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Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for many hematologic conditions and is associated
with considerable morbidity and mortality. Therefore, prognostic tools are essential to navigate the complex patient, disease, donor,
and transplant characteristics that differentially influence outcomes. We developed a novel, comprehensive composite prognostic
tool. Using a lasso-penalized Cox regression model (n= 273), performance status, HCT-CI, refined disease-risk index (rDRI), donor and
recipient CMV status, and donor age were identified as predictors of disease-free survival (DFS). The results for overall survival (OS)
were similar except for recipient CMV status not being included in the model. Models were validated in an external dataset (n= 378)
and resulted in a c-statistic of 0.61 and 0.62 for DFS and OS, respectively. Importantly, this tool incorporates donor age as a variable,
which has an important role in HSCT outcomes. This needs to be further studied in prospective models. An easy-to-use and a web-
based nomogram can be accessed here: https://allohsctsurvivalcalc.iowa.uiowa.edu/.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation (HSCT)
remains an indispensable curative therapy for several malignant
and nonmalignant hematologic conditions. The outcomes of HSCT
have improved over the years due to advances in supportive care
and therapeutic modalities. Additionally, our ability to predict
patients who are at a higher risk of adverse outcomes related to
disease and/or transplant characteristics, and thereby individualize
treatments, continues to be refined. Traditional outcome pre-
dictors in HSCT are patient age, comorbidity risk, disease status,
HLA- and ABO-matching disparities, and other host- and disease-
related factors [1–5].
Several tools have been published to inform critical decisions in

HSCT, including risk of relapse post-HSCT, nonrelapse mortality
(NRM), and overall survival (OS). These tools are also helpful to
stratify patients according to relative risks imparted by these
independent disease-related and patient characteristics [6, 7].
Additionally, they guide us when counseling patients and help
physicians individualize transplant management for the patients.
The most widely used prognostic tool is the Hematopoietic Cell

Transplantation specific Comorbidity Index (HCT-CI) and HCT-CI/
age, which are adapted from Charlton Comorbidity Index (CCI) for
assessment of HSCT patients, and has been validated in a large
dataset [6, 7]. These indexes are primarily used to objectively
assess organ function status and predict NRM and OS. Disease Risk

Index (DRI) or refined DRI (rDRI) predicts OS primarily based on the
type and status of disease prior to HSCT [8, 9]. A number of other
multivariable tools in use are the European Group for Bone
Marrow Transplantation (EBMT) risk score [10], pretransplant
assessment of mortality (PAM) [11], and more recently, the acute
leukemia—EBMT (AL-EBMT) model [12] and a composite hema-
topoietic cell-transplant composite-risk (HCT-CR) model [13].
These prediction tools differ from one another with respect to
composition of variables, disease groups studied, end points,
model building, validation, and calibration methodologies [14].
The c-statistic, by which most of the prognostic tools are built to
discriminate patients, also varies between tools, at least partly
dependent on the variables incorporated. Additionally, many
advances have occurred with respect to identification of
important variables, therapeutic modalities, and treatment selec-
tion over the years, which were not accounted for in most of the
existing older models. Therefore, there is a constant effort to
improve and develop holistic prognostic scoring systems as newer
variables of significance, and statistical methods are identified.
In this study, we hypothesized that integration of more

contemporarily used recipient, donor, and transplant character-
istics would improve prediction of post-transplant survival out-
comes compared with the currently published tools. After model
building, we validated our tool in an external patient dataset and
the results are presented here.
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Patients and methods
This study includes two cohorts of patients from the University of
Iowa Health Care (UIHC) and Mayo Clinic (MC). Patients ≥18 years
of age who received first HSCT from a peripheral blood stem cell
(PBSC) source for any malignant hematologic indication between
2010 and 2016 from HLA-matched related (MRD), HLA-matched
unrelated (MUD), HLA-mismatched unrelated (MMUD), and HLA-
mismatched related donors (MMRD/haploidentical) donors were
included. HLA matching at -A, _B, -C, and -DRB1 loci was defined
as matched status.
Patients with HSCT from bone marrow source and those with

incomplete or missing data were excluded. After obtaining IRB
approval from the respective institutions, we collected demo-
graphic, clinical, and outcome data.

Endpoints and definitions
The primary endpoints used for the models were two-year
disease-free survival (DFS) defined as time from the initial
allogeneic transplant to relapse or death due to HCT-related
causes, and two-year overall survival (OS) defined as time from the
initial allogeneic transplant to death due to any cause. Patients
alive and without relapse at two years were censored.
The intensity of conditioning regimens was defined as per

Bacigalupo et al [15]. HCT-CI and rDRI were defined as previously
described per Sorror et al. and Armand et al. [6, 9].

Statistical analysis
The training dataset included 273 patients treated at UIHC, and
the external testing dataset included 348 patients treated at MC.
Using the training dataset, a lasso-penalized Cox regression

model was applied to identify prognostic predictors of two-year
DFS and OS. Predictors under consideration included: recipient
(age <55 vs 55+ , sex, KPS < 90 vs 90+ , HCT-CI, ABO type, and
CMV status), disease (type, rDRI), donor (age <30 vs 30+ , sex, ABO
type, and CMV status), and transplant (preparative regimen, year
of transplant, related/unrelated, and match/mismatch) character-
istics. The lasso penalty parameter was derived as the mean of
1000 iterations of 10-fold cross-validation. Median and IQR time-
dependent area under the curve (AUC) using 1000 bootstrap
samples was obtained using the method proposed by Uno et al.
[16] to assess internal model validation. To assess internal model
calibration, a risk score was computed from the regression
coefficients. Patients were stratified based on a median cut point
of risk scores.
We used Harrell’s concordance index (c-index) in which a

c-index of 1.0 indicates a model’s discriminatory function to be
perfect, while a score of 0.50 indicates a discrimination function
not dissimilar to chance alone.
Differences in two-year DFS and OS between risk strata were

evaluated using a log-rank test. Optimism-corrected (1000
bootstrap samples) predicted survival probabilities were com-
pared with observed survival probabilities at two years. Median-
predicted survival probabilities were plotted against the median
observed survival probabilities along with 95% confidence
interval estimated by the Kaplan–Meier method for each risk
strata.
The model derived in the building phase was applied to the

testing dataset. External model validation was assessed by
constructing a time-dependent ROC curve. To assess external
model calibration, patients were stratified by risk score. Two-year
DFS and OS differences between risk strata were evaluated using a
log-rank test. Additionally, median predicted survival probabilities
were plotted against the median observed survival probabilities at
two years along with the 95% confidence interval estimated by
the Kaplan–Meier method for each risk strata.
All analyses were conducted using SAS v9.4 (SAS Institute, Cary,

NC) or R (www.r-project.org) and the glmnet package [17] and the
hdnom package [18].

RESULTS
Comparison of patient cohorts
The baseline and transplant clinical characteristics are in Table 1.
The UIHC cohort included 273 patients who received their first
HSCT between 2010 and 2015 and the MC cohort included 348
patients who received their first HSCT between 2010 and 2016.
Disease, DRI, HCT-CI, regimen, year of transplant, recipient CMV

status, transplant type and match, and donor age and CMV status
significantly differed between cohorts. Notably, acute myelogen-
ous leukemia (AML) was the most common indication present in
43.6% and 49.4%, followed by myelodysplastic syndrome (MDS)
and myeloproliferative neoplasm (MPN) in 22.0% vs 23.0% and
acute lymphoblastic leukemia (ALL) in 16.8% vs 13.8% in UIHC and
MC cohorts, respectively. Other diagnosis category consisted of
UIHC cohort: 18 chronic myeloid leukemia (CML); 1 Hodgkin
lymphoma (HL); 10 other leukemia (OL); and 1 plasma cell disease
(PCD); MC cohort: 2 chronic lymphocytic leukemia (CLL); 11
CML; 31 OL.
There were more patients in UIHC cohort with high–very high

DRI (35.5% vs 20.4%), high HCT-CI scores (70.3% vs 27.0%), and
those who received a myeloablative regimen (72.9% vs 64.1%) in
UIHC compared with MC, respectively. On the other hand, more
patients in MC received a related donor (57.5% vs 39.2%),
matched (MSD or MUD) donor (96.3% vs 83.9%), and donors with
age greater than 30 years (71.8% vs 51.3%) compared with UIHC.

Outcomes
Two-year DFS was 58% and 59% and 2-year OS was 61% and 66%
for UIHC and Mayo cohorts, respectively (Fig. 1).

Two-year disease-free survival
After application of the lasso-penalized Cox regression model, the
final model included the following variables: performance status,
disease-risk index, comorbidity index, patient CMV status, donor
CMV status, and donor age (Table 2). Median AUC for the
prediction of two-year DFS in the training set was 0.71 (IQR
0.70–0.72), demonstrating good internal discrimination (Fig. 2A).
Additionally, AUC across time was relatively consistent between 1-
and 2 years post transplant. Internal model calibration showed
good agreement between observed and predicted survival
probabilities (Supplementary Fig. 1A), which is further supported
by a significant difference in DFS between risk groups (p < 0.01).
Two-year DFS was 76% and 40% for low and high risk, respectively
(Fig. 3A).
After applying the final model to the testing dataset, AUC was

0.61 at two years with AUC remaining consistent between 1- and 2
years post transplant (Fig. 2A). External model calibration showed
good agreement (Supplementary Fig. 1A), which is further
supported by a significant difference in DFS by risk groups (p <
0.01). Two-year DFS of 69% and 50% for low and high-risk groups,
respectively (Fig. 3A).

Two-year overall survival
After application of the lasso-penalized Cox regression model, the
final model included the following variables: performance status,
disease-risk index, comorbidity index, donor CMV status, and
donor age (Table 2). Median AUC for the prediction of two-year OS
was 0.70 (IQR 0.69-0.71) in the training set demonstrating good
internal discrimination (Fig. 2B). Additionally, AUC across time was
relatively consistent between 1- and 2-years post transplant.
Internal model calibration showed good agreement between
observed and predicted survival probabilities (Supplementary Fig.
1B) which is further supported by a significant difference in OS
between risk groups (p < 0.01). Two-year OS was 76% and 47% for
low and high risk, respectively (Fig. 3B).
After applying the final model to the testing dataset, AUC was

0.61 at two years with AUC remaining consistent between 1- and 2
years post transplant (Fig. 2B). External model calibration showed
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Table 1. Patient demographic and transplant characteristics of the two cohorts.

Group

Covariate Statistics Level UIHCN= 273 Mayo N= 348 P-value

Time Since Diagnosis N (Col %) 6+ months 136 (49.8) 167 (48.0) 0.65

N (Col %) <6 months 137 (50.2) 181 (52.0)

Age N (Col %) 55+ 144 (52.7) 193 (55.5) 0.50

N (Col %) <55 129 (47.3) 155 (44.5)

Sex N (Col %) F 111 (40.7) 134 (38.5) 0.59

N (Col %) M 162 (59.3) 214 (61.5)

Disease N (Col %) Acute lymphoblastic leukemia (ALL) 46 (16.8) 48 (13.8) <0.01

N (Col %) Acute myelogenous leukemia (AML) 119 (43.6) 172 (49.4)

N (Col %) Myelodysplastic/myeloproliferative
diseases (MDS/MPN)

60 (22.0) 80 (23.0)

N (Col %) Non-Hodgkin lymphoma (NHL) 18 (6.6) 4 (1.1)

N (Col %) Other 30 (11.0) 44 (12.6)

Performance Status at Transplant N (Col %) KPS 90+ 178 (65.2) 214 (61.5) 0.34

N (Col %) KPS < 90 95 (34.8) 134 (38.5)

Disease Risk Index N (Col %) High–Very High 97 (35.5) 71 (20.4) <0.01

N (Col %) Intermediate 116 (42.5) 189 (54.3)

N (Col %) Low 60 (22.0) 88 (25.3)

Comorbidity Index N (Col %) High 192 (70.3) 94 (27.0) <0.01

N (Col %) Intermediate 56 (20.5) 165 (47.4)

N (Col %) Low 25 (9.2) 89 (25.6)

Regimen N (Col %) Myeloablative 199 (72.9) 223 (64.1) 0.02

N (Col %) RIC/Nonmyeloablative 74 (27.1) 125 (35.9)

Year of Transplant N (Col %) 2010 40 (14.7) 36 (10.3) <0.01

N (Col %) 2011 41 (15.0) 61 (17.5)

N (Col %) 2012 43 (15.8) 63 (18.1)

N (Col %) 2013 32 (11.7) 64 (18.4)

N (Col %) 2014 41 (15.0) 65 (18.7)

N (Col %) 2015 32 (11.7) 59 (17.0)

N (Col %) 2016 0 (0) 44 (16.1)

ABO N (Col %) A 113 (41.4) 140 (40.2) 0.99

N (Col %) AB 11 (4.0) 15 (4.3)

N (Col %) B 31 (11.4) 39 (11.2)

N (Col %) O 118 (43.2) 154 (44.3)

CMV N (Col %) N 60 (22.0) 103 (29.6) 0.03

N (Col %) P 213 (78.0) 245 (70.4)

Transplant Type N (Col %) Related 107 (39.2) 200 (57.5) <0.01

N (Col %) Unrelated 166 (60.8) 148 (42.5)

Match/Mismatch N (Col %) Match 229 (83.9) 335 (96.3) <0.01

N (Col %) Mismatch 44 (16.1) 13 (3.7)

Donor Age N (Col %) 30+ 140 (51.3) 250 (71.8) <0.01

N (Col %) <30 133 (48.7) 98 (28.2)

Donor Sex N (Col %) F 95 (34.8) 115 (33.0) 0.65

N (Col %) M 178 (65.2) 233 (67.0)

Donor ABO/Rh N (Col %) A 111 (40.7) 136 (39.1) 0.19

N (Col %) AB 14 (5.1) 15 (4.3)

N (Col %) B 20 (7.3) 44 (12.6)

N (Col %) O 128 (46.9) 153 (44.0)

Donor CMV N (Col %) N 178 (65.2) 187 (53.7) <0.01

N (Col %) P 95 (34.8) 161 (46.3)

Where the p values indicate the differences in the characteristics between the two cohorts, and significant differences are noted as bold.
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good agreement (Supplementary Fig. 1B), which is further
supported by a significant difference in OS by risk groups (p <
0.01). Two-year OS was 75% and 56% for low and high risk,
respectively (Fig. 3B).

DISCUSSION
In this study, we present a new, externally validated composite
prognostic tool for hematologic malignancies to predict two-year
DFS and OS following HSCT. For two-year DFS, performance status,
HCT-CI and rDRI of the patient, CMV status of patient and donor,
and age of the donor had significant impact. Model discrimination
assessed by the c-statistic was 0.71 and 0.62 in the training and
testing datasets, respectively, for two-year DFS. The results for
two-year OS were similar, except that patient CMV status was not
included in the final model. Additionally, model calibration
showed good agreement between the predicted and observed
outcomes in the training and test cohorts demonstrating a
consistent performance of the tool in the prediction of outcomes.
Finally, using this model, we could discriminate patient cohorts
into 2 distinct risk groups with significantly different two-year DFS
and OS rates. The high-risk group had a significantly lower two-
year OS of 56% compared with 75% in the lower-risk group. An

important feature of our model is that it captures the most crucial
pretransplant recipient, disease, and donor characteristics that are
known to influence transplant outcomes with a c-statistic of 0.62.
Of the numerous variables that are conventionally used to

assess risk, age, performance status, and comorbidity burden of
the patient remain the foremost and powerful prognostic factors
in oncology, including in HSCT [19].
Various models have studied several important variable factors

in combination for prediction of outcomes. This important
differences between various existing tools compared with our
model, including the endpoints used for predictions are summar-
ized in Table 3.
CMV serostatus of donor and recipient remains a significant

determinant of important HSCT outcomes such as DFS and OS,
beyond the direct impact on CMV reactivation-associated
morbidity and mortality [20]. Additionally, few studies suggested
a likely favorable role of positive CMV serostatus of donor and/or
recipient on early immune reconstitution [21], and reduced
relapses [22].
ABO matching between the recipient and donors is another

critical variable that is considered during donor selection. There
have been conflicting reports about the impact of the ABO
mismatching and outcomes of HCT. While some major registry
and single institutional studies showed an adverse impact on
increased GVHD, NRM, or OS [23–26], few other studies, including
this recent analysis, did not find any major impact on the
outcomes [27]. In our model, ABO status of the recipient and
donor was not found as a significant variable for DFS or OS
prediction.
These variables were studied, either independently or in

combination, by multiple predictive tools.
HCT-CI and Comorbidity-age Index (HCT-CI that accounts for the

age of the patient) were the first of the prognostic tools
developed to estimate NRM and OS [6, 28]. Despite many
attempts to augment the predictability [29], no major improve-
ments in the c-statistic were noted [28] and the original HCT-CI still
remains one of the most widely used tools in HSCT prognostica-
tion of NRM. Alternatively, rDRI was developed to estimate OS
based primarily on the risk of relapse of the disease, regardless of
the conditioning intensity, recipient age, and donor type and
discriminates 4 distinct groups [9]. The discrimination function of
HCT-CI and rDRI for OS is reported to be 0.63 and 0.66,
respectively, in the original publications [6, 9]. Composite models
have been developed in an attempt to improve discrimination
and predictability by integrating various recipient, donor, and
transplant characteristics. Of those, EBMT and PAM are prominent
validated tools that have evaluated OS as a primary endpoint in
various groups of hematologic malignancies and the c-statistics
for OS are 0.62 and 0.69, respectively [10, 11]. However, they both
miss important characteristics such as performance status and
CMV serostatus. Although disease stage was included in both, the
criteria of staging were not uniform nor validated as rDRI was not
available at the time of development of these tools.
A more recently developed HCT-CR showed a relatively better

c-statistic of 0.69 [30]. HCT-CR is a composite model that
combined rDRI and HCT-CI/age with the reported superior ability
to estimate NRM and OS, and to stratify 4 risk groups with
significantly different three-year median OS [13, 31]. While their
original model was only restricted to AML and MDS patients, the
validation study was performed on an independent internal
dataset and expanded to multiple disease groups and other
outcomes such as GVHD and relapse-free survival (GRFS) [31], but
this tool needs to be externally validated.
Most tools predict OS and NRM, while our current model and

the HCT-CR also evaluate DFS. On the other hand, AL-EBMT is a
model derived from machine-learning (ML) algorithm, restricted to
AML and ALL patients only and the primary endpoint was 100-day
mortality with a c-statistic of 0.70 [32].

Fig. 1 Two-year disease-free survival and overall survival for the
training (UIHC) and testing (Mayo Clinic) cohorts. Figure 1
represents two-year DFS A and two-year OS B for the UIHC and
Mayo Clinic cohorts which were 58% and 59%, and 61% and 66%,
respectively. Disease-free survival (DFS) is defined as time from the
initial allogeneic transplant to relapse or death due to HCT-related
causes; overall survival (OS) defined as time from the initial
allogeneic transplant to death due to any cause. Patients alive and
without relapse at two years were censored.
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Table 2. Variables selected for the model.

Disease-free survival Overall survival

Covariate Level Hazard ratio Hazard ratio

Performance Status 90+ 0.77 0.67

<90 Ref Ref

Disease Risk Index Low 0.60 0.62

Intermediate/High Ref Ref

Comorbidity Index Low 0.77 0.94

Intermediate/High Ref Ref

Donor Age 30+ 1.23 1.03

<30 Ref Ref

CMV Positive 1.01 –

Negative Ref –

Donor CMV Positive 0.97 0.89

Negative Ref Ref

Fig. 2 Time-dependent AUC for disease-free and overall survival. A Panels show time-dependent AUC values for disease-free survival in the
training and testing cohorts, at 0.71 and 0.61, respectively. B Panels show time-dependent AUC values for overall survival in the training and
testing cohorts, at 0.70 and 0.61, respectively.
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Another distinction of our tool is inclusion of donor age. In
recent years, age of the donor has been reported as one of the
most influential factors on post-transplant outcomes. In large
registry studies, younger donor age correlated with improved
outcomes, including overall survival, which was noted across
unrelated and haploidentical donor groups [33–35]. Although
similar trends were reported by a few other studies [36, 37], an
institutional study did not necessarily show a differential impact of
donor age when dichotomized at 60 years [38]. Our tool is the first
validated multivariable model that incorporates donor age, and
provides further evidence for younger age of the donor as an
emerging predictive variable for DFS and OS after HSCT for various
hematologic malignancies.
External validation of scoring systems is important to assess the

generalizability of any prognostic tool. In this regard, an important
strength of our study is that, in compliance with TRIPOD
guidelines [39, 40], model calibration showed agreement between
observed and predicted outcomes and validation performed in an
independent, external dataset, and showed a minimal decline in
discrimination relative to internally validated values.
There could be specific limitations to generalizability even for

validated models that are particularly highlighted in external
validation studies. For example, in one single-center report, rDRI
could not accurately predict OS and PFS in a cohort with a shorter

follow-up [41], while another single-center analysis revealed
diminished prediction accuracy of HCT-CI when applied to
different donor groups [42]. Similarly, inconsistencies were noted
for other tools in subsequent external validation studies [43].
Shouval et al in a recent study externally validated and

compared performances of various prediction tools in HSCT [44],
and appropriately point out that most models in the field of HSCT
have at best, modest discrimination function, likely due to various
unpredictable complications, and due to our inability to account
for all aspects that could influence outcomes [44].
Last, using our model, we were able to discriminate patient

cohorts into two distinct risk groups with significantly different
2-year DFS and OS rates. The high-risk group had a significantly
lower two-year OS of 56% compared with 75% in the lower-risk
group. This information would be helpful for estimation of OS
pretransplant and may aid in further preemptive management
post HSCT.
In our study, there were some differences between the two

datasets. There were more patients with higher risk by rDRI and
HCT-CI, and ALL subgroup in the training data (UIHC cohort), while
the testing dataset (Mayo cohort) had more patients with
significantly older donors. Similarly, differences in center practices
relating to transplantation methodologies and donor composition
may have also influenced generalizability as demonstrated by the

Fig. 3 Risk-stratified 2-year disease-free survival and overall survival. A Panels show significant difference in two-year DFS between low
and high-risk patients stratified by the model at 76% and 40% in the training and 69% and 50% in the testing sets, respectively. B Panels show
significant difference in two-year OS between the low- and high-risk patients stratified by the model at 76% and 47% and 75% and 56%
among training and testing sets, respectively.
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decline in the c-statistic between training and testing datasets.
There were differences in the timeframe, cohort sizes, and follow-
up duration among the training and testing cohorts that could
have also impacted the results [45].
An important strength of our study is that it allows physicians to

predict two-year OS and DFS for HSCT with a c-index of 0.62, by
combining the most used and validated variables and risk scores
representing patient (age, CMV, KPS, and HCT-CI), disease (rDRI),
and donor (age and CMV) characteristics. Incorporation of donor
age, which is believed to be a formidable contributor to the
outcome of transplantation, is an added strength of this tool.
Furthermore, TRIPOD guidelines were followed for external
validation and calibration attesting to the integrity of the model.
The model is easy to use, and a web-based nomogram can be
accessed here: https://allohsctsurvivalcalc.iowa.uiowa.edu/.
A few considerable limitations of this study include model

building using retrospectively collected data, restriction to PBSC
stem cell source, fewer numbers representing some disease
groups, such as multiple myeloma, and fewer haploidentical and
alternative donor transplants.
The endpoints of interest, target diseases, and the risk factors

used in the original model building will have to be considered
while applying any prediction tool(s) to a local dataset.
Validation of this tool in other external datasets and continuous

refinement with incorporation of validated global prognostic
variables, such as fragility index, cognitive assessment of patients,
and biomarker correlates, are expected to further improve
prognostic value.

REFERENCES
1. Byrd JC. Pretreatment cytogenetic abnormalities are predictive of induction

success, cumulative incidence of relapse, and overall survival in adult patients
with de novo acute myeloid leukemia: Results from cancer and leukemia group B
(CALGB 8461). Blood. 2002;100:4325–36.

2. Behrendt CE, Rosenthal J, Bolotin E, Nakamura R, Zaia J, Forman SJ. Donor and
Recipient CMV Serostatus and Outcome of Pediatric Allogeneic HSCT for Acute
Leukemia in the Era of CMV-Preemptive Therapy. Biol Blood Marrow Transplant.
2009;15:54–60.

3. Craddock C, Szydlo RM, Dazzi F, Olavarria E, Cwynarski K, Yong A, et al. Cyto-
megalovirus seropositivity adversely influences outcome after T-depleted unre-
lated donor transplant in patients with chronic myeloid leukaemia: The case for
tailored graft-versus-host disease prophylaxis. Br J Haematol. 2001;112:228–36.

4. Craddock C, Labopin M, Pillai S, Finke J, Bunjes D, Greinix H, et al. Factors pre-
dicting outcome after unrelated donor stem cell transplantation in primary
refractory acute myeloid leukaemia. Leukemia. 2011;25:808–13.

5. Yakoub-Agha I, Mesnil F, Kuentz M, Boiron JM, Ifrah N, Milpied N, et al. Allogeneic
marrow stem-cell transplantation from human leukocyte antigen-identical sib-
lings versus human leukocyte antigen-allelic-matched unrelated donors (10/10)
in patients with standard-risk hematologic malignancy: a prospective study from
the French. J Clin Oncol. 2006;24:5695–702.

6. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al.
Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool
for risk assessment before allogeneic HCT. Blood. 2005;106:2912–19.

7. Sorror ML, Sandmaier BM, Storer BE, Maris MB, Baron F, Maloney DG, et al.
Comorbidity and disease status-based risk stratification of outcomes among
patients with acute myeloid leukemia or myelodysplasia receiving allogeneic
hematopoietic cell transplantation. J Clin Oncol. 2007;25:4246–54.

8. Armand P, Deeg HJ, Kim HT, Lee H, Armistead P, de Lima M, et al. Multicenter
validation study of a transplantation-specific cytogenetics grouping scheme for
patients with myelodysplastic syndromes. Bone Marrow Transplant.
2010;45:877–885.

9. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and
refinement of the Disease Risk Index for allogeneic stem cell transplantation.
Blood. 2014;123:3664–71.

10. Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T, et al. Risk
score for outcome after allogeneic hematopoietic stem cell transplantation: a
retrospective analysis. Cancer. 2009;115:4715–26.

11. Parimon T, Au DH, Martin PJ, Chien JW. A risk score for mortality after allogeneic
hematopoietic cell transplantation. Ann Intern Med. 2006;144:407–14.

12. Shouval R, Labopin M, Bondi O, Mishan-Shamay H, Shimoni A, Ciceri F, et al.
Prediction of allogeneic hematopoietic stem-cell transplantation mortality

100 days after transplantation using a machine learning algorithm: a European
group for blood and marrow transplantation acute leukemia working party ret-
rospective data mining stud. J Clin Oncol. 2015;33:3144–51.

13. Kongtim P, Parmar S, Milton DR, Perez J, Rondon G, Chen J, et al. Impact of a
novel prognostic model, hematopoietic cell transplant-composite risk (HCT-CR),
on allogeneic transplant outcomes in patients with acute myeloid leukemia and
myelodysplastic syndrome. Bone Marrow Transplant. 2019;54:839–48.

14. Potdar R, Varadi G, Fein J, Labopin M, Nagler A, Shouval R. Prognostic scoring
systems in allogeneic hematopoietic stem cell transplantation: where do we
stand? Biol Blood Marrow Transplant. 2017;23:1839–46.

15. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the
intensity of conditioning regimens: working definitions. Biol Blood Marrow
Transplant. 2009;15:1628–33.

16. Uno H, Cai T, Tian L, Wei LJ. Evaluating prediction rules for t-year survivors with
censored regression models evaluating prediction rules for f-year survivors with
censored regression models. J Am Stat Assoc. 2007;102:527–37.

17. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. 2010;33:1–22.

18. Xiao N, Xu Q-S, Li M-Z. hdnom: Building Nomograms for Penalized Cox Models
with high-dimensional survival data. https://doi.org/10.1101/065524.

19. Artz AS, Pollyea DA, Kocherginsky M, Stock W, Rich E, Odenike O, et al. Perfor-
mance status and comorbidity predict transplant-related mortality after allo-
geneic hematopoietic cell transplantation. Biol Blood Marrow Transplant.
2006;12:954–64.

20. Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, Finke J, et al. CMV
serostatus still has an important prognostic impact in de novo acute leukemia
patients after allogeneic stem cell transplantation: a report from the acute leu-
kemia working party of EBMT. Blood. 2013;122:3359–64.

21. Ogonek J, Varanasi P, Luther S, Schweier P, Kühnau W, Göhring G, et al. Possible
impact of cytomegalovirus-specific CD8+ T cells on immune reconstitution and
conversion to complete donor chimerism after allogeneic stem cell transplan-
tation. Biol Blood Marrow Transplant. 2017;23:1046–53.

22. Inagaki J, Noguchi M, Kurauchi K, Tanioka S, Fukano R, Okamura J. Effect of
cytomegalovirus reactivation on relapse after allogeneic hematopoietic stem cell
transplantation in pediatric acute leukemia. Biol Blood Marrow Transplant.
2016;22:300–6.

23. Kimura F, Sato K, Kobayashi S, Ikeda T, Sao H, Okamoto S, et al. Impact of AB0-
blood group incompatibility on the outcome of recipients of bone marrow
transplants from unrelated donors in the Japan Marrow Donor Program. Hae-
matologica. 2008;93:1686–93.

24. Logan AC, Wang Z, Alimoghaddam K, Wong RM, Lai T, Negrin RS, et al. ABO
mismatch is associated with increased nonrelapse mortality after allogeneic
hematopoietic cell transplantation. Biol Blood Marrow Transplant.
2015;21:746–54.

25. Finke J, Bethge WA, Schmoor C, Ottinger HD, Stelljes M, Zander AR, et al. Stan-
dard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in
haematopoietic cell transplantation from matched unrelated donors: a rando-
mised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10:855–64.

26. Michallet M, Le QH, Mohty M, Prébet T, Nicolini F, Boiron JM, et al. Predictive
factors for outcomes after reduced intensity conditioning hematopoietic stem
cell transplantation for hematological malignancies: a 10-year retrospective
analysis from the Société Française de Greffe de Moelle et de Thérapie Cellulaire.
Exp Hematol. 2008;36:535–44.

27. Damodar S, Shanley R, MacMillan M, Ustun C, Weisdorf D. Donor-to-Recipient
ABO mismatch does not impact outcomes of allogeneic hematopoietic cell
transplantation regardless of graft source. Biol Blood Marrow Transplant.
2017;23:795–804.

28. Sorror ML, Storb RF, Sandmaier BM, Maziarz RT, Pulsipher MA, Maris MB, et al.
Comorbidity-age index: a clinical measure of biologic age before allogeneic
hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56.

29. Vaughn JE, Storer BE, Armand P, Raimondi R, Gibson C, Rambaldi A, et al. Design
and validation of an augmented hematopoietic cell transplantation-comorbidity
index comprising pretransplant ferritin, albumin, and platelet count for predic-
tion of outcomes after allogeneic transplantation. Biol Blood Marrow Transplant.
2015;21:1418–24.

30. Dreger P, Sureda A, Ahn KW, Eapen M, Litovich C, Finel H, et al. PTCy-based
haploidentical vs matched related or unrelated donor reduced-intensity con-
ditioning transplant for DLBCL. Blood Adv. 2019;3:360–69.

31. Ciurea SO, Kongtim P, Hasan O, Ramos Perez JM, Torres J, et al. Validation of a
Hematopoietic Cell Transplant - Composite Risk (HCT-CR) model for post trans-
plant survival prediction in patients with hematologic malignancies. Clin Cancer
Res. 2020; 26:2404–10. https://doi.org/10.1158/1078-0432.ccr-19-3919.

32. Shouval R, Bondi O, Mishan H, Shimoni A, Unger R, Nagler A. Application of
machine learning algorithms for clinical predictive modeling: a data-mining
approach in SCT. Bone Marrow Transplant. 2014;49:332–7.

K. Nadiminti et al.

8

Blood Cancer Journal          (2021) 11:183 

https://allohsctsurvivalcalc.iowa.uiowa.edu/
https://doi.org/10.1101/065524
https://doi.org/10.1158/1078-0432.ccr-19-3919


33. Shaw BE, Logan BR, Spellman SR, Marsh S, Robinson J, Pidala J, et al. Develop-
ment of an unrelated donor selection score predictive of survival after HCT:
donor age matters most. Biol Blood Marrow Transplant. 2018;24:1049–56.

34. Karam E, Laporte J, Solomon SR, Morris LE, Zhang X, Holland HK, et al. Who is a
better donor for recipients of allogeneic hematopoietic cell transplantation: a
young HLA-mismatched haploidentical relative or an older fully HLA-matched
sibling or unrelated donor? Biol Blood Marrow Transplant. 2019;25:2054–60.

35. Shimoni A, Labopin M, Finke J, Ciceri F, Deconinck E, Kröger N, et al. Donor
selection for a second allogeneic stem cell transplantation in AML patients
relapsing after a first transplant: a study of the Acute Leukemia Working Party of
EBMT. Blood Cancer J.2019;9:88.

36. Bastida JM, Cabrero M, Lopez-Godino O, Lopez-Parra M, Sanchez-Guijo F, Lopez-
Corral L, et al. Influence of donor age in allogeneic stem cell transplant outcome
in acute myeloid leukemia and myelodisplastic syndrome. Leuk Res.
2015;39:828–34.

37. Seo S, Kanda J, Atsuta Y, Uchida N, Ohashi K, Fukuda T, et al. The impact of donor
age on outcome after unrelated bone marrow transplantation: comparison with
unrelated cord blood transplantation. Blood. 2015;126:154–54.

38. Rezvani AR, Storer BE, Guthrie KA, Schoch HG, Maloney DG, Sandmaier BM, et al.
Impact of donor age on outcome after allogeneic hematopoietic cell transplan-
tation. Biol Blood Marrow Transplant. 2015;21:105–12.

39. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW,
et al. Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med.
2015;162:W1–73.

40. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD):
The TRIPOD statement. Ann Intern Med. 2015;162:55–63.

41. Lim AB, Roberts AW, Mason K, Bajel A, Szer J, Ritchie DS. Validating the allogeneic
stem cell transplantation disease risk index: Sample size, follow-up, and local data
are important. Transplantation. 2015;99:128–32.

42. Törlén J, Remberger M, Le Blanc K, Ljungman P, Mattsson J. Impact of pre-
transplantation indices in hematopoietic stem cell transplantation: knowledge of
center-specific outcome data is pivotal before making index-based decisions. Biol
Blood Marrow Transplant. 2017;23:677–83.

43. Xhaard A, Porcher R, Chien JW, de Latour RP, Robin M, Ribaud P, et al. Impact of
comorbidity indexes on non-relapse mortality. Leukemia. 2008;22:2062–69.

44. Shouval R, Fein JA, Shouval A, Danylesko I, Shem-Tov N, Zlotnik M, et al. External
validation and comparison of multiple prognostic scores in allogeneic hemato-
poietic stem cell transplantation. Blood Adv. 2019;3:1881–90.

45. Justice AC. Assessing the Generalizability of Prognostic Information. Ann Intern
Med. 1999;130:515–24.

AUTHOR CONTRIBUTIONS
SM, MS and KN designed the study. KN, ES, LD, and K.L collected data. SM and BL
analyzed and performed statistical analysis, and developed the model. KN and SM
wrote the paper. MH, YJ, HBA, ML, MP, MS, WH, UF, and MS provided and interpreted
the clinical data and reviewed the paper.

COMPETING INTERESTS
The authors declare no competing interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41408-021-00573-6.

Correspondence and requests for materials should be addressed to Kalyan
Nadiminti or Sarah L. Mott.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

K. Nadiminti et al.

9

Blood Cancer Journal          (2021) 11:183 

https://doi.org/10.1038/s41408-021-00573-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A novel Iowa&#x02013;nobreakMayo validated composite risk assessment tool for allogeneic stem cell transplantation survival outcome prediction
	Introduction
	Patients and methods
	Endpoints and definitions
	Statistical analysis

	Results
	Comparison of patient cohorts
	Outcomes
	Two-year disease-free survival
	Two-year overall survival

	Discussion
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




