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Abstract

Background: Initiation of transcription is essential for most of the cellular responses to environmental conditions and for
cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as
well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors
(TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In
eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better
understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during
transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet
annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to
predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to
be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of
nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method
should be easily applicable to many species.

Results: Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear
proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing
TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.

Conclusion: As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using
only information about their sequence composition, we have developed a completely new method for predicting a
functional class of TF interacting protein partners with high precision and accuracy.
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Introduction

The central dogma of biology revolves around three major

processes: DNA replication, transcription, and translation [1].

Initiation of transcription is in the core of most of the cellular

responses to environmental conditions [2]. It also determines the

cell and tissue specificity [3]. The focus of this study is functional

annotation of nuclear proteins within transcription factor (TF)

complexes. Transcription initiation is a highly dynamic and

regulated process [4]. It involves interactions of different

transcription-associated proteins, ligands and TFs forming protein

complexes that cooperatively act to create the environment

allowing RNA polymerase to initiate transcription. Nuclear

proteins from different functional classes interact with TFs during

the transcription initiation [5]. Among these, our focus is on TFs,

transcription co-factors (TcoFs), and other nuclear proteins that

cannot be classified being either TFs or TcoFs. We follow the

definition of TcoF by [6] where it is defined as a protein that binds

to TF, modulates transcription initiation through such a complex

and itself does not bind DNA.

Studying protein interactions has been a field of major interest

in systems biology and bioinformatics over the past few years [7–

9]. These studies are based on a combination of laboratory

experiments with proven interactions [10] and studies based on

these proven interactions in order to investigate potentially novel

protein-protein interactions (PPIs), so as to build predictive models

[11]. Studies such as [12] revealed some potentially general rules

that govern interactions between two proteins. Such rules are

termed PPI Indicators. PPI Indicators are detected at various

levels including the genomic context through evolution, the level of

physico-chemical properties of amino acids, and the structural

level [13]. Thus, it can be observed that the PPIs are based on

physico-chemical parameters of amino acids present in the
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interacting proteins and sequence/structural specific information

that govern their interactions. Although a number of physico-

chemical parameters have been used to study PPIs, not all of them

exhibited high resolution in resolving and identifying PPIs [14].

The same is observed with the sequence/structure based

identifiers [14]. PPI studies have focused on the proteome

interactome at the cellular/tissue levels, while very few studies

have investigated the interactions between specific protein subsets,

for example, proteins involved in a specific process [15,16]. It was

hypothesized [17] that there could be an over-representation of

certain interaction rules within subsets of specific proteins from the

global PPI map owing to the difference in the activities performed

by these protein subsets. However, to the best of our knowledge,

little attention has been devoted to interactions within specific

classes of proteins.

The transcription process is one of the most challenging

regarding studies of PPIs due to its highly dynamic nature that

involves multiple nuclear proteins. Extensive research has been

conducted on TF and DNA interactions, both computationally

and experimentally [18]. Work has also been carried out in

identifying interactions between two TFs [16,19]. However, the

problem we study here is not prediction of the binding of two

proteins. Rather we study the functional identity/characteristics of

the TF binding proteins. This can help us to better annotate

proteins involved in transcription regulation, which ultimately

helps in analysis and understanding of transcription regulation

process. To the best of our knowledge, no similar study has been

published to date. For example, our system suggests that

Exophilin-5 (EXPH5) and Cleavage and polyadenylation speci-

ficity factor subunit 6 (CPSF6) could be classified as TcoFs, while

suppression of tumorigenicity 5 (ST5) and Proteasomal ubiquitin

receptor ADRM1 could additionally be classified as TF.

The aim of this research is to develop a simplified method to

predict the functional class of a protein that binds a TF. The

functional classes we consider here are: (i) TF, (ii) TcoF, or (iii)

other nuclear protein. For this functional class prediction we use

only the amino acid sequence properties of the interacting

proteins. Our bioinformatics-based approach analyses three sets

of binding protein pairs: TF-TcoF, TF-TF, and TF-other

(protein). We have been successful in using amino acid-based

physico-chemical information contained in the binding protein

pairs to build models capable of identifying and differentiating the

above-mentioned categories of interacting proteins. Our classifi-

cation systems achieved high accuracies [20] in distinguishing TFs

and TcoFs from other nuclear proteins, and TFs from TcoFs

respectively. In addition, we developed a web application that

performs these predictions, which is publically accessible at http://

www.cbrc.kaust.edu.sa/tftcofc. Our method can help in comple-

menting annotation of the currently known pool of nuclear

proteins. Since only the knowledge of protein sequences is

required in addition to protein interaction, the method, in

principle, should be easily applicable to many species.

Results

Experimentally validated binding between TF and TcoF, as well

as between TF and TF, and TF and other nuclear proteins from

TcoF-DB [6] were used to develop our models (more details in

Supplementary Table 2 and 3 in Materials S1). All unique

instances of interactions from TcoF-DB were classified into three

cases:

N TF-TcoF: Here, the first of the binding proteins is a TF and

the second is a TcoF. A total of 2401 instances were identified.

N TF-TF: Here, the first of the binding proteins is a TF and the

second is a TF. A total of 1156 instances were identified.

N TF-other: Here, the first of the binding proteins is TF and the

second is another nuclear protein (not TF, not TcoF). A total

of 3437 instances were identified.

The amino acid sequences for all binding proteins were

extracted from the Universal Protein Resource database [21]

(http://www.uniprot.org/).

The Amino Acid Index database [22] (http://www.genome.jp/

aaindex/) consists of 544 physico-chemical characteristics for each

amino acid. Based on the previous PPI studies [11,12] we used two

sets of these characteristics for our experiments. The one with 171

characteristics (see Supplementary Table 1 in Materials S1)

selected based on our assessment of relevance of these character-

istics for protein-protein interactions, and the other that used all

544 characteristics. A performance comparison of different

classifiers (Random Forest, J48, Bayesian Network, Naı̈ve Bayes

classifier, RBF Network, LibSVM) with these two feature sets is

shown in Supplementary Table 6, 7 and 8 in Materials S1).

The values of all the amino acid properties obtained for the

interacting protein pairs were used to build a feature vector for

each instance of binding proteins. The feature vectors consisting of

171 features for all the instances were used to develop efficient

predictive models for our problem. We performed various

experiments (Supplementary Tables 5–11 in Materials S1) with

the WEKA tool [23] to determine the most appropriate model for

recognizing the functional class of TF binding proteins for the

cases as described above.

We have developed two models, Model 1 and Model 2, to

recognize the nature of the binding partner of TFs. Model 1 aims

at distinguishing if the binding partner of TF is ‘‘TF or TcoF’’

(TF/TcoF), or if it is ‘‘other’’ nuclear protein. Due to the fact that

we have to ensure that Model 1 produces the same prediction

score if the order of the bound TFs is TFa-TFb or TFb-TFa,

Model 1 was composed of two sub-models (M1.1 and M1.2) to

cater for this situation. M1.1 was trained using TFa-TFb ordering

in the cases when the binding partner of TF was TF, while M1.2

was trained using the reverse ordering for the same cases.

Since Model 1 separates TF binding partners to either ‘‘TF/

TcoF’’ or ‘‘other’’ nuclear proteins, the second model, Model 2,

attempts to distinguish if the TF binding partner is TF or TcoF.

For the same reasons as for Model 1, Model 2 was composed of

two sub-models (M2.1 and M2.2). M2.1 was trained using TFa-

TFb ordering in the cases when the binding partner of TF was TF,

while M2.2 was trained using the reverse ordering for the same

cases (Supplementary Table 4 in Materials S1).

The most successful models were based on Random Forest

classifiers. The accuracies of both Random Forest models based on

10-fold cross-validation were quite similar (M1.1:92.1%,

M1.2:92.0%, M2.1:95.8%, M2.2:96.3%).

We performed a number of additional experiments to assess the

methodology and model stability. We randomly selected 10% of

the total data for independent testing maintaining the proportion

of the positive and negative cases. We then trained our models on

the remaining 90% of the data and evaluated them on the

extracted independent 10%. Based on these test results, our system

suggests that Exophilin-5 (EXPH5), Cleavage and polyadenylation

specificity factor subunit 6 (CPSF6) could be classified as TcoFs,

while suppression of tumorigenicity 5 (ST5) and Proteasomal

ubiquitin receptor ADRM1 could be classified as TFs. In

Supplementary Tables 9 and 10 in Materials S1 we provide

additional accuracy results based on a/3-fold cross-validation, b/

5-fold cross-validation, c/when the 2/3 of the data is used for
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training and 1/3 for testing, as well as d/when 90% of the data is

used for training and 10% for testing. We chose Random Forrest

models (as the best and most consistently performing ones) to

implement in a web-based analysis system (workflow presented in

Figure 1) available at http://www.cbrc.kaust.edu.sa/tftcofc. This

system is capable of predicting the functional class of the TF

binding protein when the system is provided with information on

the binding protein pair, where one of proteins is a known TF.

The interface allows the user to input pair(s) of binding proteins in

the form of their UniProt identifiers [21] and as result the system

returns the prediction results for each protein pair.

Discussion

In this study we developed two recognition models that are able

to distinguish with high accuracy functional classes of proteins

binding to known TFs based on interaction of the types TF-TcoF,

TF-TF, and TF-‘‘other nuclear protein’’. These models explicitly

assign a functional class to the TF binding protein in an evaluated

protein interaction pair for cases when one of the interacting

partners is a known TF. We also implemented these predictive

models as a publicly accessible web application. To the best of our

knowledge there is no publicly available tool that performs similar

task. It is important to note that our system predicts the functional

classes of proteins based on a simplified method that uses only

amino acid sequence features of the binding proteins. Our

attempts to use protein domains for this problem resulted in

much inferior accuracy (Supplementary Table 11 in Materials S1).

This was a surprise to us, as we expected that using information on

protein domains should improve the accuracy of determination of

the protein classes considered. One of the reasons could be that it

was not possible to associate sufficient number of relevant protein

domains with all proteins from the interacting pairs we considered.

However, even with the simplified representation of the protein

sequences we did achieve very high accuracy, which suggests that

in this type of problems the averaging of amino acid properties

across the whole protein sequence, as we used in this study, may be

sufficient. Similar ideas were utilized in [16].

Model 1 was able to distinguish other nuclear proteins from

TF/TcoF class with specificity [20] of 93.5% for M1.1 and 93.3%

for M1.2. Similar results (specificity 92.7% for M2.1 and 94.1%

for M2.2) were achieved with Model 2 for the distinction between

TFs and TcoFs. Regarding sensitivity [20], Model 1.1 and Model

1.2 achieve equal 90.8%, while Model 2.1 and Model 2.2 achieve

97.3%. We additionally checked the robustness of our models by

using 3-fold and 5-fold cross-validations, as well as for the case

when 2/3 of data was used for training and 1/3 for testing. Based

on the results presented in Supplementary Table 5 in Materials S1,

we conclude that our models are indeed robust.

It is important to mention that the reported specificities,

sensitivities and accuracies were obtained from models built on

experimentally validated data regarding protein binding, and

curated functional class annotation of TFs and TcoFs. The results

suggest that the limited number of 171 features we used to

construct the models is sufficient for relatively high accuracy

prediction of the functional class of a TF binding partner. If we did

use all 544 amino acid properties from AAindex database, the

accuracy remained at the level very similar to when we used 171

features as shown in Supplementary Table 8 in Materials S1. That

demonstrates that the 32% of all features that we used in our

reduced feature set, does contain a significant fraction of the

Figure 1. Workflow of Analysis Pipeline. Given a set of binding proteins and depending on the model type, the analysis pipeline predicts the
functional identity of one of a TF binding partner. After a pair of binding proteins is given as the input, the pipeline calculates numerous amino acid
physico-chemical properties for the pair and generates a matrix of feature vectors. This matrix of feature vectors is submitted to the Random Forest
classifier that returns the predicted functional class assignment and the associated confidence score. The latter is a measure of how strongly the
average feature-class probabilities of all decision trees pointed to each class based on the information gain of those decision trees.
doi:10.1371/journal.pone.0068857.g001
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relevant amino acid properties for this particular problem, while

many of the less relevant features were eliminated.

Although the classification problem we dealt with could be

formulated as a multiclass problem, we found that it is

conveniently and efficiently solved as two 2-class problems. The

use of multiclass models from the WEKA package did not improve

classification accuracy, so we retained our original solution.

Finally, in one of the tests performed, we identified four TF

interacting proteins for which our system suggests potentially

additional annotation. For example, CPSF6 is known to play a

role in cleavage and polyadenylation factor complex by recruiting

other processing factors (see EntrezGene ID: 11052), while

ADRM1 (see Entrez Gene ID: 11047) suggests that it is involved

in transcription elongation process from RNA polymerase II

promoters and that it is functional in the nucleus. The GO

annotation for ST5 (see Entrez Gene ID: 6764) suggests that it

may alter cell morphology and cell growth.

Moreover, protein function predictor tool, FuncBase Gene

Function Prediction Viewer [24], provide the following putative

annotation, among many, that directly or indirectly support our

own function predictions for the above four proteins. These are as

follows:

1. CPSF6 (Entrez Gene ID 11052):

– FuncBase, (GO:0003712) transcription cofactor activity

– FuncBase, (GO:0003713) transcription coactivator activity

2. EXPH5 (Entrez Gene ID 23086):

– FuncBase, (GO:0045941, GO: 0045892) regulation of

transcription

– FuncBase, (GO:0003712, GO:0003713) transcription coac-

tivator activity

3. ST5 (Entrez Gene ID 6764):

– FuncBase, (GO:0016563) transcription activator activity

4. ADRM1 (Entrez Gene ID 11047):

– FuncBase, (GO: 0003702) RNA polymerase II transcription

factor activity

While the existing information about these four proteins does

not contradict our hypotheses, the validation to confirm or reject

them can only be done experimentally, which is beyond the scope

of our bioinformatics study.

Materials and Methods

Retrieving Protein Sequences and Interacting Domains
UniProt identification numbers from TcoF-DB (http://www.

cbrc.kaust.edu.sa/tcof/) were used to download protein sequences

from UniProt database (http://www.uniprot.org/) [21].

Data Processing
For each protein, 544 different physico-chemical properties

were determined using amino acid indices [22] available at

(http://www.genome.jp/aaindex/). For each of the binding

partner, a feature vector was built consisting of 544 features. In

a given protein sequence, the numerical value for each of the

features is determined as the average value of that feature across

all amino acids in that protein sequence. The list of these 544

features can be found at [21]. We also manually selected a set of

171 features we considered relevant for PPI (Supplementary Table

1 in Materials S1). These two sets are used in our study. We are

aware that the manual selection of the reduced feature set is

somewhat subjective and not optimal. However, we attempted to

eliminate the features that might not play important role in protein

binding and retain the ones that are most related in the functional

way to our case. On the other hand, to the best of our knowledge,

there is no published set of relevant features for the problem we

studied, so we hypothesised that some of the features that could be

suitable for PPI could also be relevant for our problem.

Model Building
The WEKA tool [23] was used to build the predictive models

and perform classification and validation steps. The WEKA

generated models are implemented in the web system based on the

use of 171 selected features. The description of exact parameters

used to build models with various classifiers together with the

achieved accuracy, as well as the definitions of performance

measures can be found in the supplementary material.

Web Application
A web application was developed to perform the prediction of

the functional class of one of the binding proteins as discussed

above. For every input pair of interacting proteins a feature vector

of 171 selected amino acid features is computed, submitted to a

prebuilt classification model (see Supplementary Table 1 in

Materials S1) and prediction is made. Each prediction is based

on the average prediction score of the two models. In case of

choosing Model 1, the results of confidence score predictions’ from

Model 1.1 and Model 1.2 is averaged and reported. The same

strategy has been implemented for Model 2. The predicted

functional class is returned to the user.

Supporting Information

Materials S1 Supplementary Table 1. Listing of used 171

amino acid indices. Supplementary Table 2. Description of the

dataset used in this study. Supplementary Table 3. Summary

of classes used to build models. Supplementary Table 4.
Definitions of models. Supplementary Table 5. Performance

of various classifiers using 171 features. Supplementary Table
6. Performance results of various classifiers used on 544 features.

Supplementary Table 7. Performance results of various

classifiers used on 171 features. Supplementary Table 8.
Comparison of accuracies across various classifiers using 171 and

544 features. Supplementary Table 9. Effect of cross validation

levels on various classifiers during model building stage. Supple-
mentary Table 10. Effect of percentage split levels on various

classifiers during model building stage. Supplementary Table
11. Comparative results between domains, AAI and AAI+do-

mains with 10-fold cross-validation.

(XLS)
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