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Abstract: Assessing personal exposure risk from PM2.5 air pollution poses challenges due to the
limited availability of high spatial resolution data for PM2.5 and population density. This study
introduced a seasonal spatial-temporal method of modeling PM2.5 distribution characteristics at
a 1-km grid level based on remote sensing data and Geographic Information Systems (GIS). The
high-accuracy population density data and the relative exposure risk model were used to assess
the relationship between exposure to PM2.5 air pollution and public health. The results indicated
that the spatial-temporal PM2.5 concentration could be simulated by MODIS images and GIS
method and could provide high spatial resolution data sources for exposure risk assessment.
PM2.5 air pollution risks were most serious in spring and winter, and high risks of environmental
health hazards were mostly concentrated in densely populated areas in Shanghai-Hangzhou
Bay, China. Policies to control the total population and pollution discharge need follow the
principle of adaptation to local conditions in high-risk areas. Air quality maintenance and
ecological maintenance should be carried out in low-risk areas to reduce exposure risk and
improve environmental health.

Keywords: air pollution; PM2.5 exposure; health risk; geographic information systems; remote
sensing

1. Introduction

Air pollution has been considered a global health priority regarding several Sus-
tainable Development Goals (SDGs), such as Goal 3 (Ensure healthy lives and promote
well-being for all at all ages) [1,2]. Fine particulate matter (a diameter of less than
2.5 µm, PM2.5) pollution is a common type of air pollution in recent years. According
to the China Ecological Environmental Bulletin [3–7], 40~75% cities in China exceeded
the standard for ambient air quality (PM2.5 < 75 µg/m3), and on 45~80% of days, PM2.5
as the primary pollutant exceeded the standard. One study by Son et al. found that
short-term exposure to PM2.5 was positively associated with increased risk of mortal-
ity [8]. Other studies indicated that the long-term chronic effects of PM2.5 may cause
cardiovascular diseases such as lung cancer, myocardial infarction, and myocardial is-
chemia [9–11], and it was an important cause of acute triggering of common respiratory
system diseases such as asthma, bronchitis, rhinitis, and upper and lower respiratory
tract infections [12–14]. Long-term exposure to PM2.5 pollution may lead to slow
growth, slow neurological development, and brain dysfunction in children [15,16]. In
addition, it may lead to depression and pessimism, and even suicidal behavior [17–19].
Due to its critical impact on health, exposure to PM2.5 and health risk assessment has
been a critical concern for ensuring healthy lives and promoting well-being.
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There are various data and methods for quantifying ambient air pollution in re-
cent years. Remote sensing (RS) and Geographic Information Systems (GIS) methods
have been increasingly used in environment and health research, with corresponding
improvements in the use and accessibility of multi-temporal satellite-derived environ-
mental data [20,21]. Some studies estimated PM2.5 concentration and spatial-temporal
distribution from air quality monitoring stations using spatial interpolation techniques
from GIS [22–24], but this approach ignored the uneven distribution of monitoring
stations and the rough spatial resolution of the data. The rapid development of RS tech-
nology and advanced satellite sensors (with particulate matter detection instruments)
addressed this issue. Many satellites (e.g., GOES, Terra, Aqua, METOP, PARASOL)
equipped with multifunctional sensors (e.g., MODIS, AVHRR, SeaWiFS, POLDER)
greatly promoted the development of Aerosol Optical Depth (AOD, one of the most
important parameters of aerosols) inversion by remote sensing imagery interpretation
and processing [25–29]. Kaufman introduced the dark target algorithm of AOD in-
version based on band relationships [30], and Levy et al. improved the accuracy of
AOD inversion of the algorithm [31]. Tanré and Holben developed the structural func-
tion method by using atmospheric transmittance to obtain aerosol information [32,33].
Hsu et al. directly adopted surface reflectance data on visibles band to retrieve AOD
using the deep blue algorithm [34,35]. Lyapustin et al. proposed a new correction
algorithm for AOD inversion, the multi-angle atmospheric correction algorithm, using
time series analysis and image processing technology for atmospheric correction and
AOD inversion [36,37].

Many researchers found a specific relationship between AOD and PM2.5 that could
be estimated by some methods from AOD to PM2.5 [38–40]. The model correction method
used different models to correct various influencing factors and simulate the propor-
tion relationship between AOD and PM2.5, such as the atmospheric chemical transport
model (GEOS-Chem) [41–43] and the atmospheric boundary layer model (RAMS) [44].
However, this method ignored the physical mechanism between AOD and PM2.5. Both
aerosol type and vertical distribution lead to differences in scattering extinction. The
mechanism correction method solved this problem and obtained the stable aerosol ex-
tinction coefficient by vertical correction and scattering extinction correction for PM2.5
estimation [45–48]. However, this method was highly dependent on setting physical
mechanism parameters, and these parameters are different in different areas. In order to
monitor and estimate PM2.5 in real time, it is necessary to update these physical mecha-
nism parameters in time. In addition, the statistical model method established linear or
nonlinear statistical models between the AOD and PM2.5 based on various meteorologi-
cal or environmental elements (wind speed, direction, position, humidity, height, etc.),
such as multiple linear regression model (GLM) [49,50], generalized summation model
(GAM) [51,52], and geographically weighted regression model (GWR) [53–57]. Some
researchers combined several statistical models to construct multilevel statistical models
to estimate PM2.5 concentration. In recent years, the machine learning (ML) method has
been widely used to associate AOD with PM2.5, incorporating big geographic spatial-
temporal data as examples and with self-supervision and training functions [58,59].
Although this method had high accuracy in estimating results and could deal with
the complex relationship between AOD and PM2.5, it required multistep processing of
training samples in advance and relevant operations on physical and chemical mecha-
nisms, which increased the difficulty of use to a certain extent [60]. Many methods have
associated AOD with PM2.5, each with its characteristics.

To explore the relationship between PM2.5 air pollution and health exposure risk,
one study by Zou et al. found a spatial pattern of population exposure to air pollution
by constructing a relative exposure risk assessment model [61]. Tong et al. showed
that population density data and the relative exposure risk assessment model could
more reasonably represent the relationship between PM2.5 pollution and environmental
health [62]. Lu et al. developed a personal mobility model to quantify long-term
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air pollution exposure for individuals [63]. Park developed an air dispersion model
based on a large sample of travel-activity diary data to assess personal exposure to
PM2.5 [64]. These studies confirmed the applicability to and efficiency of remote sensing
data and GIS for exposure to PM2.5 air pollution and environmental health. However,
risk assessment results from these studies were not sufficiently accurate owing to the
limited availability of high spatial resolution data for PM2.5 and population density.

Toward this end, this study presents a framework that incorporates high spatial
resolution remote-sensing images and geographic spatial-temporal data to retrieve AOD
and estimate PM2.5 based on the GIS platform. The Enhanced Dark Target Algorithm
(EDTA) is introduced to retrieve daily AOD from MODIS images, improving the spatial
resolution at 1 km grid level. Spatial-temporal seasonal models are used to estimate
PM2.5 concentration using geospatial-temporal data and GIS spatial analysis methods.
Then, we assess the exposure risk to PM2.5 pollution using high-accuracy population
density data and the relative exposure risk models. Finally, we discuss the usage and
deficiency of assessment results and offer our expectations for future application. We look
forward to provide scientific reference for improving urban atmospheric pollution and
living environment.

2. Materials and Methods
2.1. Study Area

SHB is located in eastern China and the north Pacific coastal area (28◦51′~31◦53′ N,
118◦21′~123◦25′ E) and is an important part of the integrated development of the Yangtze
River Delta, China. From north to south, it contains seven cities, including Shanghai,
Jiaxing, Huzhou, Hangzhou, Shaoxing, Ningbo and Zhoushan. Its total land area is
about 52,300 km2, and its population is about 54.41 million (2018 Statistical Yearbook of
China). Belonging to the northern subtropical region, SHB is characterized by a mild
and humid climate with abundant rainfall. The terrain is higher in the southwest and
lower in the northeast; plains, hills and mountains cover the most part (Figure 1). In
2018, SHB had five of the top 100 cities (in comprehensive strength) in China: Shanghai
(no. 2), Hangzhou (no. 5), Ningbo (no. 20), Shaoxing (no. 34), Jiaxing (NO. 39), reflecting
the highly developed policy, economy, society, culture, and ecology in SHB.

Figure 1. The location and elevation map of the study area, SHB.
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2.2. Data Source
2.2.1. Vector and Elevation Data

The data on the region boundaries and elevation were from the Resource and Envi-
ronmental Sciences and Data Center, China (ESDC, http://www.resdc.cn/Default.aspx,
accessed on 18 May 2019).

2.2.2. Remote Sensing Data

Terra MODIS L1B data (Level 1, with Global Certification Level) were applicable and
reliable for China [65,66] at a spatial resolution of 1 km ×1 km. Excluding a period of no
data from 19 to 27 February, there were 1 to 3 image data every day, for a total of 827 images
of original data from SHB from 1 January to 31 December 2016. Data were downloaded
from NASA LAADS Web to retrieve AOD (LAADS, https://ladsweb.nascom.nasa.gov/,
accessed on 4 December 2019).

2.2.3. Ground-Based AOD Observation Data

The observation error for ground-based AOD from AERONET is 0.01~0.02, which
can be used directly for the correction of estimated AOD [67]. The Version 3 and Level
1.5 data (data after cloud processing) in 2016 were downloaded from the Aerosol Robotic
Network (AERONET, http://aeronet.gsfc.nasa.gov/, accessed on 18 May 2019) for ver-
ifying the accuracy of retrieved AOD. We finally chose Level-1.5 AOD data from two
stations (SONET_Shanghai and SONET_Zhoushan) according to the actual situation in
SHB (Table 1).

Table 1. Data from AERONET AOD stations in SHB in 2016.

City Site Longitude (◦E) Latitude (◦N) Data

Shanghai
SONET_Shanghai 121.481 31.284 Level 1.0 a, Level 1.5 b

Shanghai_Minhang 121.397 31.130 null
Shanghai_Met 121.549 31.221 null

Hangzhou

LA-TM 119.440 30.324 null
Hangzhou-ZFU 119.727 30.257 null
Hangzhou_City 120.157 30.290 null

Qiandaohu 119.053 29.556 null

Ningbo Ningbo 121.547 29.860 null

Zhoushan SONET_Zhoushan 122.188 29.994 Level 1.0 a, Level 1.5 b

a Level 1.0 for original data. b Level 1.5 for cloud filtering and quality control data.

2.2.4. Ground-Level PM2.5 Observation Data

Based on China national standards and specifications for ambient air quality as-
sessment, daily observation data on PM2.5 concentrations (unit: µg/m3) at air quality
monitoring stations were derived from the official website of the China Environmental
Monitoring Center for exploring the optimal relationship between retrieved AOD and
PM2.5 observation data (CEMC, http://106.37.208.233:20035/, accessed on 23 December
2019). There were 41 monitoring stations in SHB, and specific information is in Table 2.

2.2.5. Population Density Data

The population density data came from the open population data set platform World-
pop (https://www.worldpop.org/, accessed on 23 December 2019), with a spatial res-
olution of 1 km × 1 km. Based on remote sensing images and geospatial-temporal big
data, this data set used the random forest algorithm to simulate the spatial-temporal distri-
bution of the population density, comprehensively considering land cover and land use,
residential areas, roads, buildings, public facilities, night lights, vegetation, geographic and
geomorphic conditions, and so on [68].

http://www.resdc.cn/Default.aspx
https://ladsweb.nascom.nasa.gov/
http://aeronet.gsfc.nasa.gov/
http://106.37.208.233:20035/
https://www.worldpop.org/
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Table 2. Geographical coordinates of PM2.5 monitoring stations in SHB.

City Monitoring Station Longitude (◦E) Latitude (◦N)

Shanghai

Putuo 121.3984 31.2637
NO.15 Factory 121.3614 31.2228

Hongkou 121.4919 31.2825
Shanghai Normal University 121.4232 31.1675

Sipiao 121.5360 31.2659
Dianshan Lake 120.9382 31.0927

Jingan 121.4363 31.2305
Chuansha 121.7042 31.1994

Pudong New Area 121.6634 31.2428
Zhangjiang 121.5918 31.2108

Jiaxing
Qinghe Primary School 120.7543 30.7819

Jiaxing College 120.7372 30.7517
Disabled Persons’ Federation 120.7739 30.7601

Hangzhou

Binjiang 120.1924 30.1876
Xixi 120.1000 30.2645

Qiandao Lake 119.0214 29.6020
Xiasha 120.3442 30.3221

Wolong Bridge 120.1385 30.2493
Zhejiang Agricultural University 119.7355 30.2621

Zhaohui NO.5 Community 120.1688 30.2940
Hemu Primary School 120.1312 30.3161

Linping 120.3133 30.4272
Chengxiang 120.3052 30.2615

Yunqi 120.1010 30.1989

Shaoxing
Paojiang 120.6238 30.0842

East Management Committee of
Development Zone 120.8460 29.5986

Shuxia Wang 120.5828 30.0159

Ningbo

Environmental Protection Building 121.5865 29.8582
Wanli College 121.5695 29.8230

Longsai Hospital 121.7223 29.9596
Sanjiang Middle School 121.5647 29.8940
Qiangtang Waterwork 121.6440 29.7770
Taigu Primary School 121.5985 29.8596

Environmental Monitoring Center 121.5351 29.8709
Wanli International School 121.6234 29.9019

Zhoushan
Dinghai TanFeng 122.1320 30.0240
Putuo Donggang 122.3285 29.9791

Lincheng New Area 122.2020 29.9885

Huzhou
Renhuangshan New Area 120.0976 30.9000

West Waterwork 120.0844 30.8811
Wuxing 120.1158 30.8710

2.3. Methods
2.3.1. Enhanced Dark Target Algorithm (EDTA)

The dark target algorithm (DTA) is an operational algorithm with high inversion accu-
racy and maturity. Kaufman found a good linear relationship between surface reflectivity
in the near-infrared band (2.1 µm) and the visible red band (0.66 µm) and visible blue band
(0.47 µm) [69]. The near-infrared band is affected very little by aerosols, and its apparent
reflectivity can be approximated as surface reflectivity [26]. The surface reflectivity of the
visible red and blue bands can be estimated with a linear calculation equation:

ρr =
1
2
∗ ρn (1)
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ρb =
1
4
∗ ρn (2)

where ρr is the surface reflectivity of the visible red band (0.66 µm); ρb is the surface
reflectivity of the visible blue band (0.47 µm); and ρn is the surface reflectivity of near-
infrared band (2.1 µm).

Apparent reflectivity is the result of surface reflectivity and atmospheric reflectivity, as
shown in Equation (3). The apparent reflectivity information of the visible red and blue
bands can be obtained from satellite remote sensing data, and the surface reflectivity of
the visible red and blue bands can be obtained after removing the linear estimation, which
gives the atmospheric reflectivity [70]:

ρ∗(µ, ϕ, µ0, ϕ0) = ρa(µ, ϕ, µ0, ϕ0) +
T(µ0)T(µ)ρ

1− ρs
(3)

where ρ∗ is apparent reflectivity; µ is the cosine of the satellite zenith angle, µ0 is s the
cosine of the solar zenith angle, ϕ is the satellite azimuth angle, ϕ0 is the solar azimuth
angle; ρa is atmospheric reflectivity; T(µ0) is the total transmittivity from the sun to the
earth’s atmosphere; T(µ) is the total transmittivity from the earth’s surface to the satellite’s
atmosphere; ρ is surface reflectivity; and s is the spherical surface albedo of the atmosphere.

Based on the basic dark target algorithm (DTA), we introduced the enhanced dark
target algorithm (EDTA) to retrieve the AOD according to the actual situation in SHB. The
basic inversion process included radiometric correction, geometric correction, resampling,
composition and clipping, cloud detection and elimination, Lookup Table (LUT) setting,
and accuracy verification of the inversion results (Figure 2). We improved the inversion
algorithm, especially in building LUT.

Geometry correction. MODIS L1B 1 km data (MOD02_1KM) contains emissivity and
reflectivity files and angle data (sensor zenith and sensor azimuth of the satellite, solar
zenith and solar azimuth of the sun), which are obviously different types. We employed
ENVI software to resample the row and column numbers of angle data set from 271 × 406
to 1354 × 2030 (e.g., emissivity and reflectivity files) before correction. The HDF file was
used to generate ground control points (GCPs). The correction model was Triangulation,
and the resampling method was Bilinear.

Band operation and cloud detection. The Layer Stacking tool was adopted for syn-
thesizing geometry files and angle data after correction. The stacked order of emissivity
and reflectivity files (as well as angle data) affected the results. The reflectivity file must
be placed in up and the emissivity file in down. In fact, angle data had been expanded
100 times in HDF files, so it should have been multiplied by 0.01 during band operation.
In order to remove the influence of cloud reflection, absorption and scattering noise, the
Cloud Detection tool was installed.

LUT Setting and AOD retrieval. The accuracy of LUT determines the accuracy
of AOD retrieval to a certain extent. A 6S Radiation Transmission model was used
to distinguish various surface types and observation bands. Different parameters of
atmospheric aerosol and observation parameters were preset for radiation transmission
calculation to obtain inversion results. After geometric correction, band operation,
band clipping, cloud detection, and invalid value elimination, the results for emissivity,
reflectance, and angle data set were combined with the LUT to perform aerosol inversion
calculation, and we obtained AOD inversion values. According to geographical features
and the actual situation in SHB, we improved the related model and enhanced the
LUT setting in the geometric parameters (Table 3) to produce the enhanced dark target
algorithm (EDTA).
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Figure 2. The flow chart of AOD inversion.

Table 3. Geometric parameters of LUT based on a 6 S transmission model.

Major Parameters Settings

Satellite zenith angle 0◦, 12◦, 24◦, 36◦, 48◦, 60◦

Solar zenith angle 0◦, 12◦, 24◦, 36◦, 48◦, 60◦

Relative azimuth angle 0~180◦, 24◦ (interval)
AOD at 550 nm wavelength 0, 0.25, 0.50, 1.00, 1.50, 1.95

Central wavelength 470 nm, 660 nm, 2100 nm
Elevation 0

Surface type Vegetation

Validation. The ground-based AOD from AERONET data was used to verify the
accuracy of the retrieved AOD. We set the value of AOD at 550 nm wavelength (0, 0.25,
0.50, 1.00, 1.50, 1.95) in LUT, but the AERONET data were available in 340 nm, 380 nm,
440 nm, 500 nm, 675 nm, 870 nm, 936 nm, 1020 nm, and 1640 nm wavelength channels
(no AOD observation value in 550 nm). Only AOD values of the same observation band
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could be compared, so the AOD values of AERONET between different observation band
channels needed to be converted. We used the Angstrom formula to convert [71]:

τλ = β ∗ λ−α (4)

where λ is the wavelength; τλ is AOD of the wavelength λ; β is the atmospheric turbidity
index; and α is the wavelength index.

2.3.2. AOD-PM2.5 Spatial-Temporal Regression Models

When observing the relationships between AOD samples and PM2.5 samples, we
found that PM2.5 tended to increase gradually with increasing AOD. Therefore, AOD sam-
ples were taken as the independent variable and PM2.5 samples as the dependent variable.
In order to infer the relationship between AOD (independent variable) and PM2.5 (depen-
dent variable), we mainly used 6 linear and nonlinear regression models, including linear,
logarithmic, exponential, power, quadratic polynomial, and cubic polynomial function
regression models (Table 4). By combining terrain, landscape, and other geospatial infor-
mation, we applied and tested each model pixel by pixel based on seasonal characteristics
and the actual situation in SHB.

Table 4. Regression models for AOD-PM2.5 relationship prediction.

Regression Model Equation

Linear y = a0 + a1x
Logarithmic y = a0 + a1ln(x)
Exponential y = a0 × ea1x

Power y = a0(xa1)
Quadratic Polynomial y = a0 + a1x + a2x2

Cubic Polynomial y = a0 + a1x + a2x2 + a3x3

x for independent variable. y for dependent variable. a0, a1, a2, a3 for relevant parameters.

The first part of the AOD samples (estimated from the MODIS images) and the PM2.5
samples (observed from the monitoring stations) was used for model modeling, and the
second part was used for model testing. The optimal model was determined based on
model fit (determinant coefficient, R2) and error results (root mean square error, RMSE)
(Equations (5) and (6)) to build a spatial-temporal estimation model of AOD-PM2.5 suitable
for SHB and to simulate the spatial-temporal pattern of PM2.5 concentration based on
the grid:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (5)

RMSE =

√
∑n

i=1|ŷi − yi|2

n
(6)

where R2 is the determine coefficient; RMSE is the root mean square error; n is the sample
number; ŷi is the value of independent variable i; yi is the value of dependent variable i;
and y is the mean value of the dependent variable.

2.3.3. Pearson’s and Spearman’s Rank Correlation Coefficients

Pearson’s correlation coefficient (R) was applied to the correlation analysis between
observation AOD (ground-based from AERONET) and inversion AOD (estimated from
MODIS images), seeing by Equation (7):

R =
∑n

i=1(zi − z)(ui − u)√
∑n

i=1(zi − z)2 ∑n
i=1(ui − u)2

(7)
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where R is the Pearson correlation coefficient; n is the sample number; zi is the observation
AOD value of i; z is the average value of observation AOD; ui is the inversion AOD value
of i; and u is the average value of inversion AOD.

Spearman’s rank correlation coefficient (ρ) was used to indicate the correlation between
estimated AOD and observed PM2.5 as in Equation (8):

ρ = 1− 6 ∑n
i=1(Gi − Hi)

2

n(n2 − 1)
(8)

where ρ is the Spearman’s rank correlation coefficient, Gi is the rank of estimated AOD; Hi
is the rank of observed PM2.5 value; is the rank difference of estimated AOD and observed
PM2.5 value.

2.3.4. Relative Exposure Risk Model

Based on the estimated PM2.5 concentration and population density data at 1-km grid
level, this study used the relative exposure risk model to assess the resident exposure level
to PM2.5 air pollution [61,72], as in Equation (9):

Qi =
Pi ×Mi

∑n
i=1 Pi × Mi

n

(9)

where i is the grid number; Qi is the relative population exposure risk of i; Pi is the
population density of i (unit: person/km2); Mi is the PM2.5 concentration of i (unit: µg/m3);
and n is the total number of grids.

For the convenience of analysis, values of the exposure risk results were divided into
six levels referring to previous studies [73,74]: extremely safe (Qi = 0), safe (0 < Qi � 1),
relatively safe (1 < Qi � 2); relatively dangerous (2 < Qi � 3), dangerous (3 < Qi � 5), and
extremely dangerous (Qi > 5).

2.3.5. Spatial Autocorrelation Analysis

Moran’s I is used to represent the spatial autocorrelation, including the global Moran’s
I and the local Moran’s I. The global Moran’s I is for the spatial autocorrelation of variables
in the study area as a whole. When the value of I approaches 1, the correlation of variables in
the spatial distribution is more significant; when the value of I approaches 0, the correlation
is weaker. The local Moran’s I refers to the correlation degree between the local area and
the surrounding area, and its results can be shown in the LISA agglomeration figure. Its Ii
value is calculated by Equations (10) and (11):

Ii =
(xi − x)

S2
i

n

∑
i,j=1

wi,j
(

xj − x
)

(10)

S2
i =

∑n
i,j=1(xi − x)2

n− 1
(11)

where n is the number of grids, i 6= j, xi, and xj are values of variables of i and j, x is the
average value, and wi,j is the weight matrix for the proximity between i and j. On the
significance test, the significance level is α = 0.05.

The Results of Ii are divided into five types for the spatial agglomeration char-
acteristics: HH (high-high) is the high-value agglomeration phenomenon, LL (low-
low) is the low-value agglomeration phenomenon, LH (low-high) and HL (high-low)
are high values alternate with low values, and NS (not significant) is no obvious
agglomeration features.
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3. Results
3.1. AOD Inversion Results

The value range of AOD inversion results was from 0 to 1.95, which was a dimension-
less value. The larger the AOD was, the greater the aerosol optical thickness was, indicating
the lower atmospheric transmittance. The 0 value indicated the existence of no aerosol
particles, which was the best atmospheric condition and indicated that solar radiation was
not reduced when it passed through the atmosphere.

Because the remote sensing images were large and susceptible to cloud influence,
the AOD inversion process and results would have been affected by large areas of cloud
in those time periods. We screened MODIS images from all of the year of 2016 one by
one, and we excluded images that were seriously blurred by clouds. Finally, we obtained
monthly AOD results for SHB (from average daily AOD) for February, March, April,
May, June, July, August, September, November, and December (10 months in total) and
seasonal AOD results (from average monthly AOD) for spring (March, April, May),
summer (June, July, August), autumn (September, November), and winter (February,
December) in SHB.

3.1.1. Monthly AOD Results

In the monthly AOD results in Figure 3, higher AOD values were concentrated in
Shanghai, Jiaxing, northwest of Hangzhou, Shaoxing, and northern Ningbo, and lower
AODs were concentrated in southwest and south of SHB, namely, southwest of Hangzhou,
south of Shaoxing and Ningbo, and Zhoushan. Because some MODIS images in a certain
time were affected by cloud interference, a small portions of them were eliminated and then
showed null values. However, this did not affect the inversion results for other regions,
so they continued to participate in the calculation. In 2016, the AOD began increasing
steadily beginning in February through May and gradually decreased in June and July,
reached the lowest in August; then they gradually increased from September to November
and reached the peak in December. Therefore, AOD showed a time variation tendency of
“high-low-high” in SHB.

3.1.2. Seasonal AOD Results

In the seasonal AOD results in Figure 4, inversion AOD still presented the distribution
characteristics of higher at the coast and lower in the south in spatial scale. In terms of time
scale, the overall AOD was lowest in summer and highest in winter, with little difference
between spring and autumn, and seasonal AOD still presented a high-low-high tendency
in SHB. For higher-value coastal regions, the distribution of low and middle values was
interphase in summer, the distribution of middle and high values was interphase in winter,
and the distribution of middle values was uniform in spring and autumn, indicating that
AODs in the coastal regions were greatly different in summer and winter. Moreover,
Zhoushan had the lowest AOD throughout all four seasons, indicating the least PM2.5
pollution and the best air quality in 2016.

3.1.3. Verification Result

Using Level 1.5 AERONET AOD data (from ground-based AOD observation sta-
tions) of “SONET_Shanghai” and “SONET_Zhoushan”, we verified the accuracy of the
inversion AODs. In 2016, there were 29 days of Level 1.5 data available for SHB. AOD
inversion values on those days were extracted through software, and then invalid AOD
values (disturbed by clouds) were removed to obtain valid values. Finally, values of
inversion AOD and observation AOD could be used for verification, a total of 21 groups
of data (Table 5).
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Figure 3. Monthly inversion AODs in SHB.
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Figure 4. Seasonal inversion AODs in SHB.

Table 5. Pearson correlation analysis of inversion AOD and observation AOD.

Site Days Date
AOD Value

Inversion Observation

SONET_Shanghai 10

1 May 2016 0.610 0.785
3 May 2016 0.792 0.890
4 May 2016 0.500 0.449
12 May 2016 0.375 0.304
15 May 2016 0.400 0.551
16 May 2016 0.917 0.346
17 May 2016 0.400 0.222
24 May 2016 1.170 1.194
25 May 2016 1.246 0.951
6 June 2016 0.720 1.153

SONET_Zhoushan 11

30 April 2016 0.808 0.464
1 May 2016 0.730 0.474
3 May 2016 0.320 0.314
4 May 2016 0.700 0.775
11 May 2016 1.170 0.815
12 May 2016 0.563 0.534
16 May 2016 0.200 0.218
17 May 2016 0.150 0.154
18 May 2016 0.200 0.199
24 May 2016 1.000 1.022
6 June 2016 0.350 0.360

M a 0.634 0.580
SD b 0.334 0.328
R c 0.781 0.781

Significant (bilateral) 0 0
a M for mean value. b SD for standard deviation. c R for Pearson correlation coefficient.

The verification results in Table 5 show that inversion AOD and observation AOD in
terms of time trend were approximately the same. From the Pearson’s correlation analysis,
M and SD for the inversion AOD were higher than those for the observation AODs, and R
was 0.781 at the 0.01 significance level, showing that the observation AODs were strongly
related to the inversion AODs. The AOD result was at a spatial resolution of 1 km × 1 km.
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Therefore, we verified that the inversion AODs obtained by MODIS data and EDTA were
relatively accurate, and the inversion results could be used for the estimation of PM2.5
concentrations at higher accuracy and resolution.

3.2. Seasonal Spatial-Temporal Models
3.2.1. Correlation Analysis of Inversion AOD and Observation PM2.5

Observation PM2.5 (from ground-level monitoring stations) was used to explore
the relationship with inversion AOD because of its uneven distribution in space. In
the observation PM2.5 data (Figure 5A), the daily average PM2.5 concentration was
42.94 µg/m3 in 2016, with the highest being 137 µg/m3 in January and the lowest
being in 12.86 µg/m3 in September. PM2.5 concentration decreased gradually from
winter to summer and increased gradually from summer to winter. Among all cities
(Figure 5B), Huzhou ranked first in 2016, with a monthly average PM2.5 concentration of
61.30 µg/m3, followed by Hangzhou at 45.99 µg/m3, Shanghai at 44.36 µg/m3, Shaoxing
at 43.82 µg/m3, Jiaxing at 43.24 µg/m3, and Ningbo at 37.50 µg/m3. Concentrations were
highest in winter (January and December) and lowest in summer (August). According
to the PM2.5 concentration air quality standards in China, Zhoushan had the lowest
PM2.5 concentration of 24.39 µg/m3 and the most air quality standard days (361 days,
PM2.5<75 µg/m3)(Figure 6), indicating it was the least polluted city in SHB. Shanghai
and Hangzhou had two days of severe pollution (150 < PM2.5 ≤ 250 µg/m3), with
maximum PM2.5 concentrations of 156 and 165 µg/m3, respectively. The number of days
exceeding the standard from most to least occurred in Huzhou (62 days), Hangzhou
(51 days), Shanghai (46 days), Shaoxing (42 days), Jiaxing (39 days), Ningbo (28 days),
and Zhoushan (5 days) in 2016 (Figure 6).

Figure 5. Observations of PM2.5 in SHB. (A). Daily average PM2.5 concentration. (B). Monthly average
PM2.5 concentration of each city.
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Figure 6. Air quality ratings and observed PM2.5 concentrations in seven cities.

Values for inversion AOD and observation PM2.5 were processed by the min-max
normalization method using a total of 410 groups (Table 6). The monthly correlation
analysis results showed inversion AOD had the best correlation with observation PM2.5 in
May, with ρ of 0.631 (at 0.01 confidence level), followed by in August, with ρ of 0.607. Since
there was a big difference between inversion AOD and observation PM2.5 values every
month in 2016, the correlations between them were calculated by season. In the seasonal
correlation analysis in Table 6, we found that the best correlation was in summer, with
ρ of 0.684 (at 0.01 confidence level), followed by spring, with ρ of 0.538. Overall, PM2.5
concentration increased gradually with the increase in AOD. The correlation in each season
was better than that in each month. Therefore, seasonal modeling was more effective for
PM2.5 estimation in SHB.

Table 6. Correlation analysis of inversion AOD and observation PM2.5 (at 0.01 confidence level).

Month Sample ρ a N b Season Sample ρ a N b

March
AOD

0.021 41

Spring 0.538 123

PM2.5

April AOD
0.406 41

AOD
PM2.5 PM2.5

May AOD
0.631 41PM2.5

June
AOD

0.443 41

Summer 0.684 123

PM2.5

July AOD
0.432 41

AOD
PM2.5 PM2.5

August AOD
0.607 41PM2.5

September AOD
0.395 41

Autumn 0.474 82
PM2.5 AOD

November
AOD

0.138 41
PM2.5

PM2.5

December
AOD

0.314 41
Winter 0.341 82

PM2.5 AOD

February AOD
0.121 41

PM2.5
PM2.5

a ρ for Spearman’s rank correlation coefficient. b N for sample size.
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3.2.2. Seasonal Model Building and Verification

Based on the correlation analysis of inversion AOD and observation PM2.5, we
obtained 123 groups of data in spring, 123 groups in summer, 82 groups in autumn,
and 82 groups in winter. A part of each season’s data was used for model building,
and another part was used for model verification. AOD was the independent variable
and PM2.5 the dependent variable. R2 represented the model fit degree, and F is for the
significance of the model. The larger these values, the more significant and suitable the
model is.

In spring, the first 82 groups were used for model building, and the last 35 groups
were used for model verification (6 groups of abnormal values eliminated). The seasonal
model building results (Figure 7A) show that the power model was the best in spring,
with R2 = 0.511 and F = 77.209. In summer, the first 84 groups were used for model
building, and the last 35 groups were used for model verification (4 groups of abnormal
values eliminated), and the exponential model was the best in summer, with R2 = 0.551
and F = 127.519 (Figure 7B). In autumn, the first 41 groups were used for model building,
and the last 41 groups were used for model verification, and the power model was the
best, with R2 = 0.524 and F = 34.180 (Figure 7C). In winter, the first 41 groups were used
for model building, and the last 41 groups were used for model verification, and the
power model was the best, with R2 = 0.504 and F = 39.556 (Figure 7D).

The seasonal model verification results in Table 7 show that the power model
had better fit and the fewest errors in spring, with R2 = 0.513 and RMSE = 6.204; the
exponential model showed the best fit and the smallest error in summer, with R2 = 0.640
and RMSE = 3.979; the fit of the power model was the best and the error was smaller
in autumn, with R2 = 0.520 and RMSE = 7.893; and the power model had better fit and
minimum error in winter, with R2 = 0.540 and RMSE = 7.392. Overall, the power model
was the best in spring, autumn, and winter and the exponential model was the most
suitable for summer, showing that both played significant roles in estimating PM2.5
concentration, especially the power model. Based on these optimal seasonal models, we
combined observation PM2.5 concentrations and the geographic big data according to
the actual situation and features in SHB to produce seasonal spatial-temporal models for
PM2.5 estimation.

3.3. PM2.5 Estimation Results

Based on these seasonal spatial-temporal models, we obtained seasonal PM2.5 estima-
tion results for SHB (Figure 8). Spatially, the PM2.5 concentrations in each season showed
the same distribution characteristic of higher in the coastal areas and lower in the mountain-
ous areas. Zhoushan was the city with the lowest PM2.5 concentration in all seasons, which
was always lower than 40 µg/m3. Shanghai and Jiaxing were both above 40 µg/m3 in all
seasons, making them the two most polluted cities. From the perspective of time, the aver-
age PM2.5 concentrations over the four seasons was winter > spring > autumn > summer,
and the PM2.5 concentration showed a high-low-high tendency in a year.

From the annual average PM2.5 results in Figure 8E, we see that the PM2.5 concentration
range was 0~68.16 µg/m3, and its spatial resolution was 1 km × 1 km. Concentrations
were high (50~70 µg/m3) in Shanghai, Jiaxing, northwest of Hangzhou, Shaoxing, and
the northern part of Ningbo; medium (30~50 µg/m3) in the vicinity of high concentration;
and low (0~30 µg/m3) mainly in the southwest of Hangzhou and Zhoushan. Overall, the
spatial distribution of PM2.5 concentrations was higher in the northeast and lower in the
southwest, indicating that the area along the Hangzhou Bay was seriously affected by fine
particles, and the air quality in the mountainous area with higher altitude was better. This
correlated with the elevation characteristics of SHB (Figure 1). The coastal areas are of low
altitude, with dense populations, convenient transportation, and developed industry and
commerce, which is not conducive to haze diffusion. However, the mountainous areas are
of high altitude, with high vegetation coverage and abundant rain, so there is less PM2.5
pollution and good air quality.
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Figure 7. Seasonal model-building results. (A–D) for spring, summer, autumn, winter, respectively.
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Table 7. Seasonal model building and verification results.

Season Model Equation
Model Building Model Verification

R2 F R2 RMSE

Spring

A a y = 42.523x + 15.876 0.437 57.523 0.514 6.587
B b y = 29.665ln(x) + 57.512 0.456 62.011 0.503 6.719
C c y = 21.915e0.9863x 0.477 67.378 0.504 6.246
D d y = −43.525x2 + 106.74x − 6.0065 0.461 31.223 0.506 6.829
E e y = −34.479x3 + 34.575x2 + 51.011x + 6.3671 0.462 20.621 0.515 6.900
F f y = 57.754x0.6976 0.511 77.209 0.513 6.204

Summer

A a y = 22.955x + 11.174 0.525 114.807 0.590 4.432
B b y = 11.056ln(x) + 32.404 0.440 81.598 0.418 5.254
C c y = 13.855e0.8954x 0.551 127.519 0.640 3.979
D d y = −0.8245x2 + 24.069x + 10.856 0.525 56.868 0.588 4.440
E e y = −42.565x3 + 86.142x2 − 27.665x + 18.992 0.551 41.718 0.606 4.113
F f y = 31.823x0.4392 0.479 95.457 0.518 4.313

Autumn

A a y = 48.898x + 17.417 0.370 18.238 0.488 8.857
B b y = 14.94ln(x) + 50.632 0.463 26.767 0.515 7.534
C c y = 17.759e1.8756x 0.421 22.552 0.478 8.980
D d y = −473.76x2 + 327.23x − 20.319 0.625 25.003 0.455 9.010
E e y = 1846.1x3 − 2112.7x2 + 786.41x − 60.189 0.645 17.585 0.497 9.087
F f y = 63.391x0.5718 0.524 34.180 0.520 7.893

Winter

A a y = 47.423x + 35.139 0.373 23.251 0.508 7.957
B b y = 20.44ln(x) + 74.386 0.435 30.008 0.547 7.621
C c y = 35.744e0.9465x 0.435 29.984 0.471 7.706
D d y = −125.54x2 + 164.79x + 10.896 0.478 17.409 0.550 7.450
E e y = −105.07x3 + 28.489x2 + 96.537x + 19.342 0.481 11.436 0.553 7.429
F f y = 78.184x0.4069 0.504 39.556 0.540 7.392

x: independent variable. Y: dependent variable. a A: The linear regression model. b B: The logarithmic regression
model. c C: The exponential regression model. d D: The quadratic polynomial regression model. e E: The cubic
polynomial regression model. f F: The power regression model.

In this work, the spatial distribution result of observation PM2.5 concentration was
obtained by the Kriging interpolation of GIS, and its optimal spatial scale could only reach
12 km× 12 km (because of the small number of monitoring stations) (Figure 8F). Compared
with estimates of PM2.5 concentrations from remote sensing data (1 km × 1 km), although
PM2.5 concentrations are high in similar areas (Shanghai, the junctional zone of Jiaxing,
Huzhou, and Hangzhou), the estimated PM2.5 concentrations are more continuous and
even more accurate in some areas, such as east and west of Huzhou and south and north
of Shaoxing. Eastern Huzhou has a larger population and a more developed economy, so
the impacts of PM2.5 population on eastern areas should be greater than that on western
areas. The same is true in the northern and southern areas of Shaoxing. Therefore, PM2.5
concentration estimates from remote sensing images are closer to the real situation in SHB,
reflecting the necessity of remote sensing to estimate PM2.5 for assessing fine pollution
levels at a regional scale.

3.4. Exposure Risk Assessment

Based on population density data from Worldpop (1-km grid level) and the relative ex-
posure risk model, the exposure risk to PM2.5 pollution was evaluated using GIS. Figure 9A
shows that each level of average annual exposure risk was unevenly distributed around
the cities, indicating that PM2.5 air pollution degree differs greatly around SHB. The range
of exposure risk values was from 0 to 133, with a large difference between the lowest value
and the highest value. In addition, about 2/3 of the land area was a safe zone, and the rest
was in a danger zone (all low-elevation urban areas). By city, the average annual exposure
risk was Shanghai (3.57) > Jiaxing (1.24) > Ningbo (0.77) > Shaoxing (0.51) > Hangzhou
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(0.50) > Zhoushan (0.46) > Huzhou (0.44). Except for Shanghai, other cities were in the safe
range, with residents of Huzhou city the least exposed to PM2.5 pollution. Moreover, the
danger level of exposure risk in each city was concentrated in the coastal areas around
SHB, and the higher elevations (in the south) were all safe, with the lowest PM2.5 pollution
degree. The highest danger level was mainly concentrated in the main urban areas, with
Shanghai and Hangzhou as the most serious.

Figure 8. 2016 PM2.5 concentration maps for SHB. (A–D) Seasonal estimates of PM2.5 concentra-
tion. (E) Annual average estimates of PM2.5 concentration (1 km × 1 km). (F) Observation PM2.5

concentration interpolation results (12 km × 12 km).

On the global Moran’s I for SHB, the values were 0.6436 in spring, 0.6174 in summer,
0.6365 in autumn, and 0.6351 in winter. Values of p for all four seasons were all above 0.01,
indicating strong positive spatial correlations and high significance of PM2.5 exposure
risk in SHB. The results of the LISA spatial aggregation (Figure 9B) indicated that the
annual average PM2.5 exposure risk in SHB had a strong spatial autocorrelation and
an obvious spatial aggregation. The high-value agglomeration (HH) was distributed
in Shanghai, northeastern Hangzhou, central Jiaxing, and central Ningbo. The low-
value agglomeration (LL) was mainly distributed in the areas with higher elevations,
Shanghai and Zhoushan City in the Chongming District. Overall, the coastal areas



Int. J. Environ. Res. Public Health 2022, 19, 6154 19 of 24

were dominated by high-value clustering, and mountainous areas were dominated by
low-value clustering.

Figure 9. Maps of PM2.5 exposure risk (A) and LISA agglomeration (B) in SHB, China.

4. Discussion

Due to the high cost of construction and maintenance of air quality monitoring stations,
the number of stations is small in China. Monitoring stations are unevenly distributed,
mostly concentrated in relatively developed areas. The observation PM2.5 concentrations
could only reflect the local PM2.5 situations but could not truly reflect the actual character-
istics of spatial distribution. In addition, there are few available, suitable, and high spatial
resolution PM2.5 products, so we use daily MODIS images and introduce the EDTA method
to retrieve high-resolution AODs in space and time to create high-precision and high-
resolution PM2.5 concentrations at a 1-km grid level based on a seasonal spatial-temporal
estimation model. In this work, we addressed problems of the spatial resolution and the
spatial-temporal continuity of PM2.5 concentration data.

Previous studies that adopt spatial distribution analysis of PM2.5 using monitoring
station data and GIS interpolation methods only account for local area situations or analyze
variations in PM2.5 characteristics and time trends using annual average data. Studies using
monitoring stations to obtain PM2.5 did not take suitable spatial resolution into account;
studies using interpolation methods to derive PM2.5 did not focus on seasonal differences
in PM2.5 pollution. Both are not precise enough in time and space.

By introducing the EDTA method and seasonal spatial-temporal models, we estimate
the seasonal PM2.5 concentration in a high spatial resolution of 1 km × 1 km. The verifi-
cation accuracy (R2) of estimation PM2.5 concentration reached 0.513 in spring, 0.640 in
summer, 0.520 in autumn, and 0.540 in winter, and the estimation error (RMSE) was in the
range of 3.979~7.893 µg/m3. We showed the feasibility and reliability of retrieving AOD
and estimating PM2.5 from MODIS remote sensing images. According to the characteristics
of different seasons, we also constructed a corresponding estimation model that has sea-
sonal applicability. Today, 1 km-grid level of PM2.5 concentration is a higher-resolution data
source, which could allow for assessing fine PM2.5 pollution at small and medium scale.
These data sets and research results are useful for policymakers in air pollution control
administration to plan a more sustainable living environment.

SHB is seriously affected by the southeast monsoon and plum rain season in summer.
Despite the high time resolution of the MODIS images (daily), these images are often
influenced by massive cloud cover in AOD inversion and PM2.5 estimation. leading to
poor estimated results on some days. Therefore, the replacement or supplement of these
data (seriously disturbed by clouds) will be helpful for improving the accuracy of AOD
inversion and PM2.5 estimation. While the inversion AOD accuracy is high by the method
of EDTA, the basic DTA method has certain requirements for the vegetation coverage in
the region. In high surface reflectance areas, this method is only moderately effective.
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Combining more suitable inversion methods according to different surface types could
increase the accuracy.

Future investigations would be helpful in the following aspects: changes in par-
ticulate matter at a micro scale would improve the accuracy of AOD-PM2.5 estimation
models; problems of data loss and signal-noise ratio (caused by cloud and rainfall in-
terference) could be anticipated in the development of multi-source spatial-temporal
data fusion; for instance, we are trying to solve the single-source data in the product
resolution and spatial-temporal coverage and improve the accuracy and reliability of
estimated PM2.5 data; improved estimation PM2.5 data could be used to evaluate the
population exposure risk to PM2.5, health economic losses, and early warning and pre-
vention, in order to provide scientific reference for policymakers for improving urban
atmospheric pollution and living environments.

5. Conclusions

This study developed a framework to improve the spatial resolution of AOD and PM2.5
dataset and present the health risk assessment from PM2.5 pollution: first, we retrieve the
daily AOD using MODIS remote sensing images, AERONET AOD data, and the Enhanced
Dark Target Algorithm (EDTA). Then we mapped the monthly and seasonal AOD results at
a spatial resolution of 1 km × 1 km. Second, we inferred the optimal relationship between
retrieved AOD and observed PM2.5 in four seasons, and spatial-temporal seasonal models
were developed to estimate PM2.5 concentration. According to geographical features
and seasonal characteristics in the study area, we obtain seasonal PM2.5 at 1-km grid
level by GIS platform. Third, we assessed health risk from PM2.5 pollution using high-
accuracy population density data and the relative exposure risk model. Last, the usage
and deficiency of PM2.5 dataset and risk assessment results were discussed. Therefore,
reasonable assessments on health risk from PM2.5 pollution are important for improving
public health and living environment.
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Abbreviations

GIS Geographic Information Systems
RS Remote sensing
SDGs Sustainable Development Goals
PM2.5 fine particulate matter (a diameter of less than 2.5 µm)
GOES Geostationary Operational Environmental Satellite
METOP European new generation weather operational satellites
PARASOL Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with

Observations from a Lidar
MODIS Moderate-resolution Imaging Spectror
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AVHRR Advanced Very High Resolution Radiometer
SeaWiFS Sea-viewing Wide Field of View Sensor
POLDER Polarization and Directionality of the Earth’s Reflectances
AOD Aerosol Optical Depth
GEOS Geosynchronous Earth Orbit Satellite
RAMS Regional Atmospheric Modeling System
GLM Generalized Linear Model
GAM Generalized Additive Models
GWR Geographically Weighted Regression
ML Machine Learning
DTA Dark Target Algorithm
EDTA Enhanced Dark Target Algorithm
SHB Shanghai-Hangzhou Bay
NSMS National Standard Map Service platform in China
ESDC Environmental Sciences and Data Center in China
NASA National Aeronautics and Space Administration
LAADS the Level-1 and Atmosphere Archive and Distribution System
AERONET Aerosol Robotic Network
CEME China Environmental Monitoring Center
LUT Lookup Table
GCP Ground Control Points
HDF Hierarchical Data File
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