Serum and Culture Boost (Cell Systems, USA). For EV isolation, MDA-MB-231
cells were seeded in 150 mm dishes with DMEM supplemented with 10% exosome-depleted FBS
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(System Biosciences, Mountain View, CA, USA). The media was collected after 48 h when the cells
were 90% confluent with a viability of >95% (Trypan blue). The media was centrifuged (800× g; 30 min;
Sorvall ST 16R centrifuge, Thermo Fisher Scientific, San Jose, CA, USA) to discard the dead cells and
large cellular debris.

2.2. Ultracentrifugation Protocol

Cell culture media (200 mL) underwent ultracentrifugation, as previously described (100,000× g;
70 min; Optima L100XP ultracentrifuge, Type Ti 70 rotor k factor 44, Beckman Coulter, San Diego,
CA, USA) [27]. The pellet was then suspended in phosphate buffered saline (PBS; 2 mL) and the
ultracentrifugation step was repeated to obtain an EV pellet that was suspended in 200 µL of sucrose
buffer (5% sucrose, 50 mM Tris, and 2 mM MgCl) and analyzed.

2.3. Lipoaspirate Samples

Following institutional review board approval, de-identified lipoaspirate waste samples from
patients that had underwent liposuction were processed with the non-enzymatic micro-fragmented
process Lipogems (Atlanta, GA, USA) that mechanically disrupts fresh adipose tissue harvested via
lipoaspiration [28]. The micro-fragmentation occurs via mechanical disruption using metal bearings
and sterile saline. As the mechanical process pushes the micro-fragmented adipose tissue through a
series of successive size reducing clusters, the elimination of waste products is captured in a sterile
waste bag that is connected to the micro-fragmentation device cylinder. The waste bag content from the
Lipogems device was transferred to tubes and centrifuged (800× g; 30 min; Sotvall ST 16R centrifuge,
Thermo Scientific) to remove large debris. The supernatant was collected, diluted 1:1 in sucrose
buffer (5% sucrose, 50 mM Tris, and 2 mM MgCl) in order to facilitate TFF filtration (avoid clogging),
and immediately processed according to the TFF protocol reported below in order to concentrate EVs.
Sucrose buffer is a commonly used suspension buffer and cryoprotectant for oncolytic measles viruses
in clinical trials [29–32]. Measles viruses are similar in size, shear sensitivity, and lipid membrane
characteristics as mammalian EVs [33], suggesting that this buffer could be suitable for clinical-grade
EV preparations.

2.4. TFF

EVs were isolated using a KrosFlo Research 2i Tangential Flow Filtration System (Spectrum
Labs., Los Angeles, CA, USA). Cell culture media (0.2 L) or lipoaspirate (1 L) were filtered using
sterile hollow fiber polyethersulfone membranes with 0.65 µm (D02-E65U-07-S; Spectrum Labs) and
500 kD (D02-S500-05-S; Spectrum Labs) molecular weight cut-off pores to remove cell debris and free
biomolecules, respectively. Filters were first washed with three times the volume of sterile PBS (pH 7.4)
and the biological samples were then processed. The input flow rate was 80 mL/min in order keep the
shear force of the feed stream below 2000 s−1. EVs were concentrated to approximately 50 mL and
diafiltrated six times in sucrose buffer (5% sucrose, 50 mM Tris, and 2 mM MgCl). The final EV-solution
in sucrose buffer was concentrated to reach a final volume of 6–9 mL and then analyzed.

2.5. Nanoparticle Tracking Analysis

The size and concentration of isolated EV samples were determined with nanoparticle tracking
analysis. EV formulations were diluted (1:100–1:1000) in sterile phosphate buffered saline (PBS) and
analyzed (500 µL) with a Nanosight NS300 (60 s measurement; three capture replicates, Malvern
Panalytical, Westborough, MA, USA).

2.6. Transmission Electron Microscopy

EVs were fixed in 4% paraformaldehyde (1:1) at room temperature (2 min), placed (2 µL) on
carbon-formvar-coated copper grids (300 mesh), and blotted. Water (2 µL) was added to the samples
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that were then blotted, and 2% aqueous uranyl acetate (2 µL) was placed on the grid (2 min) and
blotted. The grids were examined with a 208S Electron Microscope (FEI; 60 kV, Philips, Amsterdam,
NY, USA). Digital images were obtained with an 831 Orius Camera (Gatan, Pleasanton, CA, USA) and
were processed with Adobe Photoshop CS5 (64 bit) software.

2.7. Western Blot

For the identification of common EV markers, samples that were isolated by TFF were mixed
with reducing sample buffer (480 mM Tris at pH 6.8, 12% sodium dodecyl sulfate, 45% glycerine,
0.06% bromophenol blue, and 12% 2-mercaptoethanol) and boiled (5 min; 95 ◦C). MDA-MB-231
(cell culture media study) and brain endothelial cell (lipoaspirate study) homogenates were used
as controls. Homogenates were obtained through tip sonication (5 s; 20% potency), followed by
centrifugation (800× g; 10 min; 5417R Refrigerated Centrifuge, Eppendorf, Westbury, NY, USA).
The protein content of the samples was measured with a BCA protein assay kit (Pierce, Thermo Fisher
Scientific), and the samples (20–50 µg protein) were electrophoresed on a polyacrylamide gel (4–12%;
Invitrogen) and analyzed by Western Blot. The following antibodies were used: rabbit monoclonal
anti-CD63 (1:1000 dilution; clone ab134045; Abcam, Cambridge, MA, USA), mouse monoclonal
anti-annexin V (1:500 dilution; clone ab54775; Abcam), mouse anti-CD9 (1:500 dilution; clone ab2215;
Abcam), mouse monoclonal anti-CD81 (1:500 dilution; clone (B11): sc-166029; Santa Cruz, Santa Cruz,
CA, USA), rabbit polyclonal anti-calnexin (1:1000 dilution; clone ab10286; Abcam), anti-rabbit IgG
secondary horseradish peroxidase (HRP)-linked antibody (1:5000; Cell Signaling Technology, Boston,
MA, USA), and anti-mouse IgG secondary HRP-linked antibody (1:5000; Thermo Fisher Scientific).

2.8. Fluorescent Albumin Purification Assay

Conditioned MDA-MB-231 cell culture media (4 mL) was spiked with bovine serum albumin
(BSA) alexa fluor 488 conjugate (60 µg; Thermo Fisher Scientific). The media was then processed using
UC or TFF, and the fluorescence intensity of the samples (100 µL) was measured (Ex 485/Em 528)
using a plate reader (Synergy HT; Biotek, Winooski, VT, USA). Albumin content was determined based
on a fluorescent standard curve. Experiments were performed in triplicate.

2.9. Mycoplasma Assay

Potential mycoplasma contamination was determined using a MycoAlert mycoplasma detection
kit (Lonza, Allendale, NJ, USA), according to the manufacturer’s instructions, and luminescence was
measured with a plate reader (Synergy HT; Biotek). Mycoplasma detection was performed on three
cell culture media-derived EV samples that were isolated from separate TFF runs.

2.10. Sterility Assay

The sterility of EV samples that were isolated from cell culture media was evaluated. Samples
(100 µL) were inoculated in liquid media (BACTEC bottles; BD) and monitored for aerobic or anaerobic
bacterial growth (14 days). Sterility testing was performed on three cell culture media-derived EV
samples isolated from separate TFF runs.

2.11. Endotoxin Assay

Endotoxin quantification was performed using a Toxin Sensor Chromogenic LAL Endotoxin Assay
Kit (Gen Script, Piscataway, NJ, USA), according to the manufacturer’s instructions, and the absorbance
was measured using a plate reader (Synergy HT; Biotek). Endotoxin detection was performed on three
cell culture media-derived EV samples that were isolated from separate TFF runs.
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2.12. EV Track

All relevant data has been submitted to the EV-TRACK knowledgebase (EV-TRACK ID:
EV-TRACK code CY5310BC) [34].

3. Results

UC is the most common protocol for concentrating EVs from biological fluids [11]. Despite the
widespread use of this method, several reports have highlighted the major limitations of this technique,
especially in regard to clinical translation of EVs. In the past years, UC protocols have been partially
replaced by new techniques, such as FFF and high-performance liquid chromatography (HPLC) that
improve EV isolation in regard to time, yield, purity, or scalability.

The concentration efficiency of UC and TFF processing of supernatant preparations from
MDA-MB-231 cells was compared. Cell culture media is a commonly used biological fluid that
is characterized by a predictable composition. The results, which refer to three independent replicate
experiments, are summarized in Figure 1. When compared to UC, TFF resulted in a one to two orders
of magnitude increase in EV recovery per million cultured cells (approximately 1010 EVs/106 cells for
TFF and 108 EVs/106 cells for UC) (Figure 1b). Accordingly, the yield of EVs from the same amount of
media (100 mL) was improved approximately five-fold with TFF (Figure 1b).

Essential biophysical and biochemical properties (according to the standards suggested by the
International Society of Extracellular Vesicles [15]) of the EVs that were processed with the two
methods were determined and compared. The size distribution of EVs that were obtained by UC
and TFF ranged from 60–600 nm (Figure 1c and Supplementary Figure S1a), with a comparable mean
between 140–210 nm (Supplementary Figure S2a). TFF give rise to less discrete distribution peaks
of EVs as compared to UC. However, the TFF size distribution profiles are more similar among the
three replicates, suggesting higher batch-to-batch reproducibility, which is a highly desirable feature.
Transmission electron microscopy (TEM) also revealed that both methods resulted in samples that
are enriched in nanosized particles with a diameter ranging from 50–200 nm and with spherical
morphology, characteristic of EVs (Figure 1d,e). It is worth noting that less EVs were seen in UC
samples (Figure 1d) as compared to TFF samples (Figure 1e)

Samples were also analyzed with Western blot to identify characteristic EV markers. The results
indicate that CD63 and CD81 were present in the samples and enriched 25.2 and 15.3-fold when
compared to cell homogenate (Figure 1f and Supplementary Figure S3a). Calnexin, an endoplasmic
reticulum marker that is used as a control to detect intracellular vesicle contaminants, was undetectable
(Figure 1f and Supplementary Figure S3a).

Furthermore, the ability of both methods to separate contaminants with typical protein size was
assayed by spiking the samples with known amounts of albumin (14.1 × 4.2 nm [35]). The results
reveal that TFF leads to a 40-fold improvement in the ability to remove albumin when compared to UC
(25% uncertainty) (Figure 1g). Moreover, the albumin concentration differed substantially among the
three samples that were processed by UC (Figure 1g), highlighting a lack of batch-to-batch consistency.

In regard to clinical translation, it is important to determine whether sterility can be maintained
throughout the isolation process. Therefore, the EV-enriched samples that were isolated with TFF
underwent mycoplasma, bacteria, and endotoxin testing. All of the samples were negative for
mycoplasma and bacteria, and they displayed acceptable levels of endotoxin (Table 1).
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Table 1. Sterility, mycoplasma, and endotoxin test results.

Sterility Test Mycoplasma Test (Negative < 0.9) Endotoxin Test (EU/mL)

EV sample 1 Negative 0.3 0.1
EV sample 2 Negative 0.4 0.1
EV sample 3 Negative 0.2 0.7

In conclusion, TFF resulted in higher EV yield, improved batch-to-batch consistency, and less
albumin contaminants when compared to UC. Moreover, TFF is a time-efficient (~1 h for 200 mL cell
culture media), scalable, and sterile method for obtaining EV-enriched samples.

Next, the ability of TFF to concentrate EVs from patient-derived biological fluids
(lipoaspirate-derived fluids) was evaluated. EVs derived from adipose tissue have clinical relevance
as therapeutics, diagnostics, and cosmetics. Lipoaspirate is a heterogeneous mixture of cells,
cell fragments, and other micron-/nano-sized components obtained through liposuction. Lipoaspirate
processing with the United States Food and Drug Administration (FDA) approved the Lipogems
device (see Section 2), separates cells from other components, which are collected in a sterile waste
bag [28]. The acellular fluid in the waste bag consists of a heterogeneous mixture of nano-sized particles
and micron-sized soft lipid particles that resemble milk fat globules. The UC of this fluid would lead to
fragmentation of the fragile microparticles into nanoparticles that would be co-concentrated with the
EVs [36,37]. On the contrary, TFF is operated under controlled low pressure and flow conditions [38],
providing a suitable method to gently sieve out microparticles, avoiding sample manipulation that
could lead to the formation of artificial nanoparticles during the concentration step.

After processing 50 mL of lipoaspirate through the Lipogems device, the amount of fluids collected
into the sterile waste bag was approximately 3 L. Processing this fluid with TFF led to a total EV yield
of approximately 1012 EVs in 9 mL of buffer. This amount of EVs is suitable for performing extensive
functional in vitro assays and therapeutic in vivo studies, as indicated in Table 2.

Table 2. Preclinical use of extracellular vesicle (EV)-enriched lipoaspirate samples isolated by tangential
flow filtration (TFF).

Study Type EV Dose EV Amount Isolated from
50 mL of Lipoaspirate

Extent of Studies that Can
Be Performed

functional in vitro assays ~1010 EVs/106 cells [39–42] 1012 2000 wells in a 96-well plate
(max 50,000 cells/well)

therapeutic in vivo studies ~2 × 1010 EVs/ mouse (intravenous or
intraperitoneal administration) [41,43,44] 1012 50 mice with a single

administration

The size distribution of the samples ranged from 70 to 650 nm (Figure 2a and Supplementary
Figure S1b), with a mean size between 170–185 nm (Supplementary Figure S2b). Western blot
analysis confirmed the presence of EV-enriched markers, such as CD63, CD81, and CD9 (Figure 2b).
The presence of calnexin, an endoplasmic reticulum protein that is used as a marker of intracellular
membrane fragments and/or membranous micro- and nanoparticles that are released upon cell
lysis, was also assessed by Western blot. When compared to cell homogenates, lipoaspirate-derived
EV-enriched samples had a much lower calnexin amount (Figure 2b). Indeed, the intensity of the
calnexin band was five-fold higher in cell homogenates as compared to lipoaspirate samples, while the
signal intensity of EV-enriched marker bands was 1.5 (CD63), 6.9 (CD81), and 2.7-fold (CD9) higher
in lipoaspirate samples (Supplementary Figure S3b). These results indicate that the vast majority of
nanostructures in the lipoaspirate-derived samples are not formed by cell lysis.
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Figure 2. Biophysical and biochemical characterization of EV-enriched lipoaspirate-derived samples
(Lipo) isolated with TFF; (a) Size distribution of EVs (triplicate); (b) Western blot of characteristic
intracellular (calnexin) and EV (CD63, CD81, CD9) markers. Cellular homogenate (H) was used as a
control; (c) TEM images of EV-enriched formulations.

4. Conclusions

This is a proof of concept study that indicates that TFF is an efficient method for obtaining
EV-enriched formulations from large volumes of biological fluids that are characterized by a rarefied
EV content in a robust, scalable, time-efficient, and reproducible manner. In particular, TFF was able to
concentrate EVs from fluids derived from patient lipoaspirate, which can represent a valuable cell-free
option with regenerative potential.

Side-by-side comparison demonstrated that TFF outperformed UC in all parameters measured
in this study, including yield, removal of single macromolecules and aggregates (<15 nm),
and batch-to-batch consistency. A comparison of the functional activity of EVs concentrated by
the two techniques will be fundamental for the further assessment of TFF. In addition, it is worth
noting that in the preclinical laboratory environment, EV concentration by TFF is likely to involve
higher costs than UC, in terms of hardware equipment and the use of disposable filters. Further
studies are needed to explore the suitability and performance of TFF for processing other types of
patient-derived biological specimens of biomedical interest, such as liquid (e.g., blood) or solid (e.g.,
tumor) biopsies. However, solid biopsies would require enzymatic digestion [45], which could lead to
technical difficulties and/or artifacts due to the addition of a pre-analytical enzymatic digestion step.
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