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a b s t r a c t

Genetic disorders of haemoglobin (haemoglobinopathies), including the thalassaemias and sickle cell
anaemia, abound in historically malarious regions, due to the protection they provide against death from
severe malaria. Despite the overall spatial correlation between malaria and these disorders, inter-popu-
lation differences exist in the precise combinations of haemoglobinopathies observed. Greece and Italy
present a particularly interesting case study: their high frequencies of beta thalassaemia speak to a his-
tory of intense malaria selection, yet they possess very little of the strongly malaria protective mutation
responsible for sickle cell anaemia, despite historical migrational links with Africa where high frequen-
cies of sickle cell occur. Twentieth century surveys of beta thalassaemia and sickle cell in Greece, Sicily
and Sardinia have revealed striking sickle cell ‘hotspots’ – places where the frequency of sickle cell
approaches that seen in Africa while neighbouring populations remain relatively sickle cell free. It
remains unclear how these hotspots have been maintained over time without sickle cell spreading
throughout the region. Here we use a metapopulation model to show that (i) epistasis between the alpha
and beta forms of thalassaemia can restrict the spread of sickle cell through a network of linked subpop-
ulations and (ii) the emergence of sickle cell hotspots requires relatively low levels of gene flow, but the
aforementioned epistasis increases the chances of hotspots forming.

� 2012 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The malaria parasite has imposed arguably the strongest evolu-
tionary pressure of any pathogen on human populations. In 1949,
JBS Haldane suggested that this selection pressure may have
resulted in a high frequency of genetic blood disorders in malar-
ia-endemic populations (Haldane, 1949). This ‘malaria hypothesis’
is now widely accepted to apply to a variety of mutations affecting
the alpha or beta globin genes that encode the subunits of haemo-
globin (haemoglobinopathies), including those responsible for
sickle cell anaemia (Allison, 1954; Williams et al., 2005b); haemo-
globin C (Modiano et al., 2001); haemoglobin E (Chotivanich et al.,
2002) and the alpha and beta thalassaemias (Hill et al., 1988; Flint
et al., 1986). A recent review of the genetics of malaria resistance is
provided by Hedrick (2011); Taylor et al. (2012) have also carried
out a meta-analysis of the evidence for malaria protection provided
by each globin mutation.

Almost every old-world malarious region hosts a range of hae-
moglobinopathies, but – as reviewed in Flint et al. (1998) – the
suite of haemoglobinopathies observed varies between popula-
tions. Extensive molecular and epidemiological studies, motivated
by the enormous public health significance of these disorders, are
. Penman).
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starting to elucidate how mutations in the alpha and beta globin
genes may interact with one another to affect clinical phenotypes
(Kan and Nathan, 1970; Wainscoat et al., 1983a,b; Galanello
et al., 1989; Williams et al., 2005a). The haemoglobinopathies thus
represent a unique opportunity to compare the relative importance
of natural selection, migration and gene-gene interactions (epista-
sis) in generating spatial genetic variation in human populations.

It has been suggested that heterogeneity in the geographical
distribution of haemoglobinopathies results from the relatively re-
cent emergence of strong malaria selection at some point within
the last 8000 years, following the increase in human population
density associated with the advent of agriculture (Flint et al.,
1998). Under this scenario, there simply has not been enough time
for population mixing to produce a uniform pattern of mutations.
However, genetic spatial heterogeneity can also arise and be main-
tained in populations through a variety of other evolutionary and
ecological processes, (Buckee et al., 2004; Hedrick, 2006; Buckee
et al., 2007; Lawton-Rauh, 2008; Cushman et al., 2011; Neto
et al., 2011; Lappalainen et al., 2011). We have previously shown
that epistatic interactions among the haemoglobinopathies may
account for large-scale geographic differences in the relative fre-
quencies of haemoglobinopathies in African and Mediterranean
populations (Penman et al., 2009). In Africa, high frequencies of
sickle cell (bS) co-exist with frequencies of alpha thalassaemia that
do not exceed 50%, whereas in the Mediterranean, diverse alpha
and beta thalassaemic mutations are present, and bS is largely
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absent. We proposed that these contrasting suites of alleles could
be maintained by two well-documented genetic interactions: (i)
positive epistasis, where coinheriting alpha and beta thalassaemia
leads to a less severe blood disorder than that caused by beta
thalassaemia alone (Kan and Nathan, 1970; Wainscoat et al.,
1983a,b; Galanello et al., 1989; Weatherall and Clegg, 2001a) and
(ii) negative epistasis, where coinheriting alpha thalassaemia and
sickle cell trait leads to a loss of malaria protection (Williams
et al., 2005a; May et al., 2007). The former can allow relatively
low frequencies of the thalassaemias to exclude bS from a popula-
tion (Penman et al., 2009); the latter limits the frequency of alpha
thalassaemia when bS is present (Williams et al., 2005a), or could
even allow very high levels of alpha thalassaemia to exclude bS

(Penman et al., 2011).
Although this framework provides a parsimonious explanation

for the broad qualitative patterns observed across the two conti-
nents, striking local heterogeneities occur in the distribution of
blood disorders within populations, which cannot be accounted
for within a deterministic framework. Fig. 1 collates the results
of five geographical surveys that cover Greece, Sicily and Sardinia
(Barnicot et al., 1963; Stamatoyannopoulos and Fessas, 1964;
Siniscalco et al., 1966; Schiliro et al., 1986; Cao et al., 2008), and
reveals several interesting features: beta thalassaemia is ubiqui-
tous and bS is limited in its spatial distribution (as previously
observed), yet in a number of ‘hotspots’ the bS frequency observed
in Greek populations is extremely high (>0.1) and comparable to
that seen in Africa. It is unclear how these hotspots have been
maintained, and why bS has not spread further across the Mediter-
ranean given (i) the history of strong malaria selection in Greece
and southern Italy; (ii) the extremely high degree of malaria
protection bS provides, and (iii) the close migrational ties between
Africa, Greece, and Italy. Here, we explore these local patterns of
Fig. 1. Visualizing five studies of sickle cell and beta thalassaemia in the Medite
Stamatoyannopoulos and Fessas, 1964; Siniscalco et al., 1966; Cao et al., 2008; Schiliro
heterozygotes; we have converted these into allele frequencies, but since homozygote
underestimate. Supplementary Table S1 provides more information about these data. Th
reader is refered to the web version of this article.).
genetic variation in the Mediterranean, and develop a metapopula-
tion model to investigate how processes such as migration and
selection impact the local heterogeneity of blood disorders. This
follows the successful use of linear metapopulation (‘stepping
stone’) population genetic models by Livingstone (Livingstone
1969a, 1976, 1989) to explore the distribution of malaria protec-
tive beta globin variants, both in West Africa and across the old
world. We confirm that epistatic interactions between the thalas-
saemias can help keep bS frequencies low throughout most of a
population. We also show that hotspots of sickle such as those ob-
served in current Mediterranean populations require low levels of
gene flow between the hotspot region and the rest of the popula-
tion if they are to be maintained, but that epistasis increases the
range of gene flows at which hotspots are possible. It is widely be-
lieved that bS came to the Mediterranean from Africa. Our results
suggest that bS could have first been introduced to the Mediterra-
nean >2000 years before the present.
2. Methods

We limit our attention to the three most common haemoglobin-
opathies in the Mediterranean region (Weatherall and Clegg,
2001b): alpha thalassaemia caused by a single deletion of an alpha
globin gene (represented as a+); beta thalassaemia caused by a
mutation which significantly reduces but does not completely
eliminate beta globin production (b+), and the point mutation
responsible for sickle cell anaemia (bS). This scheme captures the
most important features of Mediterranean haemoglobinopathies,
but necessarily simplifies the situation at the beta globin
locus by representing multiple beta thalassaemic mutations with
a single variant (see Supplementary material). We consider a
rranean. This map summarises data from five studies: (Barnicot et al., 1963;
et al., 1986). Each study recorded the number of beta thalassaemia or sickle cell

s were excluded from the studies shown these allele frequencies may be a slight
is map was produced using arcGIS10 (For interpretation to colours in this figure, the
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metapopulation consisting of 40 subpopulations (demes) linked
via migration.

Migration between demes was simulated every generation by
letting a certain proportion of each deme (m) be assigned allele fre-
quencies equal to the average allele frequencies across all the
demes connected to it. Connections between demes followed a
predefined network structure (see Supplementary Methods and
Watts and Strogatz, 1998). m represents ‘gene flow’ in the sense
of the proportion of alleles in a population which originated out-
side of that population, and the chosen value of m determines
whether the demes represent a small villages or settlements, with
strong ties to other villages in the same region, or larger collections
of settlements in different regions, with weaker migrational ties.

The frequency of each gene of interest within each deme was
calculated using the following standard population genetic equa-
tion (see Mandel, 1958) relating the frequency of allele i (pi) in gen-
eration t + 1 to the frequency of the allele i in generation t:

piðtþ1Þ ¼ piðtÞ:

Pj¼2;k¼3;l¼3
j¼1;k¼1;l¼1ðaijklpjpkplÞ

Pi¼2;j¼2;k¼3;l¼3
i¼1;j¼1;k¼1;l¼1aijklpipjpkpl

where i and j represent the frequencies of alleles at the a-globin lo-
cus and take values 1 or 2, and k and l represent the frequencies of
allele at the b-globin locus and take values 1,2, or 3. aijkl represents
the fitness of genotype ‘ijkl’. We have chosen to ignore the effects of
genetic drift, since all the alleles we are concerned with are under
strong selection from malaria. a-globin and b-globin are considered
completely unlinked, since the alpha and beta globin clusters occur
on different chromosomes in humans.

In order to investigate the effects of epistasis, each genotype
was allocated two mortality rates: one associated with the severity
of its blood disorder, and one associated with the level of malaria
protection it experiences (see Table 1). We converted these mortal-
ity rates into a measure of relative fitness (see Supplementary
material), and considered two different scenarios: one where posi-
tive epistasis between alpha and beta thalassaemia was included,
and one where it was not. Negative epistasis between alpha thalas-
saemia and sickle cell trait was always included, since we have
strong evidence that it occurs (Williams et al., 2005a; May et al.,
2007), and we wanted to assess the impact of positive epistasis
explicitly. Whenever we refer to ‘epistasis’ in the results and
discussion, we are referring to positive epistasis between alpha
and beta thalassaemia.

At the start of each simulation, all demes were assumed to con-
tain a set starting frequency (T) of a+, and the same starting fre-
quency of b+. We ran two different versions of the model – in the
Table 1
The relative susceptibility to death from malaria and blood disorder mortality rates
assigned to each genotype, with and without epistasis. We wished to determine the
influence of positive epistasis between alpha and beta thalassaemia on the generation
of bS hotspots in the Mediterranean region. The unbracketed figures in Table 1 include
this epistasis; the bracketed figures do not include this epistasis. A negative epistatic
interaction between alpha thalassaemia and sickle cell trait was always present (see
the bS b column), based on a combination of observations by Williams et al. (2005a),
May et al. (2007). More details about the values chosen in this table are given in the
Supplementary Information, Section 1.

b b b+ b bS b b+ b+ bS bS b+ bS

Blood disorder
aa/aa 0.04 0.0405 0.04 0.2 Lethal Lethal
a-/aa 0.04 0.04 0.04 0.05 (0.2) Lethal Lethal
a-/a- 0.0415 0.04 0.0415 0.042 (0.2) Lethal Lethal

Malaria susceptibility
aa/aa 1 0.5 0.06 0.5 Lethal Lethal
a-/aa 0.85 0.5 0.11 0.5 Lethal Lethal
a-/a- 0.6 0.5 0.9 0.5 Lethal Lethal
first, we assumed that bS was first introduced 100 generations
ago (assuming a generation time of 20 years, this is approximately
2000 years ago), at a frequency of 0.001, into a population contain-
ing a fixed proportion of the thalassaemias. For the second sce-
nario, we considered 200 generations (4000 years) of malaria
selection, and investigated what happened when bS was first intro-
duced at various time points. After the first introduction of bS in
any simulation, we allowed it to arrive at a frequency of 0.001 in
a randomly chosen subset of subsequent generations. The first
introduction of bS was always into deme 20, and subsequent intro-
ductions were always into either 20 or 40, which represent trading
posts, or other entry points into the region.

Reported beta thalassaemia frequencies from Mediterranean
communities range between 0.014 and 0.19 (Fig. 1). Alpha thalas-
saemia frequencies are less well-known (see further discussion in
the Supplementary material). The studies which made up Fig. 1
have been conducted at different scales: villages, sets of villages,
or screening centres serving whole regions – so we do not claim
to have a clear idea of the true frequency at a particular spatial
scale, and nor do we seek to exactly recapitulate the history of
the Mediterranean in our simulations. Nevertheless, we have ap-
plied some constraints in an attempt to keep our simulations real-
istic: we aimed to keep ‘modern day’ beta thalassaemic frequencies
below 0.19 and ‘modern day’ alpha thalassaemia frequencies be-
low 0.3 (see Supplementary material). This limited the ranges of
starting thalassaemia frequencies we tested.

For the sake of simplicity, we have only included one element of
stochasticity in this model: the randomly chosen generations in
which sickle cell re-challenges the population. Supplementary
Fig. S7 illustrates how results vary over 30 repeats, with different
sets of parameters. We considered that this minimum of 30 repeats
gave a reliable sense of the emerging patterns. 100 repeats were
used to generate each cell of a heatmap.
3. Results

3.1. Epistasis can restrict the spread of bS , despite extensive gene flow

Figs. 2a and b illustrate how gene flow (x axis) and the frequency
of thalassaemia present when bS arrives (y axis) affect the spread of
bS through the population. So long as the thalassaemias are above a
certain threshold when bS arrives (0.08 in this case), the inclusion of
positive epistasis between alpha and beta thalassaemia can limit its
distribution over the next 100 generations. This result echoes our
2009 paper (Penman et al., 2009), but extends our general observa-
tion – that a threshold level of epistatically interacting thalassae-
mias can restrict bS – to a network of linked subpopulations,
some of which are repeatedly challenged by bS.

In our 2009 paper, complete competitive exclusion of bS by beta
thalassaemia was possible, and the ‘winning’ allele was deter-
mined by: (i) the relative fitness of beta thalassaemia (which is
inherently bound up with its blood disorder severity, malaria pro-
tectiveness, and whether or not epistasis with alpha thalassaemia
is present) and (ii) the frequency of beta thalassaemia when sickle
cell arrives (see Supplementary Fig. S4 and Penman et al., 2009).
Within the metapopulation presented here, complete exclusion
of bS is not possible during the 100 generations we have simulated
(the equilibrium point described in Penman et al., 2009 is not
reached). However, the average frequency of bS in the population
after 100 generations is lower in the presence of epistasis than in
its absence, and epistasis renders the entire population less suscep-
tible to the effects of increasing the rate of gene flow (Fig. 2 and
Supplementary Fig. S5).

Contrary to our expectations, the precise network structure
underlying patterns of migration between demes was not a
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Fig. 2. The effect of gene flow and thalassaemia start frequencies on the spread of
sickle cell, with and without epistasis. Panels (a) and (b) illustrate the results of a
scenario where bS was first introduced 100 generations ago, into a population
containing fixed (and identical) frequencies of both a and b thalassaemia (y axis).
Malaria selection is applied to every deme at a level of 0.005 years�1, and after its
first introduction, bS is assumed to re-challenge the population in 30% of
subsequent generations, chosen at random. The colour of each cell in the heatmap
indicates the mean proportion of demes where the frequency of bS is <0.005 after
100 generations. 100 repeated simulations were used to generate each cell.
Supplementary Fig. S5 offers a detailed illustration of the data underlying this figure
for thalassaemia starting frequencies of 0.04 and 0.08. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. The effect of gene flow and thalassaemia start frequencies on the formation
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primary determinant of the spread of sickle cell (Supplementary
Fig. S7). Whilst in certain circumstances an effect of network struc-
ture is discernible (discussed in the supplementary material), its
impact was minor in comparison to the starting frequency of thal-
assaemia, or the level of gene flow between the demes.

How does a 100 generation simulation play out with the start-
ing thalassaemia allele frequencies of Fig. 2? As shown in Supple-
mentary Fig. S6, alpha thalassaemia frequencies increase over the
100 generations, reaching a ‘present day’ frequency of �0.28. Beta
thalassaemia frequencies on the other hand, actually decline from
their starting frequency of 0.08 (although as can be seen in Supple-
mentary Fig. S4, under epistasis they would eventually recover).
We can conclude that (i) a thalassaemia frequency of 0.08 100 gen-
erations ago need not be associated with unrealistic beta thalassae-
mia frequencies today, but also that (ii) for bS to be kept out of a
population, some earlier process (such as long term malaria selec-
tion, or simply the rapid spread of thalassaemic alleles in small
populations) must have led to high thalassaemia levels before bS

arrived.
of hotspots, with and without epistasis. Panels (a) and (b) illustrate the results of a
scenario where bS was first introduced 100 generations ago, into a population
containing fixed (and identical) frequencies of both a and b thalassaemia (y axis).
Malaria selection is applied to every deme at a level of 0.005 years�1, and after its
first introduction, bS is assumed to re-challenge the population in 100% of
subsequent generations. The colour of each cell in the heatmap indicates the
average number of hotspots observed per metapopulation over 100 simulations at
that parameter combination. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
3.2. The likelihood of ‘‘sickle hotspots’’ is increased by epistasis but only
under low levels of gene flow

As discussed in the introduction, the distribution of bS in the
Mediterranean is highly discontinuous. Based on the observations
in Fig. 1, where the Chalkidhiki peninsular in Greece represents a
‘spike’ of bS surrounded by an environment of lower frequencies,
we defined a ‘bS hotspot’ as a deme with a bS frequency >0.06,
where the median frequency of bS in demes with which it has a di-
rect connection via migration is <0.02. We chose this definition so
as to capture the idea of bS being contained within a particular
region.

Fig. 3 illustrates the likelihood of obtaining such hotspots with
and without epistasis, for different thalassaemia starting frequen-
cies; levels of gene flow and levels of malaria selection. Two results
are apparent: (i) hotspot demes are only possible at relatively low
levels of interdeme gene flow, but (ii) the inclusion of epistasis and
a threshold starting frequency of thalassaemia increases the
parameter space where hotspots are possible. Supplementary Figs.
S7 and S8 provide a fuller exploration of the effects of network
structure and sickle cell challenge on the formation of hotspots.
Once again, network structure appears to be one of the least impor-
tant factors.

The likelihood of hotspots in the scenario captured in Fig. 3 is
maximised when epistasis is present and the starting frequency
of alpha and beta thalassaemia is 0.08 (Fig. 3b). This result can be
understood when viewed in conjunction with Fig. 2b: at lower thal-
assaemia starting frequencies, bS will occupy a large proportion of
the entire network, but at higher thalassaemia starting frequencies,
the thalassaemias are so effective at keeping bS out that not even a
small hotspot can form.

To explore the formation of hotspots further, we developed the
pared-down network presented in Supplementary Fig. S9. Two
communities with high internal inter-deme gene flow are linked
by a connection of much lower gene flow. bS is introduced at a high
frequency into one deme in community one (simulating the arrival,
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perhaps, of a population transplanted from Africa). By considering
the frequencies of bS in the two communities, Supplementary
Fig. S9 lets us move away from our somewhat arbitrary definition
of a hotspot above, and see that for any chosen ratio of bS frequen-
cies in the two communities (e.g. a ratio of 10:1), the inclusion of
epistasis allows that ratio to occur at a higher level of gene flow
between the communities.
3.3. Epistasis allows for a longer history of bS challenge in the
Mediterranean

We next explored the temporal scales underlying sickle cell
hotspot formation and maintenance in the region. As described in
the Section 2, we considered a 200 generation long scenario, in
which we tested the outcomes when bS was first introduced at
different time points. Fig. 4a matches the time of entry of bS to
approximate present day Sardinian and Greek/Sicilian patterns,
for one such timeline. Details of the criteria for each present day
pattern are provided in the figure legend. The inclusion of epistasis
increases the range of times for the first introduction of bS that are
consistent with a present day Sardinian scenario. The Greek/Sicilian
pattern is associated with a relatively narrow window for the first
introduction of bS, but the presence of epistasis allows this window
to occur earlier – implying a longer history of bS challenge.

The small window of potential first entry times for bS associated
with the Greek/Sicilian pattern reflects the transient nature of the
hotspots themselves: enough time must pass so that bS attains hot-
spot frequencies, but not so much time that bS can spread too much
into the surrounding demes.

Figs. 4b and c offer snapshots of different stages of the simulation,
for a scenario where the first entry of sickle cell was 110 generations
ago. In the presence of epistasis, present day high frequencies of bS

are limited to its points of entry and their immediate contacts; with-
out epistasis, by contrast bS has spread further into the secondary
contacts of the original points of entry. If we allowed these popula-
tions to continue to evolve over another 100 generations of malaria
selection, we arrive at the scenarios shown at the right hand side.
Without epistasis, bS dominates the population, and will eventually
take over completely: genetic heterogeneity is thus a short-lived
phenomenon. In the presence of epistasis, however, hotspots can
be maintained indefinitely. Gene-gene interactions therefore pro-
vide a mechanism for generating genetic heterogeneity in popula-
tions that is stable in time and space.
4. Discussion

Our model illustrates that a threshold level of epistatically
interacting thalassaemias can (i) keep bS frequencies very low in
most demes in a population, and (ii) extend the circumstances un-
der which bS hotspots are possible, within the overall constraint
that hotspots can only emerge in relatively self-contained commu-
nities with low levels of gene flow to the rest of the population. We
propose that a combination of these two effects could have allowed
bS to challenge the Mediterranean for over two millennia, yet still
be restricted to a few isolated regions today. These results confirm
our previous large-scale model (Penman et al., 2009), and provide a
spatially explicit framework incorporating migration, local hetero-
geneity and plausible time frames.

Published data on the distribution of haemoglobinopathies in
the Mediterranean can be resolved into two main patterns: Greece
and Sicily, where bS is present and attains pockets of high fre-
quency, and Sardinia, where bS is almost completely absent.
Explaining the Sardinian pattern is straightforward: Fig. 2 illus-
trates that, in the presence of positive epistasis between alpha
and beta thalassaemia, a threshold level of the thalassaemias can
prevent sickle cell from taking over a population – regardless of
the level of gene flow between demes within that population.
Explaining the hotspots of the Greek/Sicilian population is more
challenging: hotspot demes only form within a relatively con-
strained region of parameter space. We saw in Fig. 4 that the
window for the first introduction of bS associated with the
Greek/Sicilian scenario is small both with and without epistasis,
but that epistasis causes it to occur earlier. The interaction
between alpha and beta thalassaemia slows the rise in frequency
of bS, delaying both the time taken to reach hotspot levels and its
rate of spread out of the introduction deme.

We have illustrated the behaviour of the model at various rates
of gene flow, but what is a reasonable degree of mixing to assume
between different demes within a metapopulation? Adams and
Kasakoff (1976) explored the relationship between endogamy
and population size. They found that sub populations in most soci-
eties could be described in terms of ‘80% endogamous groups’: a
tribe in a pastoralist society; a valley in the highlands of New
Guinea; a set of small villages in a peasant society. Levels of endog-
amy higher than 80% were typically associated with whole ethnic
groups. When the gene flow level in our model (m) is set at 0.1,
our demes are consistent with 80% endogamous groups (assuming
20% of marriages bring in a partner from outside the group, con-
tributing 10% of the genetic material to the next generation). We
found that gene flows of 1% or lower were necessary to generate
hotspot demes. This implies that the type of deme which can exist
as a sickle cell hotspot cannot be a single 80% endogamous local
population: instead it may be a relatively closed collection of such
80% groups, with geographical or social barriers that limit genetic
exchange with other populations.

Metapopulation approaches are widely used in ecology to mod-
el the dynamics of populations in fragmented or spatially hetero-
geneous habitats (reviewed in Hanski and Gilpin, 1991), and
were first applied to the haemoglobinopathies by Livingstone in
the form of a ‘stepping stone’ population genetic model. In such
a model, demes are ranged along a line, most migration occurs
between immediate or secondary neighbours, but there is also
the possibility of random long-distance migration (Livingstone
1969a, 1976, 1989). Livingstone considered the generation and
maintenance of clines in the frequencies of bS in West Africa and
beta thalassaemia in Sardinia (Livingstone, 1969a); the overlap-
ping clines of bS, beta thalassaemia and haemoglobin C in West
Africa (Livingstone, 1976), and the interaction between bS, beta
thalassaemia, haemoglobin C and haemoglobin E on an inter-
continental scale (Livingstone, 1989). This series of papers demon-
strated that the global distribution of the malaria protective
haemoglobinopathies is a product of human migration and gene
flow as well as malaria selection. In response to Livingstone’s work,
Fix (see review: Fix, 2003 and chapter 4 of Fix, 1999) considered
other factors which could lead to the rapid accumulation and
spread of malaria protective haemoglobin variants, including kin-
structured migration (where families were assumed to migrate
together, concentrating the import of particular alleles) and a
group selection model in which demes with insufficient frequen-
cies of malaria protective alleles risked becoming extinct.

Both Fix’s and Livingstone’s work aimed to account for present
day allele frequencies and clines within realistic historical
timescales. Enhancing the spread of malaria protective variants
(by assuming long distance gene flow or the other processes
mentioned above) was necessary in order that present day patterns
could be achieved within the hundreds of generations that malaria is
thought to have exacted significant mortality on human popula-
tions. The work we have presented here is concerned with the oppo-
site problem: how could a high frequency of bS have accumulated in
a population under malaria selection, yet not spread over the course
of �100 generations? Our model differs from those of Livingstone



(a)

(b)

(c)

Fig. 4. A timeline of sickle cell introduction. In this simulation, the mixing level was set at 0.01, and bS was able to challenge the population in 75% of generations after its
point of initial introduction. The timeline is based on a generation time of 20 years. The frequencies of both alpha and beta thalassaemia at the beginning of the simulation
(200 generations before the present) were 0.02. Thirty repeats were carried out. The Greek and Sardinian patterns were defined as follows: for the Sardinian pattern, the mean
proportion of demes with a bS frequency <0.005 must be >0.9; for the Greek pattern, the mean proportion of demes with a bS frequency <0.005 must be >0.5, and the mean
number of hotspots for that entry time must be >0.1. The network pictures illustrate snapshots in one possible time line, when sickle cell was first introduced 120 generations
ago with (c) or without (b) epistasis. The colour of each node indicates the frequency of bS, and the size of each node indicates the intensity of malaria selection experienced by
that deme. The network diagrams in this figure were produced using Gephi (Bastian et al., 2009). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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and Fix in that we considered alleles at both the alpha and beta glo-
bin loci, not beta globin alone, and we sought to understand the role
of epistasis in creating present day patterns. Epistasis affects the rate
of spread of sickle cell, but it can only help to generate hotspots if
gene flow in and out of the hotspot population is already low.

Unlike Livingstone’s models, Fix developed models considering
whole numbers of individuals. This modification made it easier to
consider both kin structured migration and genetic drift. Living-
stone also used a model of a finite yet growing population to dem-
onstrate that a founder effect coupled with rapid population
expansion could retain the bS gene even in the absence of malaria
selection (Livingstone, 1969b). In future efforts to understand the
micro-heterogeneity of the haemoglobinopathies in the Mediterra-
nean, spatially explicit individual based models with greater sto-
chasticity and more demographic detail than the framework
presented here are likely to prove extremely informative.

Fig. 4c shows that the presence of epistasis can contain the
spread of sickle cell indefinitely. However, the population in the
third panel of 4c has alpha thalassaemia frequencies of �0.57.
Since such frequencies are higher than those reported in the twen-
tieth century Mediterranean, we did not consider it a realistic
present day outcome. The relatively low frequencies of alpha
thalassaemia reported in the Mediterranean are discussed further
in the supplementary material; they are a significant constraint
on the outcomes possible within the model, and it is unfortunate
that we do not have estimates of alpha thalassaemia frequencies
at a comparable geographical scale to those for beta thalassaemia.
Three of the studies in Fig. 1 (Barnicot et al., 1963; Stamatoyannop-
oulos and Fessas, 1964; Siniscalco et al., 1966) commented on the
patterns of bS and beta thalassaemia in the Mediterranean, and
suggested that these two beta globin variants may act to exclude
one another from populations. Our model is consistent with the
conclusion that bS in the Mediterranean has been restricted by evo-
lutionary interactions between genes – however, we have shown
that a combination of both alpha and beta thalassaemia can be
more effective at excluding bS than beta thalassaemia alone.
Whether or not a beta thalassaemic allele can out-compete bS on
its own depends on how much malaria protection it offers and
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how severe a blood disorder it causes. In Supplementary Fig. S4 we
illustrate the range of hypothetical beta thalassaemic alleles that
can outcompete bS, and show how this range is extended by the
inclusion of epistasis with alpha thalassaemia. It remains a theo-
retical possibility that the beta thalassaemia found in the Mediter-
ranean has the necessary properties to outcompete bS alone, but
we have not considered this possibility here, since we wished to fo-
cus on the potential population genetic impact of epistasis.

A recent survey of bS and beta thalassaemia within the Chalkid-
hiki peninsular (Kalleas et al., 2012) provides more detail about the
modern day pattern of beta globin variants in one of the Greek bS

hotspots. It is striking that the distribution of bS is highly patchy
within the peninsular (see Fig. 1 of Kalleas et al.), whilst thalassae-
mia is present even in (historically non-malarious) mountainous
regions – presumably a signature of gene flow within the peninsu-
lar. The most intriguing observation in this study relates to the beta
thalassaemic mutations present in the Chalkidhiki peninsular
alongside bS. Throughout most of the Greek mainland, the IVS-I-
110 beta thalassaemic mutation is more common than the codon
39 beta thalassaemic mutation, but in Chalkidhiki the pattern is re-
versed. Kalleas et al. note that there is a second region (in Central
Greece) where codon 39 exceeds IVS-I-110, and where bS is also
present. However, codon 39 also predominates in Sardinia, which
is bS free. Kalleas et al. point out that the relative geographical iso-
lation of all of these regions may have contributed to their partic-
ular genetic patterns. Nevertheless, it is also tempting to speculate
that the suite of beta thalassaemic mutations predominating in a
particular region may have made particular populations more or
less susceptible to sickle cell invasion. For this paper, we repre-
sented all beta thalassaemia in the Mediterranean with a single,
relatively severe b+ mutation (see Section 2 and Supplementary
material). In reality, codon 39 (which, as we just noted, is very
common in Sardinia) is a more severe mutation than IVS-I-110
(see Supplementary material and Weatherall and Clegg, 2001a).
Allowing for the diversity of beta thalassaemia in the Mediterra-
nean in future modeling work may shed more light on the bS

question.
Sickle cell anaemia in Greece is caused by the Benin haplotype

(Boussiou et al., 1991), one of several different chromosomal back-
grounds on which the bS mutation is found. This haplotype is gen-
erally believed to have originated in central West Africa, but the
timing of its evolution and spread is unclear. Pagnier et al.
(1984) speculate that the Benin haplotype spread to North Africa
along trans-Saharan trade routes via camel caravans from the third
century CE onwards. Depending on when and where bS emerged in
Africa, however, it could have been imported into Greece and Sicily
via Carthaginian slave traders from 650 BCE; Ancient Greek and
Roman settlements in North Africa, or the later Arab conquest of
Sicily by the ninth Century CE (dates from the Penguin Atlas of
World History by Kinder and Hilgemann – see especially pages
39 and 119). The earliest evidence of bS from a population known
to be in contact with the Ancient Mediterranean comes from a
skeleton containing fossilized sickle erythrocytes, excavated from
an island in the Persian Gulf that was colonised by Alexander the
Great. This skeleton was dated from 130+/�80 years BCE (Salares
et al., 2004).

Are there any specific historical reasons for the contrasting pat-
terns observed in Sardinia, Greece and Sicily? Siniscalco et al.
(1966) note the relative isolation of the Sardinian interior: ‘‘An-
cient Greek colonisation was, in fact, limited to Olbia (the northern
portion of the island), while the Romans and Carthaginians only
exploited the coastal regions for grain’’. Such isolation is in keeping
with the first introduction of bS to Sardinia occurring relatively late
– although, importantly, we do not require that Sardinia was never
exposed to bS. In the case of Sicily, Schiliro et al. (1986) point out
that most bS on the island occurs in coastal regions that were the
sites of Ancient Greek colonisation, suggesting that bS came to
Sicily via Greece. The founders of the ancient Sicilian city states
of Syracruse and Gela came from Corinth, Rhodes and Crete – none
of which are present day Greek sickle cell hotspots – but it is en-
tirely possible that the Greeks precipitated the spread of sickle cell
in their Sicilian settlements by bringing in African slaves. As for
Greece itself, Stamatoyannopoulos et al. do not posit any specific
historical events as the reason for the Greek pattern of bS, but they
do note that bS seems only to be found in regions of high malaria
selection. However, given that malaria selection must have been
high enough in other areas to elevate the frequency of thalassae-
mia, we consider it unlikely that the bS hotspot pattern is due
solely to insufficient malaria pressure in non-hotspot regions.

The models presented here highlight the importance of a low
level of gene flow for the formation of bS hotspots. A pertinent his-
torical question, then, is whether the various bS foci have had any
particular reason for isolation. In the Greek cases, the geography of
Greece itself (valley communities separated by mountain ranges)
could be a factor. The Cholomondas mountains in the central part
of Chalkidhiki may have limited gene flow from the coastal com-
munities at the tip of the peninsular, where bS is at its highest.

Overall, we have demonstrated that epistasis enhances the abil-
ity of thalassaemias to keep bS from taking over a population. The
formation of bS hotspots requires generally low levels of gene flow,
but epistasis extends the range of gene flow values where hotspots
are possible. Given the potential >2000 year window of bS chal-
lenge in the Mediterranean and the high degree of malaria protec-
tion bS offers, the circumscription of its present day distribution
suggests something has acted to curtail its spread. We posit that
epistasis is an important contributor to this unknown force.
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