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Prediction of serosal invasion in gastric
cancer: development and validation of
multivariate models integrating
preoperative clinicopathological features
and radiographic findings based on late
arterial phase CT images
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Abstract

Background: To develop and validate multivariate models integrating endoscopic biopsy, tumor markers, and CT
findings based on late arterial phase (LAP) to predict serosal invasion in gastric cancer (GC).

Methods: The preoperative differentiation degree, tumor markers, CT morphological characteristics, and CT value-
related and texture parameters of 154 patients with GC were analyzed retrospectively. Multivariate models based on
regression analysis and machine learning algorithms were performed to improve the diagnostic efficacy.

Results: The differentiation degree, carbohydrate antigen (CA) 199, CA724, CA242, and multiple CT findings based on
LAP differed significantly between T1–3 and T4 GCs in the primary cohort (all P < 0.05). Multivariate models based on
regression analysis and random forest achieved AUCs of 0.849 and 0.865 in the primary cohort, respectively.

Conclusion: We developed and validated multivariate models integrating endoscopic biopsy, tumor markers, CT
morphological characteristics, and CT value-related and texture parameters to predict serosal invasion in GCs and
achieved favorable performance.
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Background
Gastric cancer (GC) is the fifth most common cancer
and the third leading cause of cancer-related deaths glo-
bally and has become one of the major health burdens
[1]. Previous studies have confirmed that serosal inva-
sion is closely related to peritoneal seeding, which is
generally regarded as a terrible condition [2, 3]. Thus,
the precise preoperative prediction of serosal (visceral
peritoneum) invasion is vital to select appropriate treat-
ments and predict the outcome of GC. For instance,
treatments such as staging laparoscopy and neoadjuvant
chemotherapy would be scheduled in more detail if
serosal (visceral peritoneum) invasion occurs [4, 5].
Both the seventh and eighth editions of the American

Joint Cancer Committee divided the GC stage of T4 into
T4a and T4b, adding the concept of T4a [6, 7]. T4a is
defined as invading the serosa (in the anterior or poster-
ior wall) or invading the visceral peritoneum (in the
curvatures). Furthermore, the amount of subserosal fat
tissue varies from person to person. Hence, the assess-
ment of T4a varies depending on location and morph-
ology [8–10]. It is difficult to predict T4a using only the
morphological features of the tumor due to the above
reasons. Therefore, making an accurate preoperative
prediction of serosal invasion is quite challenging.
However, conventional computed tomography (CT)

and endoscopic ultrasonography (EUS) are based on
tumor morphology when evaluating the status of the ser-
osa, which is inevitably limited by the above problems.
Although EUS has certain advantages over CT in asses-
sing T stage [11, 12], its results are obtained invasively
and depend on operator experience without objective
reflection on the overall staging (unable to accurately
detect lymph nodes and distant metastases). Therefore,
CT is still the most common staging tool for GC. In
addition, studies on the quantitative analysis of GC using
CT images have been widely carried out [13–17].
Recently, CT texture analysis that analyzes the distri-

bution and relationship of pixel gray levels has devel-
oped rapidly [18]. Previous studies have confirmed that
CT texture analysis and radiomics could predict T stages
preoperatively in patients with advanced GC [13, 19, 20].
However, the postinjection delay of the arterial phase in
these studies was 25–30 s. The major arteries can be
clearly displayed in the early arterial phase (25–30 s), yet
the mucosal layer may not be markedly enhanced simul-
taneously [21]. GC originates from the mucosal layer, so
visualization of the mucosal lines is essential [22]. We
assumed that the border of the gastric cancer would be
displayed more clearly in the late arterial phase. In
addition, various types of CT features, including morph-
ology and CT values, can also be extracted [23, 24]. In
clinical practice, a variety of clinicopathological informa-
tion is collected prior to surgery, including endoscopic

biopsy and multiple tumor markers. CT radiomics has
been used to predict serosal invasion, but endoscopic
biopsy and tumor markers were not included in the
model [13]. Evaluating serosal invasion in GC is
influenced by various factors. In recent years, GC
staging has been predicted by integrating various
types of preoperative clinicopathological information
and radiographic findings [25, 26].
Thus, the purpose of our study was to develop and

validate multivariate models integrating endoscopic bi-
opsy, tumor markers, CT morphological characteristics,
and CT value-related and texture parameters for predict-
ing serosal invasion in GCs.

Materials and methods
This retrospective study used deidentified data without
protected health information, and it was approved by
the Ethical Committee of Nanjing Drum Tower Hospital
(Approval Documents Number: 2020–032-01). The re-
quirement for informed consent was waived.

Patients
Between April 2019 and April 2020, we searched the
radiologic image archives of our hospital consecutively
to identify 231 patients who had GC diagnosed by
histopathologic analysis. The inclusion criteria were as
follows: (1) pathological confirmation of GC postopera-
tively and (2) the availability of endoscopic biopsy,
tumor markers, and abdominal contrast-enhanced CT
within 2 weeks prior to surgery [25]. The exclusion
criteria were as follows: (1) a history of GC treatment
preoperatively (n = 8); (2) lacking 40 s LAP informa-
tion (n = 24); (3) insufficient distention of the stomach
(n = 18); (4) poor imaging quality due to respiratory
or peristaltic motion (n = 7); (5) hardly visible due to
the small size of the GC on CT images (long diam-
eter < 1 cm) (n = 17); and (6) incomplete information
on tumor markers (n = 3).
Ultimately, 154 patients (male, 107; female, 478; me-

dian age, 64 years; age range, 30–78 years) were included.
The patients were divided into primary and validation
cohorts based on the time of surgery at a ratio of 2:1.
The flow chart of patient selection is shown in Fig. 1.
The overall framework of this study is shown in Fig. 2.
In addition, we added an extra cohort consisting of ad-
vanced GCs with negative tumor markers (83 patients).

Endoscopic biopsy
Information on histological differentiation based on
preoperative endoscopic biopsy was retrospectively
examined and recorded by a pathologist (with 7 years of
experience in pathological diagnosis of the digestive sys-
tem) according to the WHO Classification of Tumors of
the Digestive System (2019 version) [25, 27]. The tumors
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were classified into two groups: group 1, poor differenti-
ation; group 2, moderate/well differentiation.

Tumor markers
Six serum tumor markers, including alpha fetoprotein
(AFP), carcinoembryonic antigen (CEA), carbohydrate
antigen (CA) 125, CA199, CA724, and CA242, were
collected within 2 weeks before surgery [25].

CT image acquisition
CT examinations were performed on a 64-row scanner
(uCT 780, United Imaging, Shanghai, China). All pa-
tients were required to fast for at least 6 h and take 600–
1000 mL of warm water orally prior to the examination.
All patients were placed in the supine position, and the
scan covered the upper or entire abdomen. Following
the nonenhanced scan, 1.5 mL/kg iodinated contrast
agent (Omnipaque 350 mg I/mL, GE Healthcare) was
injected intravenously at a flow rate of 3.0 mL/s using a
high-pressure syringe. Imaging was achieved with post-
injection delays of 40, 70, and 180 s after the initiation of
contrast material injection, corresponding to the late
arterial, portal, and delayed phases, respectively. The CT

scan parameters were as follows: tube voltage 120 kV,
tube current 150–250 mA, field of view 35–50 cm,
matrix 512 × 512, rotation time 0.7 s, and pitch 1.0875.
The images were reconstructed with section thicknesses
of 1 and 5mm; the former were used for multiplanar re-
construction, and the latter were used for the measure-
ment of CT values due to the signal-to-noise ratio [25].

Image analysis
Morphological characteristics
Readers 1 and 2 (with 5 and 7 years of experience in ab-
dominal imaging, respectively), who were blinded to the
clinicopathological information of the patients except for
the general location of the tumors, independently evalu-
ated the morphological characteristics of each lesion on
the 40 s LAP CT images, and their results were used to
assess interobserver agreement. Any discrepant opinions
between readers 1 and 2 were resolved by reader 3 (with
20 years of experience in abdominal imaging) as the final
result [25]. The characteristics were: 1) major location
(cardia, body, and antrum); 2) tumor range (1 location,
≥2 locations); 3) major orientation (lesser curvature,
greater curvature, anterior wall, and posterior wall); 4)

Fig. 1 The flowchart of the patients enrolled in our study. GC, gastric cancer; LAP, late arterial phase; CT, computed tomography
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circumferential range (1/4, 2/4, 3/4, and 4/4); 5) infiltra-
tive growth (absent, present): unclear border between
the lesion and the normal gastric wall; 6) ulceration (ab-
sent, present); 7) adjacent adipose tissue stains (absent,
present); 8) mucosal line status (interruption, thicken-
ing); 9) morphological type (thickening type, mass type);
10) linitis plastica (absent, present); and 11) lymphade-
nectasis (absent, present): the short axis of the regional
lymph node was greater than 1 cm.

CT value-related parameters
The oval regions of interest (ROIs) were drawn to en-
compass the area of greatest enhancement on the max-
imal section in 40 s LAP and were copied on the same
slice in the other three phases by reader 1. The mean
size of the ROIs was 32.82 mm2, and the range was
6.60–156.90 mm2. The mean CT attenuation values of
the tumor in the nonenhanced, late arterial, portal, and
delayed phases were recorded as the N value mean, AP
value mean, PP value mean, and DP value mean,

respectively, as well as the maximum and minimum CT
values. With the N, AP, and PP value means as the refer-
ences, postcontrast tumorous attenuation differences
(Δmean A-N, Δmean P-N, Δmean D-N, Δmean P-A,
Δmean D-A, and Δmean D-P) were calculated. CT
value-related parameters derived from the ROIs delin-
eated by reader 1 were used to predict serosal invasion.
To determine the interobserver reproducibility, reader 2
repeated the above procedure [25].

CT texture analysis
The LAP CT images were uploaded into in-house soft-
ware (Image Analyzer 2.0, China). All the images were
reviewed by reader 1. Polygonal ROIs (mean size, 402.23
mm2; range, 24.36–2442.87 mm2) were manually drawn
along the margin of the tumor on the largest cross-
section (Fig. 3), avoiding the normal gastric wall tissue
and the gastric cavity contents. Texture parameters were
as follows: (1) the first-order features included the mean,
standard deviation, max frequency, mode, minimum,

Fig. 2 The workflow of this study. a Endoscopic biopsy, laboratory tests, and CT images of patients with gastric cancer were collected. b
Differentiation degree based on biopsy, tumor markers, CT morphological characteristics based on late arterial phase, CT value-related parameters,
and texture parameters were extracted. c Multivariate models were built based on binomial logistic regression and machine learning algorithms.
d Diagnostic performance for predicting serosal invasion was obtained by ROC curve analysis, and a nomogram was used to visualize the
multivariate model. AFP, alpha fetoprotein; CEA, carcinoembryonic antigen; CA, carbohydrate antigen; CT, computed tomography; LASSO, least
absolute shrinkage and selection operator; SVM, support vector machine; RF, random forest; ANN, artificial neural network; KNN, k nearest
neighbors; ROC, receiver operating characteristic
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maximum, cumulative percentiles (the 5th, 10th, 25th,
50th, 75th, and 90th percentiles), skewness, kurtosis, en-
tropy, and histogram width; (2) the second-order features
were from the gray-level cooccurrence matrix (GLCM)
and included Entropy GLCM, Energy GLCM, Inertia
GLCM, and Variance GLCM. Texture parameters derived
from the ROIs delineated by reader 1 were used to predict
serosal invasion. To determine the interobserver reprodu-
cibility, reader 2 repeated the above procedure [25].

Development, performance, and validation of the
multivariate models
Significant (P < 0.05) variables in the univariate analysis
were input into a multivariate binomial logistic regres-
sion based on a backward elimination process in the pri-
mary cohort. The Hosmer-Lemeshow test was used to
measure the goodness of fit. A nomogram was con-
structed based on the multivariate model in the primary
cohort with the R software package (version 3.5.2: http://
www.Rproject.org). The multivariate model was applied
to the validation cohort and the extra cohort. The diag-
nostic efficacy was evaluated with receiver operating
characteristic (ROC) curve analysis [25].

If significance (P < 0.05) was met in the univariate
analysis of the primary cohort, the variables were
incorporated into the least absolute shrinkage and
selection operator (LASSO) for dimension reduction.
Then, we built four machine learning models,
including support vector machine (SVM), random
forest (RF), artificial neural network (ANN) and k
nearest neighbors (KNN), with the LASSO selected
features as the input factors. The fivefold cross-
validation was performed to improve and compare
these models’ performances. The best performing
model was selected to build the predictive model
for serosal invasion and applied to the validation
cohort [25, 28].

Pathological assessment after surgery
All patients underwent gastrectomy (either total or par-
tial). All gastric specimens were processed according to
standard pathological procedures. The pathological T
stage was retrospectively examined and recorded accord-
ing to the 8th American Joint Committee on Cancer
classification [7, 25]. The patients were divided into two
groups (T1–3 vs. T4).

Fig. 3 A 50-year-old man with gastric cancer pathologically diagnosed with serosal invasion. a The endoscopic image indicates a mass lesion in
the posterior wall of the stomach body. b Hematoxylin and eosin (H&E) staining of a specimen based on endoscopic biopsy shows a poorly
differentiated carcinoma (original magnification, × 100). c The values of the tumor markers, including AFP, CEA, CA125, CA199, CA724, and CA242,
were 3.40 ng/mL, 0.70 ng/mL, 5.90 U/mL, 9.91 U/mL, 0.90 U/mL, and 4.05 U/mL, respectively. d The late arterial phase computed tomography (CT)
image shows a mass lesion with marked enhancement in the posterior wall of the stomach body. An oval region of interest (ROI) was drawn to
encompass the area of greatest enhancement on the maximal section, and the CT value-related parameters were extracted. e A polygonal ROI
was manually drawn along the margin of the tumor on the largest cross-section, and the texture parameters were extracted. f H&E staining of a
postoperative specimen confirms gastric cancer with serosal invasion (original magnification, × 20). AFP, alpha fetoprotein; CEA, carcinoembryonic
antigen; CA, carbohydrate antigen
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Statistical analysis
The differences in demographic data, endoscopic biopsy,
and morphological characteristics were assessed with the
chi-square or Fisher’s exact test (n < 5). Kappa statistics
were applied to evaluate the interobserver consistency. A
kappa value of less than 0.200 was considered poor,
0.201–0.400 was considered fair, 0.401–0.600 was con-
sidered moderate, 0.601–0.800 was considered good, and
0.801–1.000 was considered excellent. The normality
distributions of the tumor markers, CT value-related pa-
rameters, and texture parameters were evaluated by the
Shapiro-Wilk test. Based on the normality test results,
the differences between T1–3 and T4 were analyzed by
the Mann-Whitney U test. ROC curve analysis was
performed, and the area under the ROC curve (AUC),
diagnostic sensitivity, specificity, and accuracy were cal-
culated. The cutoff value was established by calculating
the largest Youden index (Youden index = sensitivity+
specificity-1). The interobserver agreement of the CT
value-related and texture parameters was estimated with
the intraclass correlation coefficient (ICC) (0.000–0.200:
poor; 0.201–0.400: fair; 0.401–0.600: moderate; 0.601–
0.800: good; 0.801–1.000: excellent). All statistical ana-
lyses were performed with SPSS (version 22.0 for
Microsoft Windows × 64, SPSS), MedCalc Statistical
Software (version 11.4.2.0 MedCalc Software bvba;
http://www.medcalc.org; 2011), and R software (version
3.5.2: http://www.Rproject.org). A two-tailed P value< 0.05
was considered statistically significant [25].

Results
Qualitative analysis
Table 1 summarizes the results of the univariate analysis
of the demographic data, endoscopic biopsy, and morpho-
logical characteristics between the T1–3 and T4 groups in
the primary and validation cohorts. The differentiation de-
gree, infiltrative growth, ulceration, and morphological
type differed significantly between the two groups in the
primary cohort (all P < 0.05). There were no significant
differences in major location, tumor range, major orienta-
tion, circumferential range, adjacent adipose tissue stains,
mucosal line status, linitis plastica, or lymphadenectasis
between the two groups in the primary cohort (all
P > 0.05). There were significant differences for the six
characteristics in the validation cohort (all P < 0.05).

Quantitative analysis
Tumor markers
The values of CA199, CA724, and CA242 differed
significantly in the primary cohort (P = 0.007, 0.023,
and 0.015, respectively, Table 2). There were no sig-
nificant differences in CEA, CA125, or AFP between
the T1–3 and T4 groups in the primary cohort (all
P > 0.05, Table A1).

CT value-related and texture parameters
The results of the univariate analysis for quantitative CT
value-related and texture parameters between the T1–3
and T4 groups in the primary cohort are shown in Table 2.
For the CT value-related parameters, there were significant
differences in AP value mean, AP value min, Δmean A-N,
Δmean P-A, and Δmean D-A (all P < 0.05). For the texture
parameters, nine parameters differed significantly between
the two groups (all P < 0.05), and the corresponding AUCs
ranged from 0.633 to 0.742 (Table 3).

Development, performance, and validation of the
multivariate models
Multivariate binomial logistic regression
The best-performing model based on regression for pre-
dicting serosal invasion in the primary cohort consisted
of differentiation degree, ulceration, CA199, CA724,
Δmean P-A, mean, minimum, and 75th percentile. The
multivariate model had a predictive ability with a cutoff
of 0.24 (AUC = 0.849, P < 0.001), which yield a sensitiv-
ity, specificity, and accuracy of 72.0, 83.3, and 80.6%, re-
spectively. The ROC curve of the primary cohort is
plotted in Fig. 4. The cutoff value of 0.24 was used to
test the predictive performance of the validation cohort,
which yield a sensitivity, specificity, and accuracy of 81.8,
82.5, and 82.4%, respectively. A nomogram constructed
based on the multivariate logistic regression model in
the primary cohort for predicting serosal invasion is dis-
played in Fig. 5.
In addition, the cutoff value of 0.24 was used to test

the predictive performance of the extra cohort consisting
of advanced GCs with negative tumor markers (83 pa-
tients), which yield a sensitivity, specificity, and accuracy
of 53.3, 76.5, and 72.3%, respectively.

Machine learning algorithms
LASSO was applied to reduce the dimensions and to
select optimal variables in the primary cohort (Fig. 6).
Finally, infiltrative growth, ulceration, CA242, CA724,
and minimum were integrated to build multivariate
models using the SVM, RF, ANN, and KNN algorithms.
The multivariate model generated by RF showed best
performance in the four machine learning algorithms
with an AUC of 0.865. The developed model based on
RF was also applied in the validation cohort and
achieved an AUC of 0.845.

Interobserver agreement
All CT morphological characteristics showed good to
excellent interobserver agreement in the evaluation of
GCs (κ = 0.715–0.902) (Table A2). All CT value-related
parameters (ICC = 0.687–0.941) and texture parameters
(ICC = 0.706–0.989) also showed good to excellent inter-
observer agreement (Tables A3 and A4).
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Table 1 Univariate analysis of demographic data, endoscopic biopsy, and morphological characteristics in the primary and
validation cohorts

Characteristics Primary cohort P value Validation cohort P value

T1–3 (n = 78) T4 (n = 25) T1–3 (n = 40) T4 (n = 11)

Demographic data

Gender 0.154 0.214

Male 58 22 23 4

Female 20 3 17 7

Age (y) 0.543 1.000

< 60 29 11 13 3

≥ 60 49 14 27 8

Endoscopic biopsy

Differentiation degree 0.004* 0.141

Poor 48 23 26 10

Moderate & Well 30 2 14 1

Morphological characteristics

Major location 0.884 0.690

Cardia 21 6 14 2

Body 27 8 14 5

Antrum 30 11 12 4

Tumor range 0.121 0.009*

1 location 51 12 32 4

≥ 2 locations 27 13 8 7

Major orientation 0.637 0.591

Lesser curvature 35 11 19 7

Greater curvature 2 2 3 0

Anterior wall 7 2 2 1

Posterior wall 34 10 16 3

Circumferential range 0.428 0.010*

1/4 34 7 24 1

2/4 26 11 10 7

3/4 11 3 3 1

4/4 7 4 3 2

Infiltrative growth 0.009* 0.001*

Absent 54 10 30 2

Present 24 15 10 9

Ulceration 0.036* 0.305

Absent 20 12 20 8

Present 58 13 20 3

Adjacent adipose tissue stains 0.267 0.009*

Absent 56 15 25 2

Present 22 10 15 9

Mucosal line status 0.280 0.002*

Interruption 28 12 11 9

Thickening 50 13 29 2
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Discussion
In the current study, we investigated the ability of multi-
variate models integrating preoperative clinicopathologi-
cal features and radiographic findings based on LAP CT
images to predict serosal invasion in GC. To build the
multivariate models, the differentiation degree based
on endoscopic biopsy, 6 tumor markers, 11 CT

morphological characteristics, 18 CT value-related
parameters, and 32 CT texture parameters were col-
lected. There were significant differences in multiple
features between the T1–3 and T4 groups.
Endoscopic biopsy and tumor markers are widely used

in the early diagnosis and disease monitoring in gastric
cancer [5, 29, 30]. In this study, we demonstrated that

Table 1 Univariate analysis of demographic data, endoscopic biopsy, and morphological characteristics in the primary and
validation cohorts (Continued)

Characteristics Primary cohort P value Validation cohort P value

T1–3 (n = 78) T4 (n = 25) T1–3 (n = 40) T4 (n = 11)

Morphological type 0.026* 0.037*

Thickening type 12 9 11 7

Mass type 66 16 29 4

Linitis plastica 0.091 0.292

Absent 76 22 37 9

Present 2 3 3 2

Lymphadenectasis 1.000 0.598

Absent 66 21 36 9

Present 12 4 4 2

*P < 0.05 with chi-square test or Fisher’s exact test (n < 5)

Table 2 Statistical description and univariate analysis of tumor markers, the CT value-related parameters, and texture parameters in
the primary cohort

Parameters T1–3 T4 P value

Tumor markers

CA199 (U/mL) 8.92 (5.55, 12.91) 11.74 (8.39, 197.35) 0.007*

CA724 (U/mL) 1.83 (1.20, 4.69) 3.00 (1.73, 22.22) 0.023*

CA242 (U/mL) 3.19 (2.21, 5.54) 6.91 (2.69, 105.51) 0.015*

CT value-related parameters

AP value mean (HU) 112.51 (89.22, 137.63) 94.12 (76.98, 113.02) 0.024*

AP value min (HU) 90.00 (71.50, 113.00) 70.00 (54.50, 101.50) 0.018*

Δmean A-N (HU) 69.86 (50.52, 96.24) 50.28 (34.13, 75.73) 0.028*

Δmean P-A (HU) −19.02 (−35.97, −6.23) −6.12 (−24.34, 7.84) 0.024*

Δmean D-A (HU) −32.65 (−50.80, −10.62) −17.50 (−36.10, 14.62) 0.021*

Texture parameters

Mean (HU) 106.47 (92.20, 120.32) 90.74 (71.18, 111.48) 0.027*

Max frequency 15.50 (10.00, 29.00) 31.00 (19.00, 51.00) < 0.001*

Minimum (HU) 58.00 (41.75, 75.25) 42.00 (25.50, 55.00) 0.006*

5th percentile (HU) 76.50 (63.50, 93.00) 63.00 (45.00, 79.50) 0.015*

10th percentile (HU) 82.00 (68.00, 101.00) 68.00 (51.00, 89.00) 0.019*

25th percentile (HU) 93.00 (79.75, 111.00) 78.00 (59.50, 98.50) 0.017*

50th percentile (HU) 106.00 (91.75, 120.50) 90.00 (68.50, 109.50) 0.029*

75th percentile (HU) 118.50 (103.00, 133.25) 101.00 (84.50, 123.50) 0.027*

90th percentile (HU) 129.00 (114.75, 147.00) 114.00 (95.50, 141.00) 0.046*

The data are presented as median with (1st quartile, 3rd quartile)
CA carbohydrate antigen, AP arterial phase
*P < 0.05 with Mann-Whitney U test
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the differentiation degree based on biopsy, CA199,
CA724, and CA242 were able to predict serosal invasion
in GC. Poorly differentiated GC is usually more aggres-
sive and carries a higher risk of deeper invasion. Kim
DK et al. reported that the deep submucosal invasion of
GC was related to the poorly differentiated type [31].
This was consistent with our results. Additionally, the
tumor markers indirectly reflect the changes in related
gene expression during tumor progression. A previous
study reported that preoperative serum CA 242 values
can serve as an independent prognostic marker for GC
patients [30].
We found that the morphological characteristics in

40s LAP, including infiltrative growth, ulceration, and
morphological type, differed significantly between the
T1–3 and T4 groups in the primary cohort. When
accompanied by infiltrative growth, ulceration, and
thickening type, GC is more aggressive and more likely
to invade the serosa. However, there were significant dif-
ferences in six characteristics in the validation cohort.
The different results of the morphological characteristics
analysis in the primary and validation cohorts could be
explained by the different sample sizes. The primary co-
hort had a larger sample size and thus might be more
representative.

Table 3 The diagnostic performance of tumor markers, the CT value-related parameters, and texture parameters in the primary
cohort

Parameters Cutoff Sensitivity Specificity AUC Accuracy P value

Tumor markers

CA199 (U/mL) 9.47 0.720 0.615 0.681 0.640 0.009*

CA724 (U/mL) 1.48 0.840 0.436 0.652 0.534 0.022*

CA242 (U/mL) 6.30 0.520 0.821 0.662 0.748 0.021*

CT value-related parameters

AP value mean (HU) 96.62 0.680 0.692 0.651 0.689 0.031*

AP value min (HU) 78.00 0.680 0.680 0.658 0.680 0.024*

Δmean A-N (HU) 54.11 0.640 0.705 0.647 0.689 0.035*

Δmean P-A (HU) −7.46 0.560 0.744 0.650 0.699 0.025*

Δmean D-A (HU) −25.09 0.680 0.603 0.654 0.622 0.021*

Texture parameters

Mean (HU) 90.74 0.520 0.782 0.648 0.718 0.036*

Max frequency 20.00 0.760 0.680 0.742 0.699 < 0.001*

Minimum (HU) 56.00 0.800 0.539 0.682 0.602 0.005*

5th percentile (HU) 69.00 0.640 0.680 0.662 0.670 0.014*

10th percentile (HU) 70.00 0.560 0.744 0.657 0.699 0.021*

25th percentile (HU) 89.00 0.720 0.603 0.659 0.631 0.021*

50th percentile (HU) 90.00 0.520 0.769 0.645 0.709 0.038*

75th percentile (HU) 101.00 0.520 0.782 0.647 0.718 0.038*

90th percentile (HU) 107.00 0.440 0.846 0.633 0.747 0.064

AUC area under the receiver operating characteristic (ROC) curve, CA carbohydrate antigen, AP arterial phase
*P < 0.05 with ROC curve analysis

Fig. 4 The receiver operating characteristic (ROC) curve of the
multivariate model based on binomial logistic regression analysis for
predicting the serosal invasion of gastric cancer in the primary
cohort. The AUC of the multivariate model was 0.849. AUC, area
under the receiver operating characteristic curve
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In quantitative analysis, we used not only CT value-
related parameters but also texture parameters. For the
CT value-related parameters, there were significant dif-
ferences in AP value mean, AP value min, Δmean A-N,
Δmean P-A, and Δmean D-A between the T1–3 and T4
groups in the primary cohort. This indicates that the
parameters related to the LAP may better reflect
tumor information. Furthermore, nine texture param-
eters, including the mean, max frequency, minimum,
and 5th–90th percentiles, differed significantly in the
primary cohort. GCs with serosal invasion had a
higher max frequency value (indicating the peak value
of the histogram). The 5th–90th percentiles reflected
the enhancement degree of different components of
the tumor. GCs with serosal invasion tend to be more
aggressive and grow rapidly, resulting in insufficient
blood supply and necrosis [32].
To develop multivariate models for predicting serosal

invasion in GC, the regression analysis and machine
learning algorithms were used in the study. For the re-
gression model, we utilized a backward elimination
process [33]. For the machine learning algorithm,
LASSO was used for dimension reduction, which is in
general use [13, 17, 34]. The multivariate models
based on regression analysis and the RF algorithm

showed satisfactory performance in the primary co-
hort (AUC = 0.849 and 0.865, respectively). The AUC
of multivariate model generated by RF was slightly
better than regression analysis. Furthermore, we
applied the Delong test to compare the performance
of the models based on RF and regression analysis
and found that there was no significant difference
between the two models. The developed models were
also used in the validation cohort and achieved better
performance.
In addition, the cutoff value of 0.24 (the same as the

regression model developed in the primary cohort) was
used to test the predictive performance of the extra co-
hort consisting of advanced GCs with negative tumor
markers (83 patients), which yield an accuracy of 72.3%.
Most previous works applied to predict serosal inva-

sion in GC focused on morphology [8–10, 35]. Although
the number of studies was abundant, the results varied
widely and were controversial. In recent years, CT radio-
mics has been used to predict serosal invasion, while
endoscopic biopsy and tumor markers were not included
in the model building [13]. Evaluating serosal invasion in
GC is influenced by various factors. In this situation, to
solve the above problems, a comprehensive evaluation
based on preoperative clinicopathological features and

Fig. 5 A nomogram based on a multivariate logistic regression model for predicting the serosal invasion of gastric cancer in the primary cohort
using the variables of CA199, CA724, differentiation degree, ulceration, Δmean P-A, mean, minimum, and 75th percentile. CA,
carbohydrate antigen
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radiographic findings was adopted, and it achieved a sat-
isfactory result. It is worth mentioning that the interob-
server agreement for all morphological characteristics,
CT value-related parameters, and texture features
proved to be good or excellent.
There are some limitations of this study. First, it used

retrospective data collected from a single center, and the
sample might be biased. Second, the texture features
were derived from the two-dimensional ROIs of lesions
with manual segmentation, which might have lost
feature information in the longitudinal direction. Third,
only the biopsy information was extracted, and more de-
tailed information needs to be included from endoscopy.
Thus, additional investigation to remedy the abovemen-
tioned insufficiencies should be performed.
In conclusion, we developed and validated multivariate

models integrating preoperative clinicopathological fea-
tures and radiographic findings based on LAP CT images
to predict serosal invasion in GCs, and it achieved a favor-
able performance.
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