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Abstract
Purpose Electromagnetic tracking (EMT) can potentially complement fluoroscopic navigation, reducing radiation exposure
in a hybrid setting. Due to the susceptibility to external distortions, systematic error in EMT needs to be compensated
algorithmically. Compensation algorithms for EMT in guidewire procedures are only practical in an online setting.
Methods We collect positional data and train a symmetric artificial neural network (ANN) architecture for compensating
navigation error. The results are evaluated in both online and offline scenarios and are compared to polynomial fits. We assess
spatial uncertainty of the compensation proposed by the ANN. Simulations based on real data show how this uncertainty
measure can be utilized to improve accuracy and limit radiation exposure in hybrid navigation.
Results ANNs compensate unseen distortions by more than 70%, outperforming polynomial regression. Working on known
distortions, ANNs outperform polynomials as well. We empirically demonstrate a linear relationship between tracking accu-
racy and model uncertainty. The effectiveness of hybrid tracking is shown in a simulation experiment.
Conclusion ANNs are suitable for EMT error compensation and can generalize across unseen distortions. Model uncertainty
needs to be assessed when spatial error compensation algorithms are developed, so that training data collection can be
optimized. Finally, we find that error compensation in EMT reduces the need for X-ray images in hybrid navigation.

Keywords Electromagnetic tracking · Hybrid navigation · Metallic distortion compensation · Uncertainty analysis

Introduction

Electromagnetic tracking (EMT) is a key technology to
enable navigation in minimally invasive surgery without
line of sight. As miniaturized sensors can be integrated into
catheters, EMT has potential to be employed for guidewire
navigation in abdominal aortic aneurysm repair (AAAR)
[15,16]. In current clinical practice, fluoroscopicX-ray imag-
ing is considered the gold standard for guidewire navigation
in endovascular aneurysm repair [5]. However, X-ray imag-
ing exposes both the surgeon and the patient to ionizing
radiation [8]. The high accuracy [13] and visual feedback
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of fluoroscopy means complete removal of X-ray in mini-
mally invasive vascular surgery is unrealistic in near future.
A more realistic approach is to consider a hybrid navigation
framework. In this framework, continuous navigation will
be performed by radiation-free EMT, while X-ray snapshots
will be acquired on demand for recalibration or dexterous
maneuver. This hybrid navigation reduces the amount of X-
ray images that need to be captured during the procedure,
which in turn will reduce the radiation exposure for both
surgeon and patient.

EMT navigation is negatively affected by the presence
of metal or electromagnetic interference within the vicin-
ity of the tracking system. The presence of the c-arm X-ray
unit within the operating room (OR) is a dominant source
of metallic distortion for the EMT measurement. While it is
well-known that passive countermeasures (such as removal
of themetallic object)mightmitigate such error [6], the c-arm
fluoroscopy unit is essential for hybrid tracking procedures.
Thus, the c-arm cannot be removed from the OR.

Rather, an active error compensation is necessary to
improve electromagnetic tracking accuracy. Unlike random
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Table 1 Types of error in the active EMT compensation pipeline

Type of error Sources Countermeasures

System inherent errors Noise, fabrication inaccuracies Averaging, filtering, system design improvement

Field distortion errors Ferromagnetic/conductive materials, electric currents Active [10] or passive [19] compensation

Errors during data acquisition Operator error, phantom uncertainty Data validation, phantom calibration[14]

Compensation-inherent errors Lack of training data, sparsity of training points More training data points denser spacing of points

Fig. 1 a Calibrated positions (dark dots) on Lego phantom. bMeasure-
ment setup in c-arm environment

error that can be eliminated by averaging recorded sen-
sor data over multiple samples, compensating systematic
error requires more sophisticated algorithms. Classical tech-
niques such as lookup-tables [17], interpolation [23] or
polynomial regression [9], only work under known distor-
tion characteristics. Such offline compensation requires a
tedious data acquisition procedure every time the c-arm posi-
tion is changed. Clearly, these algorithms are impractical for
hybrid navigation in the OR. EMT navigation in surgery thus
requires online compensation approaches, where the com-
pensating algorithm can be used in any distortion scenario.
Training data for online compensation need to be collected
only once for several scenarios. For the sake of brevity, all
types of errors related to EMT and countermeasures are sum-
marized in Table 1.

Fig. 2 Lego phantom (brown) on base board. Green area marks speci-
fied region of the trakSTAR

In this paper, we present an active online error compen-
sation approach for EMT navigation in AAAR. First, we
collect positional EMT data in one laboratory and several
OR scenarios with different degrees of distortion. We cap-
ture EMT sensor positions on a calibrated Lego phantom
(Figs. 1a and 2). Metallic distortion is artificially introduced
to the magnetic field by positioning a c-arm fluoroscopy unit
(Fig. 1b) in varying alignments next to the Lego setup. We
then use an artificial neural network (ANN) for approximat-
ing a function that maps erroneous positions to compensated
positions. The ANN is evaluated in an online setup to com-
pensate distortions that are not available in the training phase.
Asmodel predictions can be uncertain in regionswhere train-
ing data are sparse, we assess spatial uncertainty inherent to
the ANN. This uncertainty evaluation is performed at differ-
ent regions of the navigation volumewith varying availability
of training data. In a final experiment, we simulate a trajec-
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tory resembling the guidewire path through the abdominal
aorta. We use our knowledge about ANN inherent uncer-
tainty for finding optimal points to acquire X-ray images.
For guidewire insertion in the real OR, these X-ray images
can be used to rectify uncertain (and hence erroneous) EMT
sensor positions. Our simulation provides initial understand-
ing to the trade-off in loss of precision versus reduction in
radiation exposure using hybrid tracking.

This is the first work describing an uncertainty-aware
online error compensation approach for EMT in endovascu-
lar surgery. Our contributions are twofold; first, we describe
a neural network to approximate a spatial compensation
function based on relative distances. The approximation
works online in scenarios with unknown distortions. Second,
we assess spatial model-inherent uncertainty of the neural
network regression and its effect on positional error. This
analysis provides us insight about the linear relation between
model uncertainty and tracking accuracy, and the potential
radiation-error trade-off for hybrid guidewire navigation in
AAAR.

Related work

As a comprehensive description of all the active EMT error
compensation techniques is beyond the scope of the paper,we
point the reader to Franz et al. [6] and Kindratenko et al. [10]
who provide a comprehensive review of this topic. Instead, in
this paper, we mainly focus on the compensation techniques
similar to ours. Kindratenko et al. [11] propose a two hidden
layer neural network that outperforms polynomial fits and
lookup-table compensation in an offline compensation setup.

Online compensation approaches use data from additional
sensors [20] or sensor arrays [18] to map metallic distortions
in the tracking volume. Sadjadi et al. propose a simultane-
ous localization andmapping (SLAM) approach that reduces
positional error by 67%, but requires auxiliary sensors to
be rigidly attached to the tracked instrument—which is not
applicable to guidewires or catheters in endovascular navi-
gation.

In endovascular surgery, the use of EMT is evaluated in
several phantom [4,22], swine [15,22] and patient studies
[16]. These studies show that there is potential for EMT to
be applied in AAAR, with positional errors of up to 5mm.

Neural networks, such as those we use for error compen-
sation in this paper, are black boxes due to their complexity
and nonlinearity. We therefore employ means to make model
predictions traceable. Gal et al. [7] propose to use dropout
masks for hidden layers at both training and inference time
to obtain a Bayesian approximation for prediction uncer-
tainty in classification problems. In this paper, we generalize
this approximation to learn about the limits of the presented
regression approach for spatial error compensation.

Materials

Positional tracking experiments are performed with an
Ascension trakSTAR 3D Guidance system (Northern Dig-
ital Inc.) under the use of a 1.8mm sensor. Positional EMT
measurement data are collected on a calibrated Lego mea-
surement phantom (repeatability 20µm) similar to the one
proposed by us earlier [14]. EMT measurements are per-
formed in laboratory and near a Ziehm Vision 3D c-arm
fluoroscopy unit. Software for interfacing the trakSTAR
system is developed in C++. Compensation models are
implemented in Python (Python Software Foundation) using
Keras [3] and tensorflow backend [1].

Methods

First, training and evaluation datasets are acquired in one
laboratory and multiple c-arm scenarios. We describe the
acquisition and preprocessing in “Data acquisition and pre-
processing” section. Acquired datasets are then used for
training neural networks for EMT error compensation, which
we describe in “Error compensating neural networks” sec-
tion.We use our ANN in four experimental setups. In the first
experiment, the ANN is trained on a multitude of datasets for
online compensation (“Compensation of unseen distortions”
section). Afterward, we perform an offline evaluation to com-
pare the ANNs to a similar compensation approach (“Known
distortion compensation” section). We then evaluate spatial
model uncertainty for the online model in “Model uncer-
tainty evaluation” section. Finally, in a simulation experiment
(“Simulated hybrid AAAR intervention” section), we use
model uncertainty to find a threshold for recalibration.

Data acquisition and preprocessing

Data points are captured by sequentially positioning a Lego
block with an embedded EMT sensor on ten calibrated posi-
tions (see Fig. 1a) of the phantom. Random EMT error is
eliminated by taking the median of 500 samples. We collect
positional datasets in multiple scenarios with artificial distor-
tion and in a laboratory scenario. Each distorted scenario uses
a different c-arm alignment with respect to the Lego phan-
tom. Table 2 shows the datasets collected for the experiments
in “Compensation of unseen distortions” and “Known distor-
tion compensation” sections. Positional data are collected in
three phantom elevations in steps of 9.6mm (height of one
Lego brick).With each c-arm position, we alsomeasure posi-
tions with the phantom rotated by 180◦ around its azimuth
axis. Error values are calculated as e = ||x2−x1||− y, where
e is error, x1 and x2 are two different measuring points and
y is the respective ground truth distance on the Lego board.
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Table 2 Datasets collected in varying distances to c-arm and in a laboratory setup

Scenario #displacements Displacement RMSE (mm) Max. displacement error (mm)

Training c-arm 7cm 870 1.386 3.586

c-arm 8cm 870 1.292 3.239

c-arm 9cm 870 1.192 3.221

c-arm 10cm 870 1.101 2.994

Validation Laboratory 870 0.367 0.916

Evaluation c-arm 11cm 870 1.064 2.926

c-arm 12cm 870 1.025 1.403

c-arm1 30cm 870 0.743 1.671

c-arm2 50cm 870 0.639 1.403

Number of displacements, RMSE and max. displacement error are noted for each dataset. Distances to c-arm are measured from X-ray source to
base board center. c-arm1: gantry rotated at 30◦, c-arm2: gantry rotated at 60◦

Fig. 3 Neural network model for point compensation. x1, x2 are input
points (x, y, z, quality), x1,c and x2,c are compensated output points. �
is the displacement distance we use for computing the MSE-loss

Error compensating neural networks

We mitigate systematic positional error by approximating
a compensation function that maps erroneous to compen-
sated points. The compensation function is approximated by
a three-layer ANN with 32 units per layer. These parameters
as well as the batch size (512) are estimated by grid search.
The ANN uses leaky ReLU activations (α = 0.01) in the
hidden layers to prevent vanishing gradients.

The compensation function has four input units for x, y, z
and the trakSTAR quality indicator, which are all normalized
to an interval [0, 1] to improve model stability. This normal-
ization is reverted after the final layer, which contains three
units with linear activations for x, y and z coordinates.

During training, two ANNs with shared weights are
arranged in parallel, as illustrated in Fig. 3. We can therefore
train the compensation function on relative displacements,
but use the trained function for absolute point predictions.
Training on relative displacements between positions ensures
that the exact distance of phantom to the field generator cen-
ter does not need to be measured [14]. Hence, this approach
circumvents the need for a second measurement standard
to capture absolute positions, which would contribute to
overall measurement uncertainty. In the training phase, the

displacement error (mean-squared-error) is minimized by
Adam optimizer [12] (learning rate = 0.01):

L = || f (x2, q2, ω) − f (x1, q1, ω)||2 − y (1)

where f denotes the learned compensation function approxi-
mated by theANN, y is the ground truth displacement length,
x1, x2 are measured EMT points, q1 and q2 are respec-
tive quality indicator values and ω is the matrix of learned
weights.

As mentioned earlier, we add a quality indicator value
that is reported by the trakSTAR system along with every
measurement, as additional input to the compensationmodels
in expectation of better generalization performance across
scenarios. According to the trakSTAR user manual [2], the
quality value is computed from an internal error indication ε

and four user-defined quality-parameters:

Q = S · (ε − (b + m · r)) (2)

where S, b, and m denote user parameters (sensitivity, off-
set, slope), r is the sensor-transmitter range. We obtain raw
quality values by setting the user parameters to S = 1, b =
0, m = 0.

For comparison, we implement mixed-term polynomial
regression models as proposed by Kügler et al. [14]. Both
compensation models are trained on pairs of EMT sensor
positions and corresponding ground truth distances on the
Lego phantom.

Compensation of unseen distortions

We train the ANN on data from four c-arm scenarios (see
Table 2). For model validation, we use the data obtained
in the laboratory setup. The trained model is evaluated on
the remaining four datasets (Fig. 4). Likewise, we train and
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Fig. 4 Comparison of compensation performance in scenarios with unseen (left) and known (right) distortions. ANNs with and without quality
indicator (Q) are compared to polynomials. Percentages denote error reduction

evaluate the polynomial regression model for comparison to
the compensation approach proposed by Kügler et al. [14].

Known distortion compensation

In this experiment, we evaluate ANN models in the same c-
arm setup in which they are trained (offline compensation).
This experiment measures the best-case outcome for learn-
ing based compensation. We examine compensation for all
scenarios in Table 2 individually, where training and evalu-
ation sets are chosen to be spatially independent. The data
are divided into training/validation/testing sets with a split of
45/5/50.

Model uncertainty evaluation

Model-inherent uncertainty for the ANN is estimated by
applying 10% dropout during training and at inference time
(Monte Carlo Dropout [7]). We take 3000 samples from
the distribution of compensated output positions to obtain
a Bayesian approximation of model-inherent uncertainty.
Spatial uncertainty is expressed as the standard deviation

σ =
√

σ 2
x + σ 2

y for each point (x, y) in the planar full-base-

board dataset. Distributions of model predictions cannot be
assumed to be Gaussian (see section 4.1 in [14]), so that the
68–95–99.7 rule for confidence interval approximation does
not apply here.

To examine spatial uncertainty for a large portion of the
specified tracking volume, we collect a dataset in the 2D
plane by moving the phantom to different positions on the
gray Lego board. This dataset contains 10,598 different dis-
placements, collected in six different alignments of the c-arm
to the tracker. We use this dataset for training a neural net-
work analogously to “Compensation of unseen distortions”
section, but with modifications to the ANN layout. That is,
a neural network with two layers, 64 units per layer and two

Fig. 5 Model-inherent uncertainty map projected onto the Lego base
board. Dark spots mark measurement points used for training the ANN

Fig. 6 Schematic abdominal aortic anatomywith guidewire path (left).
Virtual EMTsensor trajectory segments (black arrows) in center of spec-
ified tracking volume (right).Dots correspond tomeasurement positions
on Lego phantom
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Fig. 7 Relationship betweenANNuncertainty and compensation error.
Red line shows linear regression

Fig. 8 Relationship of ANN uncertainty to distance to nearest training
point. Red line shows linear regression

Fig. 9 Relationship between max. distance to training point and com-
pensation RMSE. Red line shows linear regression

Fig. 10 Error development along simulated trajectories with (blue) and
without (red) compensation. Filled area depicts uncertainty

output neurons (x, y) is employed for the following evalua-
tions.

In addition to the training set,we collectmeasurement data
for evaluation from all Lego points within the specified area
(green area inFig. 2).Unlike the training sets, this dataset also

contains phantom points that were not calibrated. As phan-
tom uncertainty (≈ 20µm according to [14]) is negligible
compared to model-inherent uncertainty we want to exam-
ine, this simplification is valid. This measurement allows for
an evaluation of spatial epistemic uncertainty over the whole
base board (see Fig. 5).

Although the symmetric ANN is trained and validated on
pairs of positions and respective ground truth distances, a
single trained ANN can be used for absolute point compen-
sation during inference (compare x1,c and x2,c in Fig. 3). In
this experiment, we let our trainedANNpredict compensated
positions for the whole baseboard. Absolute positional error
is then estimated by calculating the measured distances to
adjacent points in a Moore neighborhood (r = 3) [21] and
averaging the error.

Simulated hybrid AAAR intervention

Based on real EMT data, we simulate a sensor moving on
a path inside a virtual abdominal aorta. This simulation is
inspired by guidewire insertion in AAAR using hybrid nav-
igation. Path shapes are motivated by those of abdominal
aorta, as shown in Fig. 6. Since the average abdominal aorta
is 20cm to 25cm in length, a simulated path of 21.9cm is
chosen.

Start and end points of each path segment are taken
from the full-base-board dataset. Comparing the distances
between segment start and end points to respective ground
truth distances yields positional error. Uncertainty is deter-
mined position-wise as described in “Model uncertainty
evaluation” section.

In hybrid navigation, guidewire position can be precisely
recalibrated by X-ray pose estimation [13] and fiducial reg-
istration [15,22]. Correcting the EMT sensor location by an
X-ray image exposes the patient to radiation, so that recal-
ibrations should rarely be employed. Hence, we are facing
a trade-off between radiation dose and tracking accuracy.
We introduce the concept of recalibration to our simulation
by resetting error and accumulated uncertainty at calculated
recalibration points.

We evaluate two different strategies for determining when
to perform the recalibration in our simulation: (A)We choose
recalibration points based on model uncertainty. Recali-
bration is performed when accumulated model uncertainty
exceeds a certain threshold τ .
(B) We simulate recalibration in defined constant intervals
based on traveled distance. We simulate the recalibration
process for different adaptive thresholds τ . The same is done
for different uniform distance intervals ranging from 0cm to
21.9cm.
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Fig. 11 Pareto front for radiation vs. error trade-off at seen (left) and unseen (right) regions of specified tracking volume

Results

Error compensation In unseen scenarios (“Compensation
of unseen distortions” section), ANNs clearly outperform
polynomial regression models (Fig. 4). However, the com-
pensated EMT error does not reach the results achieved by
offline compensation. We observe that including the quality
indicator in themodel input improves generalization abilities
of the neural network. Scenario-wise compensation (“Known
distortion compensation” section) appears to be a simple task
for both polynomial fits and ANNs, as we can compensate
between 35% and 75% of error in each scenario. Both algo-
rithms can reduce tracking error to sub-millimeter values in
this offline setup.
Model uncertainty evaluation We compare error after com-
pensation to model uncertainty, finding that both quantities
are correlated (Fig. 7). Hypothesizing that model-inherent
uncertainty grows with less training points nearby, we mea-
sure distances between points in the evaluation set and the
nearest point in the training set. The resulting distances serve
as a proxy measure for training point density. Figure 8 shows
the relationship between training point density and the result-
ing model uncertainty. We observe that for distances to next
training point greater than 35mm, error after compensation
grows linearly with decreasing point density (Fig. 9).
Simulated hybrid AAAR intervention Along with the sen-
sor traveling along its path, uncertainty accumulates by

σn+1 =
√∑n

i=1 σ 2
i . Figure 10 shows how error and uncer-

tainty develop during virtual guidewire insertion with and
without X-ray recalibration. The trade-off between required
X-ray recalibrations and tracking error for uncertainty-based
(blue, adaptive) and distance-based (red, static) triggering
of X-ray recalibrations is illustrated in Fig. 11. Choosing a
threshold of τ = 2mm, as motivated by Fig. 7, yields a good
compromise between tracking error and radiation exposure
in both seen and unseen scenarios.

Discussion

Although localization error of 4mmare believed to be accept-
able in endovascular surgery [22], improving EMT accuracy
raises the overall trust of the hybrid navigation system. In
this work, we have shown that ANNs can improve positional
tracking to achieve sub-millimeter accuracy in an online set-
ting. With higher localization accuracy, less X-ray images
are needed for navigation.

Spatial uncertainty can be examined for ANNmodels and
it should be utilized as a measure for model validation when-
ever compensation algorithms are employed. On the one
hand, knowledge about model uncertainty can be used to
refine phantom design. We have found that our ANN model
requires a training point spacing of 35mm to be sufficiently
accurate, which should be considered in future experimental
designs. On the other hand, our simulation experiments show
that knowledge about model uncertainty can be exploited
to minimize radiation exposure in the online hybrid setting.
We envision that model-inherent uncertainty assessment will
become an essential part of future EMT error compensation
approaches.

The presented method can be further improved by con-
ducting more realistic evaluations. Currently, assumptions
about radiation reduction are solelymade on the basis of sim-
ulations. Consequently, the findings presented in this paper
should be assessed in realistic phantom or cadaver studies.

In addition, the rotational degrees of freedom (DOF) need
to be considered for realistic evaluations. Especially the roll
angle of EMT sensors are of great importance in endovascu-
lar procedures and will thus be a major subject of our future
work. Our current evaluations show that ANN can compen-
sate static error to sub-millimeter values with only a single
sensor. However, the effort of data collection in multiple sce-
narios with all DOF poses a problem that still needs to be
solved, for instance by automatized data acquisition.

Furthermore, only one source of metallic distortion (c-
arm) is considered in our experiments. In the real OR, other
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metallic artifacts contribute to measurement error in addi-
tion to the c-arm. Considering additional artifacts, such as
the patient bed, and the rotational DOF might require more
complex models than the proposed neural network.

Conclusion and future work

In this paper, we present a novel active error compensation
framework for EMT in endovascular surgery. We introduce
neural networks capable of generalizing across distortion
scenarios in single-sensor configuration while providing
sub-millimeter accuracy. We also quantify the positional
uncertainty of the error compensating neural network. When
error compensated EMT reaches its limits, we show that
knowledge about positional uncertainty helps to get EMT
navigation back on track. Our work suggests inherent limits
of spatial uncertainty that can only be realized when EMT
and the compensation scheme are evaluated in tandem. In
future phantom evaluation protocols, we will consider these
spatial uncertainty limits.

In the future, we will work on automatized data acquisi-
tion protocols in order to extend our approach to more than
two DOF. Moving toward more realistic evaluations, we will
evaluate our method in a hybrid setup with 3D printed aortic
phantoms and additional metallic artifacts.
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