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Abstract: Fuels and polymer precursors are widely used in daily life and in many industrial processes.
Although these compounds are mainly derived from petrol, bacteria and yeast can produce them
in an environment-friendly way. However, these molecules exhibit toxic solvent properties and
reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence,
studying how product accumulation affects microbes and understanding how microbial adaptive
responses counteract these harmful defects helps to maximize yields. Here, we specifically focus
on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated
stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In
practice, integrating heterologous defense mechanisms, overexpressing native stress responses or
triggering multiple protection pathways by modifying the transcription machinery or small RNAs
(sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in
combination with metabolic pathway optimization, shows high potential in developing superior
microbial producers.

Keywords: product toxicity; stress-response pathways; solvent tolerance; yeast; bacteria; bioproduc-
tion; fermentation

1. Introduction

For years, biosynthetic pathways of various microorganisms have been exploited and
optimized to produce valuable biochemicals and fuel molecules with solvent properties [1,2].
Recent concerns about crude oil availability and climate change further encourages the
use of microbes in synthesizing solvent chemicals [3]. Compared to petrochemical pro-
duction, the microbial approach requires inexpensive growth substrates and occurs at
energetically favorable conditions [4,5]. In addition, these biochemical processes often
rely on (plant-based) sugars, instead of ancient carbon storages, which is beneficial from
a “closed carbon cycle” perspective. However, producing these fuels and biochemicals
in a renewable microbial-based setup brings its own challenges. First, wild yeasts and
lactic acid bacteria might contaminate the fermentation vessel, which causes significant
production losses [6]. Secondly, the microbial producers are exposed to multiple stresses
during the fermentation process including extreme fluctuations in (sugar) osmolarity, pH,
temperature, and oxygen [7,8]. While the previous challenges are largely dependent on the
process parameters, end-product toxicity is inherently linked to the production of fuels and
biochemicals and becomes more dominant towards the end of the fermentation cycle [9].
Indeed, accumulation of these solvent molecules damages key cellular components, such
as membranes, and interferes with enzyme function and energy metabolism [10,11]. As a
result, cell growth ceases, production hampers, and eventually cell death increases when
product concentration reaches lethal levels.
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Improving tolerance to alcohols in Clostridium and in Saccharomyces cerevisiae was
previously found effective to overcome solvent toxicity and to reach higher end-product
concentrations [12,13]. Recently, researchers started to focus on non-model producers (e.g.,
Corynebacterium glutamicum) and less conventional chemicals (e.g., styrene) which resulted
in more industry-relevant strains by manipulating stress-response pathways [14,15]. These
examples illustrate that microbial tolerance engineering, along with metabolic engineering,
is relevant in reaching economically attractive titers of alcohols, aromatics and more
complex terpenoids in a variety of microbial species (Table 1). Although these solvent
molecules differ in terms of chemical properties, this review focuses on the common
“mode-of-toxicity” of these compounds. Furthermore, we compare the corresponding stress
responses across various production hosts to identify overlapping tolerance strategies that
are therefore widely applicable as a means to increase production.

Table 1. Brief summary on the bacterial (B) and yeast (S) species presented in this review.

Species Description Ref.

Escherichia coli (B)

This γ-proteobacterium is by far the most studied (bacterial) model organism.
Since E. coli is genetically and metabolically well-characterized, its potential in

the production of fuels (alcohols and terpenoids, etc.), organic acids (e.g.,
hydroxybutyrate), and amino acids has been explored over recent decades.

[16,17]

Zymomonas mobilis
(B)

Originally, this α-proteobacterium was isolated from tropical, fruit-or
agave-based beverages and spoiled ciders. However, its remarkable ethanol
tolerance and glucose consumption rate have promoted its use in the ethanol

industry. Recently, extensive metabolic engineering resulted in industrial
strains which are able to produce ethanol, sorbitol, and levan from

lignocellulosic biomass (composed of nonedible sugars).

[18–20]

Clostridium sp.
(B)

C. acetobutylicum and beijerinckii have the natural ability to metabolize sugars
into acetone, butanol and ethanol simultaneously. Therefore, these strains have
been used for over 100 years to produce this solvent mix on an industrial scale.

[21,22]

Corynebacterium glutamicum
(B)

This actinobacterium is particularly suitable for the production of amino acids.
Recently, researchers have successfully implemented (biogas-based) methanol

as a carbon source for this purpose.
[14,23]

Lactic Acid Bacteria
(B)

This group of bacteria (including Lactobacillus plantarum and Oenococcus oeni)
are naturally present in wines. These microorganisms facilitate maturation of
(red) wines as they are largely responsible for the conversion of lactate into

malate. The latter improves the sensory qualities and ensures that these
alcoholic drinks are microbiologically stable (on the long term). As they need

to withstand ethanol percentages (>10%), lactic acid bacteria are suitable
candidates to study alcohol tolerance.

[24,25]

Saccharomyces cerevisiae (Y)

This yeast species is without any doubt the most commonly used fermentation
strain both in the food and fuel industries. Decades of research on metabolic
engineering even expanded the application potential of S. cerevisiae towards

lignocellulose-based ethanol production.

[26,27]

Kluyveromyces marxianus (Y)

This dairy yeast is traditionally used for the fermentation of milk into yoghurt,
kefir, etc. Moreover, the strain has also been industrially exploited for the
production of enzymes (e.g., pectinases and lipases). Recently, researchers
have also implemented K. marxianus in bioethanol production as this yeast

displays high thermotolerance and has a broad sugar utilization range.

[28,29]

Scheffersomyces stipitis (Y)

This respiratory yeast is also known as Pichia stipitis. In contrast to S. cerevisiae,
S. stipitis naturally utilizes a whole arsenal of (hemi)cellulases to consume
complex sugars (e.g., cellobiose). This feature is particularly interesting in

lignocellulose-based bioethanol production settings.

[30]
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2. Production of Solvent Molecules Using Microorganisms

Microbes can synthesize alcohols through various pathways, resulting in alkanols
with different properties [1,31]. The most common one, ethanol, is traditionally produced
by yeast (S. cerevisiae) or the bacterium Zymomonas mobilis to create alcoholic beverages (e.g.,
beer, wine and fruit-based spirits) or bioethanol fuels through the well-known Embden–
Meyerhoff–Parnas (EMP) or Entner–Doudoroff (ED) fermentation routes (Figure 1) [27,32].
To obtain more complex alkanols such as (iso)propanol, (iso)butanol or long-chain fatty
alcohols, researchers have adapted fatty acid synthesis, keto acid, and isoprenoid pathways
of E. coli, Pseudomonas, Clostridia and Ralstonia species [33,34]. In this way, specific branched,
long-chain or unsaturated alcohols are obtained that can be applied as plasticizers, polymer
precursors or fuels [35–39].

In the last decade, researchers also successfully adapted microbial metabolism for
terpenoid production. These compounds originate from the central five-carbon isoprene
precursor and are either purely aliphatic (i.e., reduced) or decorated with ketone, alcohols
or ether groups (i.e., oxidized) [40]. Biochemically, terpenoids are derived from either
the mevalonate (MEV) or 1-deoxy-xylulose 5-phosphate (DXP) pathway (Figure 1). From
an industrial perspective, E. coli, as well as S. cerevisiae (less commonly), is generally
the preferred organism since optimization of the native DXP pathway results in high
titers of isopentenols [41]. For monoterpenes (e.g., pinene, camphene, and limonene) and
sesquiterpenes (e.g., farnesene and bisabolene), the microbial metabolism falls short and
additional plant-based enzymes are heterologously expressed to improve yields [40]. The
majority of terpenoids are implemented as high-energy (jet)fuels, but some molecules also
serve as pharmaceuticals (e.g., Artemisinin as an antimalarial drug) [42].

Aromatics constitute the last class of biosynthetic molecules discussed in this review and
are mostly used in the polymer and resin industry where benzene-, toluene- and xylene- (BTX)
derivatives play a pivotal role [43–45]. The attractive application potential has increased inter-
est in more cost-effective microbial production routes for these petrol-derived compounds [46].
These BTX derivatives originate from the phenylalanine and tyrosine amino acid biosynthetic
pathways and examples thereof include phenol, p-hydroxystyrene, and p-hydroxybenzoate,
which are preferentially produced in Pseudomonas putida [47,48] (Figure 1).

Figure 1. Overview of the microbial, sugar-based, solvent production pathways for alcohols, ter-
penoids, and aromatic compounds. (1) Aromatics (yellow) are predominantly based on Tyr(osine)
and synthesized through the shikimate (Shik.) pathway [47,48]. (2) Alcohols (blue) are derived
from metabolic routes such as glycolysis, fatty acid biosynthesis (FAB), and the branched amino
acids pathway (such as Val(ine)) [49,50]. (3) Terpenoids (orange) are derived from the isopentenyl
pyrophosphate (IPP) or dimethylallyl pyrophosphate (DMAPP) precursors which emerge from
the 1-deoxy-D-xylulose 5-phosphate (DXP) or mevalonate (MEV) isoprenoid pathways [42,51,52].
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Abbreviations: PP, pentose-phosphate; E4P, erythrose-4-phosphate; DHAP, dihydroxy-acetone phos-
phate; G3P, glyceraldehyde-3-phosphate; PYR, pyruvate; Ac-coA, acetyl-coenzyme A; AcAc-coA,
acetoacetyl-coenzyme A; EtOH, ethanol; (i-)BuOH, (iso-)butanol; LCFA, long-chain fatty alcohols;
α-Pin, α-pinene; Far, farnesene; PhOH, phenol and OH-styr, hydroxy-styrene.

3. The Primary Cell Components and Processes Impacted by Solvent Toxicity

Fuel molecules and biochemicals typically affect multiple cell components and func-
tions. This section comprehensively summarizes the recurrent “mode-of-toxicity” linked to
alcohols, terpenoids, and aromatics (Figure 2).

Figure 2. The detrimental effect of toxic solvent end-products on bacterial (a) and yeast (b) phys-
iologies. The bacterial envelope includes (from inside to outside) the phospholipid bilayer of the
cytoplasm membrane (CM), decorated with hopanoids (cyclic lipids denoted with “H”), the cell wall
(CW), composed of peptidoglycan, and, in the case of Gram-negative species, the outer membrane
(OM) [53]. The yeast envelope consists of a phospholipid-containing CM, including ergosterol (cyclic
lipids denoted with “E”), and the chitin-rich CW [54]. (1) Solvents often induce electron leakage
from electron transport chains (ETCs, orange), either situated at the inner CM in prokaryotes or
in mitochondria (orange) in yeast. Eventually, these electrons give rise to reactive oxygen species
(ROS) which, in turn, cause DNA damage (2), protein oxidation (3), and lipid peroxidation (4).
Next, solvent molecules interfere with DNA replication (5), transcription, and translation processes
(DNA, RNA polymerases and ribosomes are depicted in purple) (6). Moreover, solvent toxicity also
disrupts structure and function of cytoplasmic proteins (blue) (7). Furthermore, solvents cause severe
membrane damage at the phospholipid bilayer (8) which also disturbs anion (A−), cation (C+) fluxes
and transport processes. Finally, these membrane deformations or direct solvent interactions also
result in dysfunction of membrane-associated proteins (green) (9).

3.1. Solvents Disrupt Cell Envelope Integrity

The cell envelope is a multilayered structure that protects against the (hostile) environ-
ment. In bacteria, it comprises the cytoplasmic membrane (CM), the peptidoglycan cell wall
(CW) and, in case of Gram-negatives, an additional outer membrane (OM), whereas the cell
envelope in yeast consists of a plasma membrane and a chitin-rich CW (Figure 2) [53,54].
As the primary interface between a microbe and fuel or solvent molecules, the cell envelope
has been studied intensively. Various chemical compounds were identified to profoundly
impact the membrane phospholipid composition of E. coli, but in general, the toxicity of a
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solvent highly correlates with its hydrophobicity [10,55,56]. Ethanol, for example, is a rela-
tively hydrophilic alcohol due to its short two-carbon aliphatic tail and its polar hydroxyl-
group. As a consequence, ethanol preferentially accumulates at the lipid/water interface
of membranes—its methyl group pointing towards the hydrophobic core—and interacts
with the polar phosphate groups of the phospholipids through hydrogen bonds [57,58].
Starting from 1 mol%, the partitioning of ethanol at the lipid/water boundary progressively
expands the bilayer surface due to an increase in area per lipid and reduces the membrane
thickness (Figure 3) [59]. Consequently, key physical properties of the CM are radically
altered and cause an increase in permeability, fluidity, and disorder and a drop in surface
tension and rigidity [58,60]. As such, the highly ordered, ethanol-free crystalline phase (Lc)
transitions towards a (partially) disordered gel phase (Lβ’) (Figure 3) [61,62]. In increasing
ethanol concentrations (ca. 2.5 mol%), alcohol molecules start to penetrate deeper into
the lipid bilayer, where they temporarily engage in hydrogen bonding with the lipid tails.
Once ethanol has access to the membrane interior, a small fraction can cross the membrane
barrier, ending up in the cytoplasm [58,59]. When the inner core of the CM is progressively
enriched with ethanol molecules, the CM becomes more hydrophilic until the geometry of
the bilayer turns into a compressed interdigitated state (LβI) (Figure 3).

Figure 3. Ethanol has a profound effect on the geometry of the phospholipid membrane. (A) The packing geometry is
defined by the phospholipid headgroup–water interface area (a), the hydrocarbon chain length (l), and the hydrocarbon
chain volume (v) and is mathematically described as (v/l)/a. In absence of ethanol, the packing geometry of the membrane
bilayer is between 0.5–1, which corresponds to the crystalline phase (Lc). Ethanol tends to enrich at the phospholipid–water
interface which significantly increases a. Elevated ethanol concentrations ([EtOH]) result in a micellar, disordered gel phase
(Lβ’) and eventually cause interdigitation (LβI), in which the acyl chains of opposing monolayers are interpenetrated, leading
to bilayer thinning (arrows). (B) This adverse configuration can be counteracted by increasing the ratio of unsaturated
(UFAs)-to-saturated fatty acids (SFAs). Alternatively, ergosterols (in case of yeast) or hopanoids (in case of Z. mobilis) can
also be incorporated in the phospholipid structure. Both response strategies help to increase v which (partially) restores the
original packaging geometry [10,62].

In contrast to hydrophilic compounds, terpenoid molecules (e.g., limonene, farne-
sene/farnesol) display pronounced hydrophobic characteristics due to their overall bulky
aliphatic structures. Terpenoids accumulate more rapidly into the hydrophobic core of the
membrane compared to the small and more polar ethanol molecules (1010 enrichment of
terpenoids in membrane vs. solution) and are therefore often applied as skin penetration
enhancers for improved drug delivery [63,64]. Enrichment of these hydrophobic com-
pounds in the interior of the bilayer causes membrane swelling and eventually ruptures
the phospholipid barrier at extreme concentrations [64]. The discussed cases illustrate
that the degree of hydrophobicity determines the partitioning of the solvent, either at the
interface for hydrophilic molecules, such as short-chain alcohols, or in the inner core for
more hydrophobic terpenoids. Of course, molecules that share physicochemical properties
with both categories (e.g., the more polar oxidized terpenoids, long-chain alcohols, and
phenolic molecules) show mixed behavior in terms of membrane partitioning.

In contrast to the CM-associated effects, the impact of solvents on the CW and the OM
is less documented and the molecular interaction between solvents and these envelope
layers remains unclear. As an exception, limonene solely targets the CW of yeast, and not
the CM, at ca. 790 µM [65]. In case of other chemical species, the effect of solvents on the
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CW is less apparent and more indirect. For example, reduced peptidoglycan crosslinking
in E. coli results from an ethanol-mediated downregulation of biosynthesis enzymes at
0.7–0.9 M rather than as a consequence of a direct solvent–CW interaction [66,67]. In
Clostridium species, the cell wall undergoes morphological changes, including thinning, at
the transition from the acid production to the solventogenic phases [68]. The OM is more
rigid than the CM and acts as an effective permeability barrier to hydrophobic solvents
due to the “gel-like interior” of lipopolysaccharides (LPSs). On the one hand, this property
is attributed to the anchoring of several fatty acid chains per LPS molecule, which stably
embeds each of the units into the OM. On the other hand, the high abundance of hydrogen
and hydroxyl groups in lipid A promotes lateral interactions between LPS molecules
through hydrogen bonds [69]. Despite its reinforced structure, ethanol may still impact
the integrity of the OM as LPS leaches out of the OM under high ethanol concentrations
(1.7 M) [70]. Interactions between ethanol and the OM lipids likely proceed similarly as
is the case for the CM since the OM lipids are either identical to those in the CM (e.g.,
glycerophospholipids) or share the same hydrophobic-polar structure (e.g., lipid A in
LPS) [71]. However, the overall OM structure is assumed to be less severely affected by
alcohol due to the more impermeable and resistant nature of the OM.

Ultimately, solvent molecules not only disrupt the barrier, but a loss of CM integrity
also promotes leakage of nutrients and ions. The latter results in a diminished proton
motif force which, together with quinone malfunctioning, severely reduces ATP synthesis
(Figure 2) [11,72,73].

In addition to lipids, proteins are also abundantly embedded in the CM and are often
involved in energy generation and nutrient or ion transport processes. Inevitably, these CM-
bound proteins will be affected by alcohol exposure [74,75]. On the one hand, ethanol can
directly affect the function of these proteins (the “protein hypothesis”). On the other hand,
this alcohol could primarily target the bilayer structure and change the physicochemical
properties of the membrane to indirectly disturb membrane-associated proteins (the “lipid
hypothesis”) [76]. Or, both phenomena could occur at the same time. Although most
evidence comes from studying the influence of alcohol on neuronal ion channels in the
context of alcohol abuse and anesthetics, the same principles might also (partially) explain
general solvent toxicity on (ion-transport) channels and membrane-bound enzymes in
microorganisms.

3.2. Accumulation of ROS and Radicals during Solvent Stress Damage Biomolecules Inside
the Cell

Reactive oxygen species (ROS) are a major cause of microbial cell death under several
stress conditions, including antimicrobial treatments [77,78]. Additionally, in the case
of solvent stress, ROS and toxic radicals tend to accumulate and affect lipids, proteins,
and nucleic acids. This paragraph discusses how solvent molecules induce these adverse
chemical species that are key in the secondary effects of solvent exposure (Figure 2).

First, ROS mostly originate from electron leakage at the electron transport chain
(ETC) or are derived from P450 cytochromes as a result of alcohol abuse in humans or
during fermentation in microorganisms [79–82]. Some ROS, such as hydrogen peroxide,
produce hydroxyl radicals by the spontaneous Fenton reaction in the presence of free ferric
ions or at iron–sulfur clusters of certain proteins [66,83,84]. These hydroxyl radicals are
highly reactive and peroxidate lipids, damage DNA and proteins and convert ethanol into
a 1-hydroxyethyl radical, which is also deleterious to proteins and antioxidants [85,86].
Although the previously described ROS cascade is accepted as major cause of solvent-
mediated ROS damage, Burphan et al. recently discovered a still poorly understood,
mitochondria-independent ROS pathway when yeast was exposed to 1.7 M ethanol [87].
Apart from ethanol, exposure to 1.2 mM limonene also elicits a burst of ROS in yeast [88].

Secondly, some microbial species can catabolize aromatics to detoxify these undesired
chemicals and, simultaneously, replenish cellular energy. However, such degradation
through the oxidative metabolism might also accumulate ROS. A well-known example in
some Pseudomonas species is the bioconversion of benzene or toluene into catechol inter-
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mediates [89,90]. These transition products are prone to heavy metal-involved oxidation
which results in semiquinone radicals that can form stable DNA adducts or cross-link to
sulfhydryl groups of proteins [91]. For catechol-like terpenes, such as diterpenone catechol,
the same radical chemistry and damaging effect is directly applicable without the need of a
primary bioconversion step [92].

3.3. Solvents Damage DNA and Impede Transcription and Translation Processes

The presence of solvent-induced ROS accumulation creates a hostile (intracellular)
environment for biomolecules such as nucleic acids. Indeed, research in yeast and E. coli has
demonstrated that, at 0.85 M ethanol, lethal DNA lesions in the form of single-strand and
double-strand breaks (SSBs and DSBs) start to appear (Figure 2) [83,93]. Additionally, ROS-
oxidized nucleotide bases (e.g., 8-oxo-deoxyguanosine) are frequently incorporated into
the genome. Subsequent incomplete base-excision repair of these closely spaced, aberrant
bases may result in a lethal DSB [94,95]. Moreover, the formation of stable DNA adducts
contributes to the mutagenic character of solvent molecules [96]. As mentioned earlier,
the benzene- and toluene-derived semiquinone radicals give rise to these mutagenic DNA
adducts, but malondialdehyde and 4-hydroxynonenal—two lipid peroxidation products—
and ethanol-derived acetaldehyde also share this ability [81,91].

In addition to causing radical and ROS-mediated DNA damage, solvents also have an
influence on genome stability. Ethanol interferes with the replisome which results in replica-
tion fork stalling (Figure 2). In turn, this replication defect recruits translesion polymerases
which inherently display higher error rates and increase the mutation rate [97]. Further-
more, ethanol inhibits cell cycle progression in yeast by disrupting spatial organization of
actin and a similar cell-cycle arrest was also observed in Candida albicans terpenoid-treated
cells [98,99].

In addition to harming the integrity of nucleic acids, Haft et al. showed that ethanol,
in the range of 0.85 to 1.4 M, dramatically affects transcription and translation processes in
E. coli (Figure 2) [100]. Indeed, ethanol is responsible for increased ribosome stalling and
aberrant termination which uncouples translation from transcription. The latter, together
with an ethanol-induced decrease in RNA polymerase (RNAP) activity, renders transcrip-
tion more susceptible for Rho-dependent termination. Besides perturbing transcription-
translation coupling, ethanol also stimulates translational misreading which gives rise to a
pool of error-prone proteins.

3.4. Solvents Affect the Structure and Function of Proteins

The cell’s arsenal of functional proteins and enzymes will eventually be reduced by
mistranslation and disruption of de novo protein synthesis under solvent stress. How-
ever, solvents also have a direct impact on the existing protein pool (Figure 2). Solvents
disturb the polarity of aqueous media and therefore weaken hydrophobic interactions
that assist proteins to fold into their native structures [101,102]. Disruption of these stabi-
lizing bonds not only results in a collapse of the native protein structure, but also alters
(re)folding thermodynamics [102,103]. Although destroying protein structure has detrimen-
tal repercussions for cell functioning, complete denaturation of polypeptides only occurs
at extreme ethanol concentrations, usually exceeding 3.4 M [104,105]. Hence, the relevance
of alcohol-induced protein unfolding is debatable in microbial fermentation settings. At
lower concentrations (0.85–1.7 M), however, ethanol might directly bind to transcription
factors (TFs) and inhibit glycolytic enzymes of Z. mobilis and S. cerevisiae [66,106,107]. This
enzyme malfunctioning is often attributed to secondary effects, related to a loss of mem-
brane integrity upon ethanol exposure. Indeed, a drastic change in the membrane lipid
environment is known to affect proper functioning of membrane-bound proteins, such as
ATPases [108]. The latter impedes replenishing of cellular energy and, as a consequence,
hampers ethanol production and other cellular processes [109]. Finally, proteins are also
damaged by ethanol-induced ROS that oxidize sensitive amino acid residues, disulfide
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bonds, and iron–sulfur clusters. As a result, these extensively oxidized proteins are prone
to cross-linking and aggregation, complicating their degradation [66,110].

4. Adaptive Responses Protect Cells from Solvent Exposure

Solvents impose a multifaceted stress on fermentative microorganisms. Hence, mi-
crobes adapt their cellular processes and fine-tune the composition of cellular components
to overcome the solvent-induced stress and improve their fitness. The adaptation mecha-
nisms have been intensively studied using laboratory-based evolution experiments (for a
list of conducted experiments see CAMEL: https://cameldatabase.com [111]) and omics-
driven approaches (for further reading, see [112]). This section highlights the most common
aspects in tolerance development among various microbial species and against chemically
distinct solvents.

4.1. Increased Mutation Rates Accelerate Solvent Adaptation

Solvents delay replication forks and damage genomes in a ROS-dependent manner
which upregulate error-prone DNA polymerases [97,113]. Since these rescue systems lack
proofreading activity, they can evoke secondary mutations in mismatch repair enzymes,
thereby increasing the mutation rate. Indeed, this hypermutation phenotype is commonly
found in (long-term) evolution experiments under ethanol stress [66,114–116]. Although
the accelerated mutation frequency is not causally implicated in solvent tolerance as
such, this (dynamic) hypermutation phenotype increases the chance of driver mutations
emerging, thereby speeding up the adaptation process [115].

4.2. Maintaining Cell Envelope Integrity to Overcome Solvent Stress

Since the cell envelope is the primary barrier between the cell and its toxic environ-
ment, adaptation mechanisms focused on this cellular component have been the subject
of numerous studies. The vast majority deals with CM fatty acid modifications to ensure
that the membrane’s optimal fluidity is maintained, a process called homeoviscous adap-
tation [10]. Carey and Ingram noticed that the Z. mobilis bacterium, which can tolerate
ethanol concentrations up to 2.17 M, intrinsically has high cis-vaccenic acid (∆11Z-C18:1)
levels in its membrane, suggesting a possible relationship between long-chain unsatu-
rated fatty acids and ethanol tolerance [117,118]. Additionally, E. coli and the yeasts S.
cerevisiae and K. marxianus respond to ethanol (0.69-2 M) by increasing the proportion of
cis-vaccenic acid (∆11Z-C18:1) or oleic acid (∆9Z-C18:1), respectively, at the expense of
palmitic acid (C16:0) [119–122]. Indeed, further evidence from laboratory evolution-based
experiments highlights that a high unsaturated fatty acid (UFA):saturated fatty acid (SFA)
ratio and an overrepresentation of long-chain fatty acids are key for ethanol tolerance
development [123]. At first sight, replacing the more rigid saturated FAs with their more
disordered and unsaturated analogs might seem counterintuitive in the presence of a
fluidizing solvent such as ethanol. However, this adaptation mechanism provides a way
to (partially) restore the bilayer geometry (Figure 3). Furthermore, the response to higher
alcohols, such as n-butanol, is more diverse and seem to be more species-specific. For ex-
ample, enrichment of UFAs protects E. coli against i- or n-butanol, but in the native butanol
producer, Clostridium acetobutylicum, the opposite is true at around 0.15 M [124–126]. In
other bacterial species, including O. oeni, adjusting membrane fluidity under alcohol is ac-
complished by increasing the level of cyclopropane fatty acids (CFAs) instead of saturated
FAs [127,128]. These unusual FAs might display a SFA–UFA chimeric effect, maintaining
both membrane fluidity and improving chain ordering of lipid tails because the cyclo-
propane moiety restricts rotational motion of neighboring FA bonds [129]. In the case of
tolerance to aromatics (28–95 mM), P. putida exploits the fast-responsive cyclopropane FA
synthases and cis-trans isomerases to optimize lipid tail packing and ordering of preexisting
FAs [130,131].

In addition to modifications restricted to the aliphatic lipid tails, polar head groups of
phospholipids also influence surface charge, polarity, and membrane thickness [10]. Hence,

https://cameldatabase.com
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microorganisms adjust the fraction of each phospholipid (such as phosphatidylserine,
-ethanolamine, -choline, -glycerol, and cardiolipin) in response to toxic solvents. However,
research results are not always consistent on the changes in phospholipid composition even
within the same organism and under the same chemical stressor. For instance, research
pointed out that the level of zwitterionic phosphatidylethanolamine generally decreases
in Z. mobilis and E. coli when exposed to ethanol stress (between 0.2 and 1 M) [117,132].
Since the anionic/zwitterionic head group ratio would consequently increase, researchers
assumed that optimizing electrostatic repulsion between neighboring phospholipids might
be crucial for improving solvent tolerance [10]. However, more recently and contrary
to previous findings, it was shown that phosphatidylethanolamine is responsible for
membrane thickening which confers tolerance to a series of (non)alcoholic and aromatic
compounds as well as to lignocellulosic inhibitors [133]. Moreover, the phospholipid
response is sometimes highly strain-specific. As an illustration, P. putida Idaho increases
phosphatidylethanolamine levels whereas in the DOT-T1E strain, a rise in the cardiolipin
fraction is most noticeable [134,135]. This particular enrichment of cardiolipin is probably
beneficial for the function of Resistance–Nodulation–Cell Division (RND) superfamily
efflux pumps rather than for stabilizing the membrane structure [136].

In addition to phospholipids, S. cerevisiae, Yarrowia lipolytica and Z. mobilis incorporate
a significant amount of sterols or sterol-like molecules in their membranes. Aside from
UFAs, these lipids prevent the membrane from shifting towards the interdigitated phase
and consequently avoid membrane thinning (Figure 3) [62,137,138]. Hence, modifications
of the fatty acid tail and the polar head group in combination with cyclic lipids (i.e., ergos-
terols and hopanoids) all contribute to maintaining membrane fluidity (cf. homeovisous
adaptation), but also ensures that critical processes can proceed optimally, even under
solvent stress. Apart from lipids, the microbial CM also consists of membrane-associated
proteins. In fact, a nonspecific increase in membrane proteins rigidifies the CM and thus
helps to counteract the fluidizing effect of ethanol [55,117].

The next protective barrier of the bacterial envelope is the peptidoglycan CW. Here,
several studies have shown that an upregulation of peptidoglycan biosynthesis genes
is associated with ethanol and butanol tolerance in E. coli and L. plantarum [139–142].
Additionally, S. cerevisiae extensively remodels its CW to acquire tolerance to 1.2 M ethanol
and jet fuels (such as 790 µM limonene) [65,143,144].

Finally, the OM is the outermost layer of the cell envelope in Gram-negative bacteria,
in which LPSs take up a significant proportion. The majority of literature agrees that
upregulating LPS synthesis genes (such as lpcA) has a positive effect on ethanol and butanol
tolerance in E. coli and xylene tolerance in P. putida Idaho [139,145–148]. An increase in
LPS has been proposed to decrease the cell surface hydrophobicity which consequently
prevents binding of organic solvent molecules [149]. In contrast, the cell surface of P. putida
becomes more hydrophobic in the presence of octanol because this bacterium releases outer
membrane vesicles, enriched with rather hydrophilic B-band LPSs [150,151]. This increased
hydrophobicity has been linked to enhanced biofilm formation, a lifestyle which offers
protection against a toxic environment [150,151]. Similar to the plasma membrane, the OM
also consists of membrane proteins, such as porins [152]. Particularly, the EnvZ/OmpR
sensor together with the downstream regulated OmpC and OmpF porins significantly
determine OM permeability and bacterial survival under ethanol stress in E. coli [153,154].
Additionally, excluding the outer membrane Protein F in Pseudomonas aeruginosa improves
toluene tolerance due to reduced solvent influx [155].

4.3. Adaptive Mutations Related to the Transcription and Translation Machinery Counter
Solvent-Associated Aberrations

To counteract undesired transcription and translation defects, Haft et al. identified
mutations in RpsQ and Rho of E. coli [100]. The former increases translation accuracy during
protein synthesis and the latter reduces premature transcript termination as ethanol slows
down the RNA polymerase. Moreover, ethanol-associated translation inhibition seems to
be strongly located at nonstart AUG (methionine) codons, and therefore E. coli responds by
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adjusting methionine metabolism. Hence, deleting the methionine biosynthesis repressor
or supplementing exogenous methionine protects E. coli against lethal ethanol stress. In the
same way, overexpression of the methionine activator (metR) might also explain improved
tolerance to 17 µM isopentenol [156].

4.4. Protein Folding and Chaperone Activity Restore Protein Function

Protein malfunction, often because of misfolding or aggregation, is one of the most
severe survival-reducing and growth-limiting effects of solvents. Yeast cells induce a range
of Heat-Shock Proteins (HSPs) and unfolded protein response (UPR) gene members that
are involved in disaggregation of denatured proteins upon ethanol stress [157,158]. In
addition, the ubiquitin-proteasome plays a crucial factor in butanol tolerance (at 0.13 M)
in S. cerevisiae, indicating that turnover of damaged proteins is essential during solvent
stress [159]. Additionally, in bacteria, heat-shock response-associated chaperones, such
as DnaK, GroELS and ClpB, together with the GrpE nucleotide exchange factor play a
universal role in alcohol and toluene tolerance [142,160–162]. Particularly in O. oeni, the
heat-sensitive master response regulator, CtsR, is essential in ethanol tolerance (at 1.9 M)
and controls expression of stress-responsive proteases (including ClpP) and the chaperones
DnaK and GroESL [163,164]. Moreover, overexpression of these HSPs is often a minimal
requirement for further butanol tolerance development in C. acetobutylicum and E. coli
at 0.22 and 0.16 M, respectively. Indeed, when combined with transporter systems or
FA-synthesis-related genes, HSPs potentiate their tolerance-improving properties [165,166].

4.5. Cell Metabolism Is Reprogrammed during Solvent Exposure

Solvent-related cell membrane damage is inevitably linked to reduced energy levels,
since the proton motif force is impaired and ATP levels are consequently reduced [11,167].
Not surprisingly, energy restoring adaptation mechanisms have been identified in yeast
and bacterial species exposed to ethanol, butanol, and toluene [145,168–170]. Interestingly,
Cao et al. pointed out that cells, not adapted to 0.87 M ethanol, repress aerobic respiration-
related genes and rely on alternative pathways (i.e., fermentation and β-oxidation) to
generate cellular energy [66]. Indeed, Brynildsen and Liao confirmed that 0.11 M i-butanol
causes quinones to dissociate from the membrane and that E. coli bypasses this defect by
shutting down the TCA cycle and NADH dehydrogenases in an ArcA-mediated way. On
the contrary, ethanol-adapted E. coli is capable of using aerobic respiration to replenish
cellular energy more efficiently [66,145]. Similarly, in ethanol-tolerant K. marxianus strains,
the aerobic TCA cycle is more active than in the parental strain, not adapted to alcohol [122].
Although the TCA cycle plays a pivotal role in energy generation, other pathways can
contribute as well. For example, L. plantarum exploits its citrate metabolism to meet the
energy needs under ethanol stress (at 1.37 M) [142]. Hence, striving to restore intracellular
energy levels despite the presence of a pmf-disrupting solvent is a recurrent theme which
is also applicable in case of butanol and toluene [171–175]. In yeast, ethanol toxicity can be
diminished by supplementing potassium or by increasing the pH which helps to recover the
electrical membrane potential that is needed for building up energy and driving transport
processes [176].

Moreover, solvent tolerance has been linked to changes in uptake and metabolism
of sugars and polyalcohols. In case of yeast, intracellular trehalose and inositol accumu-
lation improves cell survival in high ethanol conditions (>2 M) [177–179]. On the one
hand, trehalose is implicated in ethanol tolerance since this sugar is involved in mem-
brane stabilization and conformational repair of denatured proteins [180,181]. On the
other hand, supplementation of inositol increases the content of inositol-containing mem-
brane lipids which reduces ion and nucleotide leakage and promotes H+-ATPase activity
under ethanol stress [178]. In addition, galactose metabolism and sugar transport as
well as glycerol accumulation also play a role in bacterial tolerance to ethanol, butanol,
and toluene [140,145,173,182]. Particularly, mannose metabolism and its related phospho-
transferase transporter system (PTS) (manXYZ) are often upregulated under solvent toxicity
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in E. coli [114,172,183]. This mannose PTS might change cell surface hydrophobicity which
avoids influx of apolar n-hexane molecules (0.76 M) [184].

In addition, amino acid metabolism is extensively reprogrammed under ethanol stress
because certain amino acids directly participate in stress-response mechanisms. In E. coli,
upregulation of serine biosynthesis and glycine cleavage increases intracellular betaine
levels, a well-known osmoprotectant, whereas proline, arginine and valine serve as stress-
protectants in yeast [122,147,185,186]. In case of tolerance to butanol (ca. 85 mM), the os-
moprotectants glutamate and alanine improve survival in E. coli [172]. In C. acetobutylicum,
increased levels of branched amino acids are converted into branched fatty acids that help
to optimize membrane fluidity under butanol stress (in a range of 54–270 mM) [182].

Finally, bioconversion of the end-product into a less toxic metabolite also reduces sol-
vent stress. This strategy includes two microbial approaches: either (complete) degradation
and consumption of the solvent or partial derivatization. First, end-product degradation is
not attractive from an industrial point of view as the desired product cannot be recovered.
However, this detoxification strategy is very favorable for the microbe itself, since breaking
down solvent molecules simultaneously reduces toxin concentrations and enables the
host to use the C-chain as an energy source. Indeed, Goodarzi et al. demonstrated that
13C-labeled ethanol ends up in the intermediates of the E. coli TCA cycle, supporting the
detoxification hypothesis [186]. Moreover, research has revealed that alcohol/acetaldehyde
dehydrogenases are upregulated in E. coli and that a mutant alcohol dehydrogenase in
Clostridium thermocellum also confers ethanol tolerance (up to 0.87 M), suggesting that an al-
tered alcohol metabolism might be an important factor in acquiring tolerance [114,187,188].
Particularly, P. putida exhibits high tolerance to aromatic hydrocarbons (e.g., toluene at
28 mM) due to the catabolic tod operon [189,190]. Secondly, end-product derivatization
masks the toxicity of the original solvent by, e.g., adding sugars. Glycosylation of vanillin
by an Arabidopsis thaliana glycosyltransferase in Schizosaccharomyces pombe or S. cerevisiae
has been exploited to relieve solvent stress, thereby improving product yields [191–193]. In
contrast to end-product degradation, recovery of the desired flagrance is feasible and the
sugar moiety can be cleaved by glycosidases in postproduction processing steps [194].

4.6. Engaging Global Stress Responses Protects the Cell in the Presence of Solvent Molecules

Bacteria and yeasts exploit multidrug resistance (MDR) and oxidative stress-response
mechanisms to acquire solvent tolerance. Apparently, the link between antibiotic resis-
tance and solvent tolerance is bidirectional since fluoroquinolone-resistant clinical E. coli
isolates display high tolerance to cyclohexane and, vice versa, P. putida cells, adapted to
6.5 mM toluene, are less susceptible to tetracycline and polymyxin [195,196]. Additionally,
induction of the pleiotropic drug resistance pathway activates the PDR5 ABC transporter
and confers tolerance to (cyclo)hexane and isooctane in S. cerevisiae [197]. The association
between solvent tolerance and bacterial antibiotic resistance is attributed to global MDR
regulators and efflux pumps. In E. coli, marAB, soxRS, and rob regulons contribute to
the MDR phenotype because they upregulate the tripartite AcrAB-TolC multidrug efflux
pump and reduce cell envelope permeability due to a decrease in porin expression [198].
Consequently, salicylate-mediated induction or reduced proteolytic degradation of marA as
well as increases in soxRS and robA expression improve survival under cyclohexane stress
(ca. 0.9 M) in an AcrAB-TolC-dependent way [149,199–202]. In particular, Pseudomonas
species acquire tolerance to toluene (28 mM), xylene (81 mM), and n-hexane (152 mM)
since the P. putida TtgABC and TtgGHI and P. aeruginosa Mex-Opr RND efflux systems are
able to extrude (aromatic) hydrocarbons [203–205]. Moreover, heterologous overexpression
of efflux pumps in E. coli is effective in terms of improving tolerance to the terpinoids
limonene (around 2 mM) and pinene (in the range of 125–315 mM) [206–208]. Up until
now, these cases confirmed the relevance of MDR efflux for tolerance to hydrophobic
solvents. In the case of the more hydrophilic alcohols, the importance of efflux systems
is more promiscuous. The ADP1 ATP-binding cassette (ABC) pump in S. cerevisiae and
the TtgAB in P. putida play a role in tolerance to ethanol (up to 1.3 M) and higher alco-
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hols (within 64–240 mM) [209,210]. However, the contribution of the E. coli AcrAB-TolC
RND pump to alcohol tolerance is more unclear. Deleting the acrAB loci does not increase
sensitivity of E. coli towards simple alcohols and only an artificial mutant AcrB is able to
efficiently expel n-butanol when challenged with 76 mM [211,212]. These cases illustrate
that alcohols do not belong to the native substrates of the AcrAB-TolC efflux pump. As
such, the AcrAB complex is likely unable to recognize alcohols and hinders alcohol export
since it unnecessarily occupies TolC. Consequently, TolC is less available for other efflux
components (such as AcrD or EmrA), which are capable of recognizing isoprenol and
therefore mutants, lacking acrAB, are less sensitive to alcohols [213]. In short, increasing
solvent efflux can either be the dominant tolerance-improving adaptation mechanism, in
the case of terpenoids, or might be less suitable in the case of simple alcohols.

As solvent stress is often accompanied by the accumulation of ROS, oxidative stress-
response systems are generally upregulated during exposure to solvents. For example, high
concentrations of alcohol in E. coli (0.85 M) and O. oeni (>2 M), toluene (0.94 M) in P. putida,
and limonene (1.2 mM) in S. cerevisiae activate superoxide dismutases (sod), catalases (katG),
and thioredoxins or glutathione reductases/peroxidases, the OxyR and SoxRS regulons and
the SOS response, involved in DNA repair of ROS-induced damage [66,88,145,172,214,215].
Moreover, the link between oxidative stress and solvent tolerance in S. cerevisiae is even
more pronounced as ethanol-induced ROS can serve as signal molecules to engage the
ethanol stress-response system [216]. Here, superoxide ions are rapidly converted into hy-
drogen peroxide by the mitochondrial superoxide dismutase. In turn, hydrogen peroxide
stimulates formation of disulfide bonds in the Yap1p transcription factor and as a result
traps this protein inside the nucleus which enables Yap1p to trigger the ethanol defensive
response. Although most microorganisms have the ability to deal with solvent-elicited
oxidative stress, Chin et al. have also implemented heterologous expression of metalloth-
ioneins to scavenge ROS and thereby improved tolerance to ethanol (0.87 M) and butanol
(164 mM) [217].

5. Engineering Microorganisms for Improved Tolerance and Production

Ideally, all gains in microbial tolerance towards industrial-relevant alcohols, ter-
penoids, and aromatics should ultimately be reflected by a higher product output. In-
tuitively, effective tolerance engineering programs should result in a higher fraction of
viable or metabolically active cells that, in turn, could more efficiently participate in the
production process. However, not all tolerance strategies will turn out successfully. For
example, induction of CFA synthesis in Clostridium or serial adaptation in E. coli did not
necessarily enhance ethanol and (iso)butanol production [139,218]. These case studies
indicate that there is not always a one-to-one link between tolerance and production. Fortu-
nately, there is also more promising evidence that microbial productivity can benefit from
improved tolerance (Table 2).

Adaptive laboratory evolution is a powerful tool to improve industrial-relevant fea-
tures of microbial producers or to study the evolutionary trajectory towards complex traits
(Table 2) [2,111]. Not surprisingly, this approach has been applied to adapt yeast and
bacteria to the toxic end-product in an attempt to increase solvent titers. In 1998, Yomano
et al. evolved E. coli through serial cultivation under ethanol stress and isolated a tolerant
clone which produced more ethanol than its ancestor [219]. In yeast, Thammasittirong et al.
UV-mutagenized ethanol-adapted S. cerevisiae cells to further improve survival and produc-
tion yields [220]. More recently, researchers successfully expanded the ALE approach to
other microbial species and solvent molecules because these alternative producers possess
attractive industrial characteristics (e.g., thermotolerance) or because the different end-
products display more advantageous (fuel) properties (e.g., higher energy density upon
combustion) [12,207,221–223]. For example, Wang et al. exploited methanol tolerance in
C. glutamicum to enhance methanol bioconversion instead of solvent accumulation [14].
The resulted methylotrophy could therefore be applied to increase production of valuable
L-glutamate on inexpensive (natural gas-based) methanol. In addition, improved ethanol
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tolerance even finds an application in the food industry where ethanol-adapted O. oeni
strains reach a higher level of L-malic acid into L-lactic acid conversion and, hence, con-
tribute to the microbial stability of (red) wines more efficiently [224]. Moreover, Lennen
et al. demonstrated that evolved populations can acquire cross-compound tolerance to
other alcohols, diols, diamines, etc. [222]. Indeed, a previous report also stated that over-
lapping stress responses are involved in the presence of distinct industrially relevant
chemicals [225].

Table 2. Four categories of tolerance engineering strategies which improve solvent production in various microbial producers.

Strategy Solvent Organism Production Gain Reference

Adaptive laboratory evolution (ALE)

ethanol

E. coli +3–16% [219]
S. cerevisiae +20–35% [220]

K. marxianus +120–730% [221]
S. stipitis +10% [223]

butanediol E. coli +30–70% [222]
butanol C. acetobutylicum +44% [12]

methanol C. glutamicum +156% [14]
pinene E. coli +31% [207]

Overexpression of stress-response
pathways or detoxification mechanisms

ethanol
isopentenol

E. coli +11–30% [141]
S. cerevisiae +20% [210]

E. coli +12–60% [156]
butanol C. acetobutylicum +33–40% [226]

limonene E. coli +65% [206]
amorphadiene E. coli +286–308% [208]
phloroglucinol E. coli +39.5% [227]

vanillin S. pombe +25% [192]

Global transcription machinery
engineering (gTME)

ethanol S. cerevisiae +15% [13]
Z. mobilis +90% [228]

styrene E. coli +31–245% [15]

Genome shuffling ethanol
S. cerevisiae +2–7% [229]

S. cerevisiae/S. stipitis +4–14% [230]
isopropanol C. beijerinckii +15% [231]

Increasing microbial tolerance levels by upregulating specific stress responses is an-
other suitable approach to boost solvent production in the case of alcohols, terpenoids (e.g.,
limonene), and (hydroxylated) aromatics (e.g., phloroglucinol and vanillin) (Table 2). In
the traditional ethanol producers, heterologous overexpression of a Lactobacillus plantarum
peptidoglycan synthesis gene in E. coli or upregulation of a native ATP-binding efflux
pump in S. cerevisiae resulted in significant production gains [141,210]. For higher alcohols
and phloroglucinol, overcoming methionine limitation by upregulating the corresponding
biosynthesis pathway and improving protein stability by activating chaperones contributed
to increased yields [156,226,227]. In case of terpenoid molecules (e.g., limonene and amor-
phadiene), overexpressing efflux pumps in E. coli to expel toxic solvent molecules was
highly effective to optimize product titers [206,208]. Lastly, introduction of glycosyltrans-
ferases in yeast species not only relieved vanillin toxicity but also resulted in higher product
yields [191–193].

Then, the last two strategies are particularly suited to elicit a genome-wide, multi-
pathway stress response. First, global transcription machinery engineering (gTME) allows
the reprogramming of a species’ transcriptome by modifying a central gene with key
transcription activity (Table 2). Specifically, a diverse mutant library of the target gene of
interest is created using error-prone PCR and tolerant clones are selected under solvent
stress [232]. This method has been successfully applied to construct an RNA polymerase
factor-, a σ70- or a cAMP Receptor Protein (CRP)-based mutant collection in yeast, Z. mobilis
or E. coli to improve alcohol tolerance (between 2- and 100-fold increase in survival) and/or
production [13,228,233,234]. Moreover, Liang et al. combined metabolic and tolerance
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engineering to create a styrene-producing E. coli strain with superior yields. To improve
styrene tolerance, the authors targeted several key regulators (including lexA, narP, and
modE) for CRISPR editing in the pathway-optimized strain [15]. In addition to polymerases,
transcriptional regulators, etc., small RNAs (sRNAs) might also be relevant targets for
tolerance engineering since they are often associated with multigene networks [235]. In-
deed, two sRNAs (Zms4 and Zms6) in Z. mobilis were recently identified as important
determinants for ethanol tolerance [236]. Unfortunately, the link between these sRNAs and
production has not been evaluated yet, but sRNAs might potentially provide opportunities
for further strain engineering.

Finally, genome shuffling offers the possibility to create combinatorial libraries with
a rich mutational diversity which cannot be obtained by rationale engineering methods
(Table 2) [237]. In S. cerevisiae, (large-scale) genome shuffling has resulted in hybrid strains
with superior fermentation traits thanks to improved ethanol tolerance [229,238]. Simi-
larly, interspecies protoplast fusion of S. stipitis and S. cerevisiae gave rise to hybrids with
superior ethanol production, compared to their parental strains [230]. In the bacterium C.
beijerinckii, de Gérando et al. ended up with a high isopropanol-producing mutant when
they combined chemical mutagenesis and genome shuffling strategies [231].

In short, boosting a microbe’s tolerance by means of rationale or global (Table 2)
engineering is not only suitable for promoting microbial survival under solvent stress, but
also for increasing product output.

6. Conclusions

End-product toxicity is a serious production bottleneck in case of microbiologically
derived solvents, since these molecules have a profound impact on the survival of pro-
ducer strains. Over the years, research has revealed solvent-specific defense mechanisms
(e.g., efflux pumps), but also common stress responses that act against different fuels
and biochemicals. Especially, this cross-compound tolerance potential might be exploited
to develop a (semi)universal, tolerance engineered microbe for different production ap-
plications. In this way, redesigning a production strain at the metabolic as well as the
tolerance level will ensure high productivity of the desired solvent, even at extreme product
concentrations.
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