
ORIGINAL RESEARCH
published: 27 November 2019
doi: 10.3389/fbioe.2019.00309

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 November 2019 | Volume 7 | Article 309

Edited by:

Sandra Camarero-Espinosa,

Maastricht University, Netherlands

Reviewed by:

Elisa Mele,

Loughborough University,

United Kingdom

Filippo Rossi,

Politecnico di Milano, Italy

Chiara Tonda-Turo,

Politecnico di Torino, Italy

*Correspondence:

Gozde Ozaydin Ince

gozdeince@sabanciuniv.edu

Specialty section:

This article was submitted to

Nanobiotechnology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 29 June 2019

Accepted: 17 October 2019

Published: 27 November 2019

Citation:

Sayin S, Tufani A, Emanet M,

Genchi GG, Sen O, Shemshad S,

Ozdemir E, Ciofani G and Ozaydin

Ince G (2019) Electrospun Nanofibers

With pH-Responsive Coatings for

Control of Release Kinetics.

Front. Bioeng. Biotechnol. 7:309.

doi: 10.3389/fbioe.2019.00309

Electrospun Nanofibers With
pH-Responsive Coatings for Control
of Release Kinetics
Sezin Sayin 1, Ali Tufani 1, Melis Emanet 1, Giada Graziana Genchi 2, Ozlem Sen 2,

Sepideh Shemshad 1, Ece Ozdemir 1, Gianni Ciofani 2,3 and Gozde Ozaydin Ince 1,4,5*

1Materials Science and Nano Engineering Department, Faculty of Engineering and Natural Sciences, Sabanci University,

Istanbul, Turkey, 2 Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy, 3Department of Mechanical and

Aerospace Engineering, Politecnico di Torino, Turin, Italy, 4 Sabanci University Nanotechnology Research and Application

Center (SUNUM), Sabanci University, Istanbul, Turkey, 5Center of Excellence for Functional Surfaces and Interfaces (EFSUN),

Sabanci University, Istanbul, Turkey

Functional and stimuli-responsive nanofibers with an enhanced surface area/volume

ratio provide controlled and triggered drug release with higher efficacy. In

this study, chemotherapeutic agent Rose Bengal (RB) (4,5,6,7-tetrachloro-2′,

4′,5′,7′-tetraiodofluoresceindisodium)-loaded water-soluble polyvinyl alcohol (PVA)

nanofibers were synthesized by using the electrospinning method. A thin layer

of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) p(4VP-co-EGDMA) was

deposited on the RB-loaded nanofibers (PVA-RB) via initiated chemical vapor deposition

(iCVD), coating the fiber surfaces to provide controllable solubility and pH response to the

nanofibers. The uncoated and [p(4VP-co-EGDMA)-PVA] coated PVA-RB nanofiber mats

were studied at different pH values to analyze their degradation and drug release profiles.

The coated nanofibers demonstrated high stability at neutral and basic pH values for

long incubation durations of 72 h, whereas the uncoated nanofibers dissolved in <2 h.

The drug release studies showed that the RB release from coated PVA-RB nanofibers

was higher at neutral and basic pH values, and proportional to the pH of the solution,

whereas the degradation and RB release rates from the uncoated PVA-RB nanofibers

were significantly higher and did not depend on the pH of environment. Further analysis

of the release kinetics using the Peppas model showed that while polymer swelling and

dissolution were the dominant mechanisms for the uncoated nanofibers, for the coated

nanofibers, Fickian diffusion was the dominant release mechanism. The biocompatibility

and therapeutic efficiency of the coated PVA-RB nanofibers against brain cancer

was investigated on glioblastoma multiforme cancer cells (U87MG). The coated PVA

nanofibers were observed to be highly biocompatible, and they significantly stimulated

the ROS production in cells, increasing apoptosis. These promising results confirmed

the therapeutic activity of the coated PVA-RB nanofibers on brain cancer cells, and

encouraged their further evaluation as drug carrier structures in brain cancer treatment.
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INTRODUCTION

Implantable patches for drug delivery have gained attention
in recent years. In particular, these patches are used in site-
specific, targeted delivery with enhanced sustained release of drug
molecules from biodegradable materials (Brown and Crawford,
2002; LaPorte et al., 2005). These devices have been developed
to overcome the common challenges in drug delivery, such as
achieving systematic delivery with therapeutically effective drug
concentrations at the specified target. Theeuwes and Nelson
(2004) developed a bilayered, patch-based device, which provided
drug delivery directly to the organ surface. The biocompatible,
drug-impermeable first layer acted as the drug reservoir, while
the drug-permeable second layer allowed drug delivery directly
to the organ. Nelson et al. (2003), on the other hand, introduced
a biodegradable fiber implant for drug release, which involved
three-dimensional matrices of predefined non-homogeneous
patterned polymeric fibers.

Electrospun nanofibers as polymeric nanocarriers are widely
used in drug delivery systems (DDS) because they have high
loading and encapsulation efficiency and they can be easily
produced in a cost-effective manner (Chakraborty et al., 2009;
Wang et al., 2010). Blending a polymer solution with a
therapeutic agent before electrospinning is the most common
technique for encapsulation. The distribution of drug molecules
andmorphology of fibers are themain factors affecting the release
behavior (Kenawy et al., 2002; Zamani et al., 2013; Tipduangta
et al., 2015).

As chemotherapeutic DDS, electrospun nanofibers are
promising due to high drug loading capacities. Poly(ethylene
glycol)–poly(L-lactic acid) (PEG–PLLA) diblock copolymer
fibers loaded with an antineoplastic drug BCNU (1,3-
bis(2-chloroethyl)-1-nitrosourea) were fabricated to
obtain controllable drug delivery directly to the tumor
microenvironment (Xu et al., 2006). High antitumor activity
for longer periods of time (72 h) was observed when the BCNU
release was from the PEG–PLLA fibers whereas with pristine
BCNU, loss of cytotoxic activity was observed in the same period
of time due to the short half-life of the drug (Xu et al., 2006).
Sharma et al. (2013) loaded insulin to poly(vinyl alcohol) PVA
and sodium alginate nanofiber-based patch for anti-diabetic drug
delivery. In vivo test of the patch on male Wistar rats showed
that the drug molecules were released in their pharmacologically
active states without any deterioration. In another study, for the
treatment of glaucoma disease, Garg et al. (2014) used PVA and
polycaprolactone (PCL) fiber mats loaded with timolol maleate
and dorzolamide hydrochloride as model drugs, achieving a very
high drug entrapment efficiency of∼100%.

Although electrospun fibers are very promising with respect
to drug delivery, in post-operation cancer treatment applications,
controlling the initial burst release and tuning the release
kinetics from fibers are the main challenges yet to be
overcome (Thakkar and Misra, 2017). In order to defeat
these challenges during cancer treatments, coaxial nanofibers
with core-shell structures have been introduced due to their
effectiveness in drug incorporation into nanofibers as reservoir-
type drug delivery carriers (He et al., 2006). Recent studies

include concentric spinneret electrospinning method for coaxial
nanofiber formation. These core-shell nanocarriers are used
mostly to control the sustained drug delivery (He et al.,
2006; Zupanc̆ic̆ et al., 2016), to release both hydrophilic and
hydrophobic drugs from the same system (Oliveira et al., 2015),
to enhance implant osseointegration and to prevent implant
infections (Song et al., 2013), and to obtain bi-component,
surface-modified, and functional graded nanofibers (Zhang
et al., 2004). Another method that has been used to overcome
these shortcomings is direct deposition onto nanofibers for the
production of coaxial structures (Chunder et al., 2007). Layer-by-
layer (LBL) deposition (Sakai et al., 2009; Li et al., 2012; Croisier
et al., 2014) and vapor phase methods, such as chemical vapor
deposition (CVD) (Zeng et al., 2005) are some examples.

Although studies reported have included controlled drug
release from various polymeric nanofibers, stimuli-responsive
and cross-linked coatings on these nanofibers have not been quite
examined. In this paper, fabrication of polymeric mat with an
outer coating layer for sustained release of Rose Bengal (RB) as
a chemotherapeutic drug was reported. PVA polymer with RB
solution was electrospun to form blend fibers. PVA is used as
the polymer matrix due to its biocompatibility and biodegradable
nature, leading to its wide utilization in drug delivery applications
(Huang and Rhim, 1993; Taepaiboon et al., 2006; Kenawy
et al., 2007; Yang et al., 2007; Jannesari et al., 2011; Bazhban
et al., 2013; Li et al., 2013; Jalvandi et al., 2017). Meanwhile,
RB (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluoresceindisodium)
is used as the chemotherapeutic drug which is a water-soluble,
photosensitive, synthetic dye used for diagnostics exhibiting
cytotoxicity in various cancer types, such as brain cancer
(Tserkovsky et al., 2012), colorectal cancer cells (Qin et al.,
2017), melanoma and breast cancer cells (Toomey et al., 2013),
and ovarian and adenovirus-transformed embryonic kidney
cancer cells (Koevary, 2012). In order to provide additional
functionalities to the electrospun fibers, surface of the fiber
mats was coated with poly(4-vinylpyridine-co-ethylene glycol
dimethacrylate) [p(4VP-co-EGDMA)], a pH-sensitive polymer,
via initiated chemical vapor deposition (iCVD). iCVD is
an all-dry, free-radical polymerization method that allows
polymerization directly on the substrate surface, initiated by
thermally decomposed radicals reacting with the monomer
molecules adsorbed on the substrate (Lau and Gleason, 2006;
Ozaydin-Ince et al., 2011). It is advantageous because of its
conformal coating ability on high-aspect-ratio surfaces, which
preserves the film thickness throughout the surface topography
(Ozaydin-Ince et al., 2011; Armagan and Ince, 2015).

In the study reported here, RB release from the p(4VP-
co-EGDMA)-coated PVA-RB nanofibers was investigated at
different pH values, and the effect of the pH-responsive polymer
coating on the release performance was studied. The degradation
profiles of the nanofibers at these pH values were investigated
to reveal their stability in cellular environment for their
potential drug carrier activity. Moreover, the time-dependent
anti-cancer activity of the coated PVA-RB nanofibers was studied
on glioblastoma multiforme brain cancer cells (U87MG). The
effects on cell viability were investigated as a preliminary study
before exploring the therapeutic effect of the fibers via DNA
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quantification by using Pico Green dye. The intracellular RB
localization and conformation of the cytoskeleton structure
of cells was monitored by using confocal microscopy. The
intracellular stress and death mechanism of the cells were
investigated to analyze their cellular response against RB
exposure. The significantly decreased cell viability and increased
intracellular ROS production confirmed the increased apoptosis.

MATERIALS AND METHODS

Materials
PVA (MW 85,000–124,000, 87–89% hydrolyzed, Aldrich) and
Tserkovsky Bengal sodium salt (dye content∼90%, Aldrich) were
used in electrospinning for fiber synthesis. The monomer 4VP
(95%, Aldrich), the cross-linker EGDMA (98%, Aldrich), and
the initiator tertbutyl peroxide (TBPO, 98%, Aldrich) were used
without purification. Phosphate-buffered saline (PBS, Aldrich)
was utilized for the release studies.

Preparation of PVA-RB Nanofiber Mats
Ten wt% PVA solution was obtained by dissolving PVA
in distilled water at 70◦C and stirred continuously for 4 h.
Homogeneous solution was observed after stirring overnight at
room temperature, at 500 rpm. PVA-RB solution was prepared by
blending 100mg/ml RB distilled water and 10 wt% PVA solutions
in RB:PVA 1:5 ratio. The loading capacity of the nanofibers was
calculated to be∼16.7%.

Electrospinning setup included syringe pump, stainless steel
spinneret needle, high voltage supply, 10 × 10 cm collector, and
2ml syringe. The distance between the needle and collector was
kept at 15 cm, and the voltage was applied at 8 kV. Flow rates
for both PVA and PVA-RB blend solutions were adjusted as
0.3 ml/h.

P(4VP-co-EGDMA) Coating of PVA-RB
Nanofibers
P(4VP-co-EGDMA) was conformally deposited on both sides
of nanofiber mats at a thickness of ∼70 nm by using iCVD.

The cross-linker EGDMA was heated to 95◦C in a metal jar,
and 4VP was kept at room temperature. The initiator was
delivered to the system at a flow rate of 1 sccm while the
flow rate of N2 gas was 1.1 sccm. The filament and substrate
temperatures were at 240 and 25◦C, respectively, throughout
the deposition. Reaction pressure was fixed at 600 mTorr.
Flow rates of 4VP and EGDMA were 2.73 and 0.14 sccm,
respectively. Si wafers were coated simultaneously as the fiber
mats, to be used in ellipsometric swelling experiments. Figure 1
shows the schematic of the coated and uncoated nanofiber mat
fabrication process.

Characterization of PVA, PVA-RB, Coated
PVA, and Coated PVA-RB Nanofibers
The PVA, PVA-RB, p(4VP-co-EGDMA)-coated PVA, and p(4VP-
co-EGDMA)-coated PVA-RB nanofibers were imaged by field
emission scanning electron microscopy (Zeiss, Leo Supra VP35)
with an accelerating voltage of 4 kV. Chemical characterization
of the fibers was performed by Fourier transform infrared
spectroscopy (Thermo-Fisher Scientific, Nicolet iS10 FTIR) with
62 scans and the resolution of 4 cm−1 over the range of 800–
4,000 cm−1.

XPS analysis was done by using Thermo Scientific K-Alpha
spectrometer by an aluminum anode (Al Kα = 1,468.3 eV) at an
electron take-off angle of 90◦ (between the sample surface and
the axis of the analyzer lens). The spectra were recorded using an
Avantage 5.9 data system. The binding energy scale was calibrated
by assigning the C1s signal at 284.5 eV.

Swelling behavior of the iCVD polymer film on Si wafer
was investigated via a spectroscopic ellipsometer (M2000D J.A.
Woollam Co. Inc.) in a liquid cell stage at room temperature
at pH values of 4, 6.5, and 9. Dynamic thickness measurements
were performed at 75◦ nominal angle of incidence within
the wavelength range of 315–718 nm for 30min. Swelling
percentages were calculated by using the formula (t – t0)∗100/t0,
where t is the thickness of the swollen and t0 is the thickness of
the dry samples.

FIGURE 1 | Schematic representation of the synthesis of the coated and uncoated nanofiber mats. (A) Electrospinning method used for the fabrication of the

RB-loaded nanofiber mats. (B) iCVD p(4VP-co-EGDMA) deposition on the electrospun RB-loaded nanofiber mats. The inset shows the polymer-coated nanofibers.
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Degradation of PVA, PVA-RB, Coated PVA,
and Coated PVA-RB Nanofibers
The degradation behavior of PVA, PVA-RB, coated PVA, and
coated PVA-RB nanofibers was tested in PBS solution at several
pH values (pH 4.5, 6.5, and 9) following 24 and 72 h incubation
times. Themorphology of the fibers was visualized bymonitoring
the samples using SEM (Helios Nano-Lab 600i FIB/SEM, FEI).
Samples were incubated in 2-ml PBS solutions adjusted at pH
4, 6.5, and 9 for 24 and 72 h by shaking at room temperature.
Following the incubations, the samples were dried under vacuum
conditions for 24 h and prepared for SEM imaging. SEM imaging
was carried out on samples gold-sputtered for 25 s at 60 nA,
obtaining a 3 nm-thick conductive layer over the nanofibers.

Release From PVA, PVA-RB, Coated PVA,
and Coated PVA-RB Nanofibers
Coated and uncoated electrospun nanofibers were cut into 1 ×

2 cm pieces and put in 10ml PBS solutions separately at pH 4,
6.5, and 9 and placed on a shaker for the release experiments.
UV-Vis measurements were performed using NanoDrop UV-Vis
spectrophotometer (Thermo Scientific NanoDrop 2000c). For
each measurement, 100 µl of PBS solution was removed from
the solution and replaced with fresh PBS solution in the release
medium. For RB detection, the UV absorbance peak at 550 nm
was used. For each release experiment, eight sets of new samples
were prepared and UV-Vis measurements were repeated at least
twice on each sample.

The amount of RB loaded in the nanofibers was determined by
dissolving the uncoated fibers completely and measuring the RB
concentration of the solution. Release percentages of the coated
nanofibers were obtained by normalizing the concentration of RB
released from the nanofibers by the amount loaded.

Cellular Experiments of Coated PVA and
Coated PVA-RB Nanofibers
Cell Culture
U87-MG tumor cells (from ATCC) were cultured under
high glucose Dulbecco’s Modified Eagle’s Medium, added with
10% fetal bovine serum, 2mM L-glutamine, and 100 U/ml
penicillin−100µg/ml streptomycin (all reagents were from
Sigma-Aldrich) in saturated humidity, 5% CO2 atmosphere.
Experiments were performed by seeding 30,000 U87MG
cells/cm2 in 24-well multiwell polystyrene (PS) plates and by
incubating the cultures with 0.8 × 0.8 cm2 coated PVA and
coated PVA-RB nanofiber samples. For immunocytochemistry,
cells were seeded on 0.8 × 0.8 cm2 Ibidi films made hydrophilic
by O2 plasma (50W, 25 sccm for 60 s) in a Colibrì reactor
(Gambetti). Cells were exposed to nanofiber samples after
overnight incubation.

Proliferation of Coated PVA and Coated PVA-RB

Nanofiber-Exposed Cells
Cell proliferation was investigated by Pico Green assay (from
Invitrogen) at 24 and 72 h from incubation with coated PVA
and coated PVA-RB nanofiber samples. The assay enables ds-
DNA quantification in solution by fluorescence measurement

and requires cell lysis in a fixed volume of water (500 µl) by
three cycles of freezing and thawing. To the purpose, 100 µl of
working solution was mixed to 50µl of cell lysate and to 150µl of
solution containing the PicoGreen dye. Samples were incubated
in the dark for 10min, and finally fluorescence was read with
a microplate reader (Perkin Elmer Victor X3, λex = 485 nm;
λem = 535 nm).

Immunocytochemistry of Coated PVA and Coated

PVA-RB Nanofiber-Exposed Cells
U87MG cells were washed with PBS with calcium and
magnesium, and fixed with 4% paraformaldehyde (from Sigma-
Aldrich) in PBS for 20min at 4◦C. Then, cells were again rinsed
with PBS and permeabilized with 0.1% Triton X-100 (from
Sigma-Aldrich) in PBS for 30min. Specific binding sites were
saturated with 10% goat serum (GS, from Thermo Scientific)
in PBS for 1 h at 37◦C. Then, cells were incubated with a
10% GS solution containing a rabbit polyclonal IgG primary
antibody against Ki-67 (from Millipore, 1:100 diluted) for 3 h
at 37◦C. Samples were then rinsed four times with 10% GS
(5min each rinse), and cells were incubated with a 10% GS
solution containing a goat polyclonal IgG secondary antibody
(from Thermo Scientific, 1:200 diluted) and 1µM DAPI for
45min at 37◦C. After one rinse with 0.45M NaCl PBS and with
PBS, samples underwent fluorescence imaging. The number of
Ki-67 immunopositive nuclei (n) and the total number of nuclei
(m) were semi-automatically counted with ImageJ software and
the n/m ratio (expressed as average ± standard deviation) was
calculated and plotted. For statistical reasons, 10 images at low
magnification were analyzed.

Reactive Oxygen Species (ROS) and Cell Death

Mechanism Detection of Coated PVA and Coated

PVA-RB Nanofiber-Exposed Cells
To quantitatively assess oxidative stress, cell cultures were stained
with CellROX Green reagent (from Invitrogen) at 24 and 72 h
from incubation with coated PVA and coated PVA-RB nanofiber
samples. To the purpose, cells were rinsed with PBS without
calcium and magnesium, and suspended by 1min incubation
with 0.05% trypsin (from Sigma-Aldrich). Cell pellets were
obtained with 7min centrifugation at 1,000 g, and staining was
performed for 15min in the dark on 200 µl of cell suspension
in PBS with calcium and magnesium, containing 5µM CellRox
Green reagent. To quantitatively study cell viability, cell cultures
were stained with FITC Annexin V/Dead Cell Apoptosis kit
(from Invitrogen) by incubating 100 µl of cell suspension in
1× annexin-binding buffer, added with 5 µl of FITC Annexin
V solution and with 1 µl of 100µg/ml of propidium iodide.
Staining was performed for 15min in the dark. Flow cytometry
was conducted with CytoFLEX platform (Beckman Coulter, λex

= 488 nm; 500 nm < λem < 560 nm).

Statistical Analysis
Each experiment was carried out at least three times. Statistical
analysis was carried out using an unpaired Student’s t-test. The
data are expressed as the mean ± standard deviation (SD).
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Comparison with a p-value below 0.01 and 0.05 was considered
statistically significant.

RESULTS AND DISCUSSION

Characterization of PVA, PVA-RB, Coated
PVA, and Coated PVA-RB Nanofibers
SEM images of (a) uncoated PVA-RB nanofibers and (b)
coated PVA-RB nanofibers are shown in Figure 2. The average
diameter of pure PVA nanofibers is ∼425 ± 22 nm, whereas
RB-blended PVA fibers are 523 ± 39 nm in diameter. Increased
concentration in solution with RB addition resulted in larger
diameters observed (Aljehani et al., 2014). The iCVD polymer
coating on the fibers increased the average diameter to 587
± 63 nm, confirming that the thickness of the polymer
coating is∼65± 5 nm.

As confirmed by the SEM images, the structures of the
nanofibers were not damaged after the iCVD process and the

FIGURE 2 | SEM images of (A) uncoated PVA-RB nanofibers and (B)

p(4VP-co-EGDMA)-coated PVA-RB nanofibers.

FIGURE 3 | FTIR spectra of (a) PVA nanofibers, (b) PVA-RB nanofibers, (c)

p(4VP-co-EGDMA)-coated PVA-RB nanofibers, and (d) p(4VP-co-EGDMA)

thin film on Si wafer. The bands at 1,597 and 1,415 cm−1 corresponding to

the pyridine ring vibrations (indicated with asterisk) can also be observed on

the coated PVA-RB nanofibers (c) confirming the presence of the

polymer coating.

fibers could be conformally coated with the polymer layer,
enabling the fabrication of p(4VP-co-EGDMA) coated PVA-
RB nanofibers.

Swelling percentage of p(4VP-co-EGDMA) thin films on
Si wafers was determined to be 62 ± 10% at pH 4,
whereas at both pH 6.5 and pH 9, swelling was <5%,
confirming the pH response of the polymer coating. The
mesh sizes of the polymer coatings at pH values of 4, 6.5,
and 9 were calculated as 1.16, 0.69, and 0.69 nm, respectively
(Supporting Information). Swelling of the polymer at low pH
values is attributed to the protonation of 4VP in the acidic
environment, causing the chains to stretch due to electrostatic
repulsion. Deprotonation of the polymer chains at high pH
values, on the other hand, leads to the collapsed state observed
(Li et al., 2008, Wang et al., 2013).

FTIR spectra of pure PVA, PVA-RB, and p(4VP-co-EGDMA)-
coated PVA-RB nanofibers are shown in Figure 3. The absorption
bands at 1,734, 1,429, and 1,091 cm-1 are related to the C=O
double bond, CH2, and C–O–C stretching modes of pure PVA
nanofibers, respectively (Figure 3a) (Mansur et al., 2008). The
bands at 1,717, 1,457, and 1,091 cm–1 belong to the C=O double
bond, CH2, and C–O–C stretching modes of PVA for RB-PVA
nanofibers. Additional bands in RB-PVA blend nanofibers at
1,615 cm–1 belongs to the C=O double bond of carbonyl group
whereas those at 1,547, 1,444, and 1,337 cm-1 correspond to
C=C double bonds of aromatic rings (Figure 3b) (Dabrzalska
et al., 2016). The absorption band in coated PVA-RB nanofibers
at 1,719 cm-1 indicates CO double bond stretching of EGDMA,
whereas 1,599, 1,547, and 1,417 cm-1 belong to pyridine ring
vibration and 1,060 cm-1 of 4VP and 954 cm–1 indicate in-plane
and out-of-plane CH bending of 4VP (Figure 3c) (Bayari and
Yurdakul, 2000; Lau and Gleason, 2007), confirming the presence
of the polymer coatings on the nanofibers.

X-ray photoelectron spectroscopy (XPS) was used to
determine the surface composition of the PVA-RB nanofibers
within 5–10 nm from the surface. Figures 4A,B show XPS survey
scans and N1s spectrum (inset figures) of PVA-RB nanofibers
without and with iCVD coating, respectively. Peaks in Figure 4A

at 620, 532, 285, and 199 eV correspond to I3d, O1s, C1s,
and Cl2p, respectively, and indicate elemental composition of
PVA-RB. From the spectrum, the atomic ratios of the elements
on the surface of the PVA-RB nanofibers are estimated to be
67.64% C, 31.52% O, 0.35% I, and 0.49% Cl.

According to the XPS spectrum of the polymer-coated
nanofibers, depicted in Figure 4B, peaks at 530, 399, and 285 eV
correspond to O1s, N1s, and O1s, respectively. The atomic
ratios of elements on the surface of the coated nanofibers are
calculated to be 73.83% C, 25.37% O, and 0.79% N. The I and Cl
peaks could not be detected, possibly due to the presence of the
coating. The presence of N1s peak observed only in the coated
nanofibers indicates the presence of N-containing p(4VP-co-
EGDMA) coating on the nanofiber surfaces. The low percentages
can be attributed to the fact that the coatings cover mostly the
nanofibers, which are closer to the surface of the mat, leaving the
nanofibers below the surface uncoated. Therefore, XPS analysis
confirms the presence of a polymer coating on the nanofibers
exposed to the surface.
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FIGURE 4 | XPS spectra of the (A) uncoated and (B) coated PVA-RB nanofibers. N1s spectrum (inset figures) observed in (B) confirms the presence of the coating.

Degradation of PVA, PVA-RB, Coated PVA,
and Coated PVA-RB Nanofibers
The degradation behaviors of coated PVA and coated PVA-RB
nanofibers were investigated at several pH values (4, 6.5, and 9)
of PBS at increasing incubation times, as shown by SEM images
(Figure 5). Uncoated PVA-RB and PVA nanofibers completely
dissolved in <2 h at all pH values tested. Therefore, long-term
stability tests were performed on the coated PVA and coated
PVA-RB nanofibers. The SEM images show that the morphology
of the coated PVA-RB and coated PVA nanofibers was similarly
affected following the incubation.

The coated nanofibers were not stable at low pH values at
incubation times longer than 12 h (Figures 5A,D,G,J). On the
other hand, the coated nanofibers showed significantly high
stability in PBS solutions at pH 6.5 (Figures 5B,E,H,K) and at pH
9 (Figures 5C,F,I,L). The pH-dependent degradation could be
explained by the protonation of pyridine groups of p(4VP) at low
pH values (pH 4) that lead to swelling of the p(4VP-co-EGDMA)
coatings on the PVA nanofibers (Li et al., 2008). The swelling
of the polymer coating enhanced the diffusion of the acidic
solution through coating, resulting in the complete degradation
of PVA nanofibers. Higher stability of the coated PVA nanofibers
observed at high pH values (pH 6.5 and 9) could be attributed
to the collapsed state of the polymer chains, which reduces the
diffusion of the solution medium through the coating, hindering
degradation of the PVA nanofibers.

Drug Release From
p(4P-co-EGDMA)-Coated PVA-RB
Nanofibers
RB release from the polymer-coated and uncoated PVA-RB
nanofibers was investigated in PBS solution at pH 4, 6.5, and

9 (Figure 6). Release experiments from the PVA-RB nanofibers
showed that more than 80% of the RB was released in 1 h with
no significant dependence of the release rate on the pH of the
medium (Figure 6A).

The kinetics of the RB release from the coated PVA-RB
nanofibers, on the other hand, was strongly affected by the
pH of the medium (Figure 6B). At all pH values, the overall
release was <60% at the end of 1 h, indicating slower early time
release kinetics due to the coating layer on the fibers. As the pH
decreased, slower release kinetics was observed and the overall
release percentages at the end of the experiments were lower at
low pH. While 98% of the RB was released at the end of 6 h at pH
9, only 55% was released in 6 h at pH 4. The smaller mesh sizes
of the polymer coatings at low and high pH values, compared
to the size of RB molecules (hydrodynamic radius of ∼1.28 nm),
indicate that the release from the uncoated or partially dissolved
nanofibers dominates the release and that the release through the
polymer coatings is negligible.

The fast release rates and higher release percentages of RB
obtained at pH 9 compared to the release rates at lower pH
values can be attributed to smaller diameters of the nanofibers
due to the collapsed state of the polymer coating, which leads
to the increased free volume in the electrospun mat, resulting
in improved release rates. At lower pH conditions, on the
other hand, the swollen polymer coating of the nanofibers
reduces the free volume in the mat and entraps the RB
molecules, decreasing the overall release percentages and release
rates. The prolonged release observed is, thus, caused by the
longer paths the RB molecules have to diffuse through due to
swollen polymer.

In addition to the changes in the free volume, the
electrostatic interactions between the polymer coating

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 November 2019 | Volume 7 | Article 309

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sayin et al. Nanofibers With pH Responsive Coatings

FIGURE 5 | SEM images of coated PVA (A–C) and coated PVA-RB (D–F) nanofibers following 24 h of incubation, and coated PVA (G–I) and coated PVA-RB (J–L)

nanofibers following 72 h of incubation in solutions at pH 4, 6.5, and 9, respectively.

and the released RB molecules may also contribute to
the pH dependence of the release profiles at early times.
Protonation of pyridine groups of p(4VP), which has a pKa
in the range 4.5–4.7, occurs at lower pH values, leading
to an electrostatic interaction between the protonated
pyridine groups and the RB molecules. This attractive
interaction also contributes to the reduced release percentages
observed at pH 4.

A transient behavior is observed at pH 6.5 with a faster early
time release kinetics due to the collapsed polymer coating on the
fibers, resulting in larger free space and shorter diffusion lengths
for the dye molecules. However, overall release percentages at the
end of 12 h are comparable to the release percentages at pH 4, but
lower than the values obtained at pH 9.

The early time release kinetics of the polymer-coated and
uncoated PVA-RB fibers were investigated using the semi-
empirical Peppas model, which includes relaxation and phase
changes of the polymer matrix in addition to the diffusion of the
drug molecules. The Peppas model in its simplest form is given
by Korsmeyer et al. (1983):

Mt

M∞

= atn (1)

where Mt is the amount of drug released at time t, M∞ is total
amount of drug loaded, “a” is a constant that depends on the
structure and geometry of the of drug-polymer system, and
“n” is the coefficient related to the mechanism of drug release
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FIGURE 6 | RB release from (A) uncoated PVA-RB fibers and (B) coated PVA-RB fibers in PBS solutions at pH 4, 6.5, and 9. Data fitting was performed up to 60% of

RB release using Peppas equation.

(Zamani et al., 2010; Nguyen et al., 2012; Gencturk et al., 2017).
The dashed lines in Figure 5 show the fits of Equation 1 to the
early time data below 60%. The “a” and “n” values and the error
R2 obtained from the fits are given in Table 1.

The control experiments performed using the uncoated PVA-
RB nanofibers reveal a fast-release kinetics at early times, which
is not affected by the pH of the medium. The kinetic parameter
“n” is found to be∼0.77, which indicates an anomalous transport
mechanism, dominated by concentration-dependent diffusion
and dissolution of the polymer. The release kinetics from
the polymer-coated samples, on the other hand, reveals a pH
dependent behavior. At all pH conditions, the values of “n” are
less than the control samples, indicating that the Fickian diffusion
dominates over the polymer dissolutionmechanism in the coated
samples (Fu and Kao, 2010). As the pH of the release medium
increases, faster kinetics is observed as indicated by higher “n”
values. Faster kinetics at high pH values can be attributed to the
collapsed state of the coating, which leads to larger free volumes
compared to low pH conditions.

Although Peppas model was used to fit the release data, it
should be noted that the fit parameters obtained were mostly
used to study the effect of the pH on the release kinetics
and to comment on the dominant mechanisms, as opposed
to thoroughly explaining the active mechanisms. Our system
deviates from these models due to presence of an insoluble, pH-
responsive polymer coating on the top and bottom layers of the
mat. This coating impedes the full dissolution of the polymer
nanofibers, introduces electrostatic interactions, and impacts the
diffusion paths in the swollen state, thus affecting the release rate
of the drug.

Cellular Response to
p(4VP-co-EGDMA)-Coated PVA-RB
Nanofibers
Immunocytochemistry of Cells Exposed to the

Coated PVA-RB Nanofibers
The proliferation ability of the cells exposed to the coated
PVA and coated PVA-RB nanofibers were also elucidated by

TABLE 1 | The “a” and “n” values obtained from the fit of Equation 1 to the

release data of the coated and uncoated fibers.

Coated samples Uncoated samples

R2 n a R2 n a

pH 4 0.9096 0.3288 0.3829 0.9986 0.7991 0.8151

pH 6.5 0.9044 0.4110 0.3870 0.9876 0.7589 0.8693

pH 9 0.9461 0.5206 0.5503 0.9979 0.7655 0.7758

FIGURE 7 | Immunocytochemical investigation of coated PVA and coated

PVA-RB exposed cells by staining with Ki67 markers at 24 and 72 h of

incubation (analyzed with Student t-test *p < 0.05).

Ki67 antibody immunohistochemical staining that binds to
the proliferating cell marker Ki67 antigens selectively. The
results indicated that the decrease in the coated PVA nanofiber-
exposed cells was insignificant while for the cells exposed to
the coated PVA-RB nanofibers, cell proliferation decreased to
28% and 36% at the end of 24 and 72 h of incubations,
respectively (Figure 7).

ROS Production in Cells Exposed to the Coated

PVA-RB Nanofibers
As a defense mechanism, cells have the tendency to increase
ROS production when they are exposed to foreign substances.
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FIGURE 8 | ROS production in control, coated PVA and coated PVA-RB nanofiber exposed U87MG cells at 24 h (A–C) and 72 h (D–F) of incubation. Percentage of

ROS positive U87MG cells at 24 h (G) and 72 h (H) of incubation.

The increased ROS levels in mitochondria cause cellular stress,
and then stimulate further ROS production. High ROS level
in the cells activates apoptosis processes due to the hindered
cellular functions by damaged critical cell components, such
as proteins, membrane lipids, and DNA (Murphy, 2009).
In the light of the natural defense mechanism of cells,
chemotherapy drugs are generally designed as ROS stimulating
agents to activate apoptosis process. In this study, coated
PVA-RB nanofibers were investigated comparatively to coated
PVA nanofibers on U87MG brain cancer cells following 24

and 72 h of incubation, as shown in Figure 8. The results
indicated that significant ROS level increment in coated PVA-
RB fiber-exposed cells was observed (19%) after 24 and
72 h of incubation, as shown in Figures 8C,E, respectively.
However, the ROS level of coated PVA nanofiber-exposed
cells was about 5% after 24 and 72 h of incubation, as
shown in Figures 8B,D, respectively. High levels of ROS
produced in the cells exposed to the coated PVA-RB nanofibers
indicated that RB induce damage in cells, as expected from
chemotherapy drugs.
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FIGURE 9 | Cell death mechanism in control (A), coated PVA (B) and coated PVA-RB (C) nanofiber exposed U87MG cells at 24 h of incubation. (D) Percentage of

living, apoptotic and necrotic cells.

Cell Death Mechanism of Cells Exposed to the

Coated PVA-RB Nanofibers
The optimal in vitro conditions for cell death that mimic the
organism were provided by Fink and Cookson (2005) to analyze
the effects of structures on the death mechanism. Effects of the
coated PVA-RB and coated PVA nanofibers were investigated on
U87MG brain cancer cells, which were labeled with annexin-
V and PI as indicators of apoptosis and necrosis, as reported
in Figure 9.

The results showed that of all the cells exposed to coated
PVA-RB nanofibers, 70% was alive, while 10, 12, and 7% of
cells were in late apoptosis, apoptosis, and necrosis after 24 h
of incubation, respectively (Figure 9C). On the other hand, 92%
of the cells exposed to coated PVA nanofiber-exposed cells were
alive, while 5% of the cells were in necrosis and 1% of cells were
in late apoptosis after 72 h of incubation (Figure 9B). The results
confirmed that RB-loaded nanofibers cause serious apoptotic and
late apoptotic effects in glioblastoma cells, as targeted in cancer
therapy applications.

CONCLUSION

A pH-responsive nanofiber mat loaded with RB was produced as
a potential controlled drug delivery system for post-operational
cancer treatments. A thin layer of pH-responsive cross-linked
p(4VP-co-EGDMA) polymer was coated on PVA-RB blend
nanofibers to attain pH response to the fibers and to tune

the release kinetics. The vapor-based iCVD technique was
successfully employed for the conformal deposition of the
polymer coating without damaging the nanofiber mat. The
coating layer enabled the control of the degradation and release
kinetics of the nanofibers by tuning the pH of the medium. The
iCVD was demonstrated to be a successful technique to coat the
nanofibers with stimuli-responsive, functional polymer films to
attain additional properties to the fibers.

The therapeutic efficiency of coated PVA-RB nanofibers
against brain cancer was investigated comparatively against the
coated PVA nanofibers, to analyze the anti-cancer effect of
RB released from the fibers. The results indicated that coated
PVA-RB nanofibers selectively decreased cell proliferation and
stimulated cell death in apoptotic direction by increasing ROS
production in the cells at long-term incubation as desired in
chemotherapeutic applications.
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