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Purinergic receptors play an important role in inflammation, and can be activated by ATP

released via pannexin channels and/or connexin hemichannels. The purinergic P2X7

receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most

studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP

release and how it affects P2X7R function during inflammation. Inflammatory bowel

disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal

system. At present, the pathophysiology of this disease remains largely unknown but

it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main

types of IBD, ulcerative colitis and Crohn’s disease, that are classified by their location

and frequency of inflammation. Current research suggests that alterations to normal

functioning of innate and adaptive immunity may be a factor in disease progression. The

involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel

notion in the context of gastrointestinal inflammation, and has been explored by various

research groups. Thus, the present review focuses on the current research involving

connexins, pannexins, and purinergic receptors within the gut and enteric nervous

system, and will examine their involvement in inflammation and the pathophysiology

of IBD.

Keywords: purinergic receptors, connexins, pannexins, inflammatory bowel disease, gastrointestinal

inflammation

INTRODUCTION

Extracellular ATP can act on purinergic receptors in the gastrointestinal (GI) system to mediate a
variety of actions depending on the receptor type and localization (Surprenant and North, 2009;
Burnstock, 2014; Ochoa-Cortes et al., 2014). ATP is involved in excitatory neurotransmission
within the enteric nervous system (ENS) via P2X receptors (P2XR) and P2Y receptors (P2YR)
(Burnstock and Williams, 2000; Monro et al., 2004; Gallego et al., 2006, 2008; Ren and
Bertrand, 2008). ATP acts as both an autocrine and paracrine molecule, altering ion transport,
cell-cell communication, and inflammation (Burnstock and Williams, 2000; Boisse et al., 2009;
Corriden and Insel, 2010; Junger, 2011; Roberts et al., 2012). Among the various types of
purinergic receptors, the P2X7R is of particular interest as its activation promotes inflammation
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sodium; ENS, enteric nervous system; GI, gastrointestinal; IBD, inflammatory bowel disease; Panx1, pannexin-1; Panx2,

pannexin-2; Panx3, pannexin-3; P2XR, P2X receptors; P2YR, P2Y receptors; P2X7R, P2X7 receptors; TNBS, trinitrobenzene
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by increasing inflammatory cytokine release from immune cells
in the presence of stimuli such as lipopolysaccharide (Bianco
et al., 2005; Pelegrin and Surprenant, 2006; Surprenant and
North, 2009; Idzko et al., 2014). The involvement of purinergic
receptors in the pathophysiology of inflammatory diseases is
a recurring theme and has been studied in the context of
inflammatory bowel disease (IBD) in conjunction with exploring
the mechanisms of ATP release. More recently, studies have
focused on the involvement of two families of protein channels
that have been shown to mediate ATP release extracellularly: the
gap junction family of connexin channels, and the more novel
pannexin channels.

Connexins are known for forming gap junctions between two
adjacent cells, but can also form unopposed hemichannels that
allow small hydrophilic molecules such as nucleotides and ions,
to pass across the cellular bilayer (Vinken et al., 2010). Connexin
(Cx) subtypes are classified according to their molecular weight
and certain types of connexin hemichannels such as Cx43 may be
involved in extracellular release of ATP (Fortes et al., 2004; Kang
et al., 2008; Wang et al., 2013a; Csoka et al., 2015; Brown et al.,
2016). Pannexin channels are structurally similar to connexin
hemichannels, with both being made up of six subunits that
exist either in homomeric (consisted of the same subunits) or
heteromeric (made up of different subunits) states (D’Hondt
et al., 2009). However, connexins and pannexins do not share
sequence homology and thus are genetically unrelated (Baranova
et al., 2004). There are three types of pannexins that differ at the N
and C termini of their subunits: pannexin-1 (Panx1), pannexin-2
(Panx2), and pannexin-3 (Panx3) (Baranova et al., 2004). Panx1
is ubiquitous and the most well-studied in the literature. Similar
to connexins, many studies have provided evidence to support
a role for pannexins as ATP release channels in various systems
(Schenk et al., 2008; Ransford et al., 2009; Woehrle et al., 2010a;
Junger, 2011; Xia et al., 2012; Orellana et al., 2013; Beckel et al.,
2014). Both pannexin channels and connexin hemichannels are
thought to act as “ATP release channels” or conduits for ATP
transport from the cell cytosol to the extracellular fluid (Locovei
et al., 2006a; Lohman and Isakson, 2014). Panx1 and Cx43
channels have been shown to open under a variety of conditions,
for example, after activation of purinergic receptors, mechanical
stress or altered levels of intracellular Ca2+ (Bao et al., 2004;
Locovei et al., 2006b; Burra and Jiang, 2009; De Vuyst et al.,
2009). Channel opening is most likely regulated by elevated levels
of extracellular ATP (Qiu and Dahl, 2009; Lohman and Isakson,
2014).

The present review will focus on current research involving
purinergic receptors, connexins, and pannexins within the gut
and the ENS, with a focus on their role during inflammation. The
review will also explore their roles in models of inflammation
in other organ systems to provide an insight on possible
mechanisms of etiology in IBD.

PURINERGIC RECEPTORS AND THEIR
INVOLVEMENT IN INFLAMMATION

Subtypes of Purinergic Receptors
Purinergic P2 receptors are classified into two main categories:
the P2XR and the P2YR. P2XR are ATP-gated trimeric ion

channels, and P2YR exist as G-protein coupled receptors (Ralevic
and Burnstock, 1998; von Kugelgen and Harden, 2011). Both
receptors are further classified into their subtypes. P2XR are
numbered from 1 to 7 (P2X1-P2X7) (Ralevic and Burnstock,
1998). P2YR subtypes are divided into P2Y1-like receptors
(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) and P2Y12-like receptors
(P2Y12, P2Y13, P2Y14) where only P2Y2 and P2Y11 have ATP as
their main endogenous ligand (von Kugelgen and Harden, 2011).
P2X7R are of considerable interest in inflammation since this is
the only subtype that is resistant to desensitization (North, 2002).
Thus, it can be activated for a prolonged period of time and can
function in positive feedback signaling that is observed in events
such as apoptosis (North, 2002; Locovei et al., 2007; Kurashima
et al., 2012; Idzko et al., 2014; Kuhny et al., 2014).

Expression of P2X Receptors in the
Intestine
All of the P2XR have been detected in the mammalian gut,
however, not all receptor subtypes have established roles. P2X1R
are found at sympathetically innervated smooth muscles and
function as neurotransmitter receptors where they exist as
homomeric ATP gated ion channels (Ralevic and Burnstock,
1998; Surprenant and North, 2009). P2X2R are present in the
myenteric ganglia of the ENS and are most likely expressed in
intrinsic primary afferent neurons, inhibitory motor neurons,
non-cholinergic secretomotor neurons, and on vagal afferent
nerve endings in the stomach (Castelucci et al., 2002). P2X3R
are present on cholinergic secretomotor neurons, ascending
interneurons, and on both excitatory and inhibitory motor
neurons (Poole et al., 2002). P2X4R are expressed in the
rat pyloric sphincter, rat intestinal crypts, parotid glands, and
salivary glands (Tanaka et al., 1996; Tenneti et al., 1998). P2X5R
are found on canine longitudinal muscle, enteric ganglia on
mouse intestine, and on interstitial cells of Cajal in guinea pig
intestine (Ruan and Burnstock, 2005). P2X6R mRNA was only
found in rat bile duct (Doctor et al., 2005). In contrast, the P2X7R
is expressed throughout the intestine in a variety of tissue types
including intestinal epithelial cells, mast cells, macrophages, and
lymphocytes (Martin et al., 1998; Ralevic and Burnstock, 1998;
Pelegrin et al., 2008; Cesaro et al., 2010; Idzko et al., 2014; Kuhny
et al., 2014; Shoji et al., 2014). The P2X7R is also expressed in the
enteric ganglia of rodents where it was found localized to intrinsic
primary afferent neurons, inhibitory motor neurons and glial
cells (Vanderwinden et al., 2003; Cesaro et al., 2010; de Campos
et al., 2012; Gulbransen et al., 2012; da Silva et al., 2015). Table 1
summarizes P2XR localization in the intestine.

P2X7 Receptors in Inflammatory Bowel
Disease
Recent studies have suggested roles for P2X7R in areas such
as cell proliferation, tumor growth, and neural cell function
(Vanderwinden et al., 2003; Adinolfi et al., 2012; Rigato et al.,
2012; Bartlett et al., 2014; Hofman et al., 2015). However,
the P2X7R, when activated by ATP, is best established as
an important player in inflammation and apoptosis as it has
been shown to enable pro-inflammatory cytokine release from
immune cells (Bianco et al., 2005; Pelegrin and Surprenant, 2006;
Idzko et al., 2014). In addition to its role in the inflammatory
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TABLE 1 | Localization of P2X receptors in the intestine.

Receptor Localization in the gastrointestinal system

P2X1R Sympathetically innervated smooth muscles

P2X2R Intrinsic primary afferent neurons, inhibitory motor neurons,

non-cholinergic secretor motor neurons, and on vagal afferent

nerve endings in the stomach

P2X3R Cholinergic secretomotor neurons, ascending interneurons,

excitatory and inhibitory motor neurons

P2X4R Rat pyloric sphincter, rat intestinal crypts, parotid glands, and

salivary glands

P2X5R Canine longitudinal muscle, mouse enteric ganglia, and

guinea pig interstitial cells of Cajal

P2X6R Bile duct

P2X7R Epithelial cells, mast cells, macrophages, and lymphocytes

Enteric ganglia expression: intrinsic primary afferent neurons,

inhibitory motor neurons, and glial cells

response, the P2X7R has been explored in the context of IBD,
which has the characteristics of inflammation and dysmotility
(Locovei et al., 2006b, 2007; Pelegrin and Surprenant, 2009;
Gulbransen et al., 2012; Roberts et al., 2012; Antonioli et al.,
2014). In one clinical study, patients with Crohn’s Disease (CD)
were observed to have a higher expression of P2X7R and higher
apoptotic rates in the mucosa layer of the colon (Neves et al.,
2014). Most studies of P2X7R in animal models of colitis that
have attempted to counteract the alterations in P2X7R expression
have concluded that there is a significant role for P2X7R. In
one study of a rat colitis model induced by trinitrobenzene
sulfonic acid (TNBS), blockade of the P2X7R resulted in the
reduction of T-cell and macrophage infiltration in the lamina
propria and a decrease in the overall severity of inflammation
(Marques et al., 2014). In another preclinical study, P2X7R−/−

mice subjected to TBNS or dextran sulfate sodium (DSS) failed to
develop inflammation or other symptoms associated with colitis,
implying an important role for P2X7R in the inflammatory
process (Neves et al., 2014). A recent study using a TNBS rat
model of experimental ulcerative colitis (UC) showed that there
was an 11% decrease in the density of P2X7R immunoreactive
neuronal cell bodies (da Silva et al., 2015). Much of the recent
research that has explored the P2X7R in IBD has also studied the
role of connexins and/or pannexins in ATP release. This will be
discussed later in the present review.

Other Purinergic Receptors in
Inflammatory Bowel Disease
Although the P2X7R appears to play a key role in IBD, other
purinergic receptor subtypes may also contribute to or be
affected by IBD pathophysiology. Guzman et al. observed an
upregulation of mRNA for P2X1R, P2X4R, P2X7R, P2Y2R,
and P2Y6 receptors in a rat model of TNBS-induced colitis
(Guzman et al., 2006). A later bioinformatics study found that
genetic dysregulation in IBD was observed in 59% of purine
genes such as P2Y5R, P2Y6R, P2Y13R, P2Y14R, and P2X5R
(Rybaczyk et al., 2009). The P2X3R was observed to have
changes in expression of mRNA in both patients with CD or

with UC, where immunoreactivity on the enteric ganglia of
IBD was increased (Yiangou et al., 2001). A more recent study
observed a downregulation in immunoreactivity of P2X3R in
enterochromaffin cells of specimens fromUC patients whichmay
influence the autocrine regulatory role of ATP that is involved
in the release of 5-HT from these cells (Linan-Rico et al., 2013;
Patel, 2014). In another preclinical study using TNBS-induced
colitis in mice, protein expression of P2X1R was upregulated
in the submucosa of colitis tissue and degradation of ATP by
nucleotidases was increased during colitis (Lomax et al., 2007).
The role of nucleotidases will be discussed further below.

Role of Ectonucleotidases in Inflammatory
Bowel Disease
Ectonucleotidases are responsible for the degradation of ATP
once released and are found to be significantly altered in IBD
(Antonioli et al., 2013). In a DSS mouse model of colitis, CD39
deletion was shown to exacerbate colitis (Friedman et al., 2009).
In the same study, it was shown in humans that single nucleotide
polymorphisms with low CD39 expression were associated with
CD (Friedman et al., 2009). CD patients have also been observed
to have lower CD39 expression in Th17 cells (Longhi et al., 2014).
In addition, UC and CD patients undergoing remission after
treatment from anti-tumor necrosis factor therapy were found
to have elevated CD39 expression on T-regulatory cells (Gibson
et al., 2015). CD73 has been studied in the context of a CD73−/−

mouse DSS colitis model, where exacerbated inflammation
of DSS colitis was observed in the knockouts (Bynoe et al.,
2012). The changes observed in these ectonucleotidases may
influence purinergic receptor activation; for instance, it has
been demonstrated that a knockout of CD39 reduced P2X7R
responses in mast cells (Kuhny et al., 2014). Increases in ATP
levels associated with a downregulation of ectonucleotidases may
exacerbate P2XR activation and inflammation in other cells.

CONNEXINS AND THEIR ROLES IN ATP
RELEASE AND INFLAMMATION

Connexin gap junctions and hemichannels are expressed
throughout different types of mammalian tissues. Within the
intestine, the range of connexins includes the following: Cx26,
Cx32, Cx36, Cx37, Cx43, and Cx45 (Wang and Daniel, 2001;
Kanczuga-Koda et al., 2004; Morita et al., 2004; Clair et al., 2008;
Ezumi et al., 2008; Frinchi et al., 2013).

Cx43 Hemichannels
Themost studied subtype of connexins in the context of intestinal
inflammation and motility is Cx43. The Cx43 hemichannel has
been shown to open to allow for the release of ATP, which has
been demonstrated in many cell types such as Cx43 transfected
C6 cells and polymorphonuclear leukocytes (Eltzschig et al.,
2006; Kang et al., 2008). Cx43 is proposed to be involved in
microglial survival where ATP release is modulated by Cx43
hemichannel opening (Ma et al., 2014). In macrophages, it
has been suggested that Cx43 is colocalized with P2X7R and
that together they mediate intercellular communication via gap
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junction formation that is influenced by extracellular ATP (Fortes
et al., 2004). In one study which further emphasizes its role
in inflammation, Cx43 was suggested to be the conduit for
extracellular release of prostaglandin (PG) E2 (Cherian et al.,
2005). Interestingly, in another study PGE-ethanolamides and
PGF-ethanolamides were shown to be protective against tissue
damages in a human explant colitis model induced by TNFα and
IL-1β (Nicotra et al., 2013). Cx43 has been linked to inflammation
of the intestine and diarrhea due to bacterial infection, where an
increase of Cx43 was linked to increased occurrence of bacterial
infection in colonocytes (Guttman et al., 2010; Vinken et al.,
2010). Cx43 has been implicated in facilitating internalization
of bacteria and overall mucosal integrity (Velasquez Almonacid
et al., 2009; Bou Saab et al., 2014). Studies that have looked
at Cx43 in the context of gut motility have focused on Cx43
expression on smooth muscle and enteric ganglia and its role in
calcium wave propagation. In one study using transgenic mice
with conditional deletion of Cx43 in intestinal smooth muscle,
there was a 29% decrease in GI transit time (Doring et al., 2007).
Intracellular calcium has been suggested to regulate Cx43, where
a lack of Cx43 delayed overall colonic transit time (Lurtz and
Louis, 2007; McClain et al., 2014). Thus, the abnormality of
connexins, particularly Cx43, may be involved in both intestinal
dysmotility and inflammation that is associated with IBD and
other intestinal conditions.

Cx32, Cx36, Cx37, and Cx45 Hemichannels
Cx32 hemichannels have also been suggested to release ATP in
response to increases in intracellular calcium ions in transfected
C6 glioma cells (De Vuyst et al., 2006). Cx36 is expressed
in mouse myenteric ganglia, and Cx36 in rat neuron cultures
was suggested to release ATP during depolarization of neurons
(Schock et al., 2008; Frinchi et al., 2013). In a study by
Koutsoumpas et al. the presence of autoantibodies for Cx37 was
determined in a cohort of CD patients, suggesting CD patients
developed an autoimmunity to resident Cx37 and thus may be
involved in IBD pathogenesis (Koutsoumpas et al., 2011). In
mongrel dogs, varying levels of immunoreactivity for Cx45 were
observed along the GI tract, with some Cx45 protein present on
myenteric and submucosal gangliaand sparse immunoreactivity
on the circular muscle of the esophageal sphincter and ileum
(Wang and Daniel, 2001).

PANNEXIN CHANNELS AND THEIR
INVOLVEMENT IN INFLAMMATION

Pannexin channels are relatively newly identified ATP release
channels. They were discovered based on their sequence
similarity to innexins, the gap junction proteins of invertebrates
(Baranova et al., 2004). Among the three types of pannexin in
mammals, Panx1 channels are ubiquitous in mammalian tissues
and have an extensive list of functions that have been ascribed
to them. Panx2 proteins are localized to the central nervous
system and more recently have been found in enteric neurons
(Baranova et al., 2004; Lai et al., 2009; Swayne et al., 2010; Li
et al., 2011; Diezmos et al., 2015). Panx3 is expressed in skin

and cartilage, and has been suggested to act as an ATP release
channels in these tissues (Bruzzone et al., 2003; Ishikawa et al.,
2011). Pannexins do not form gap junctions and exist solely as
cell membrane channels (D’Hondt et al., 2009). Their role as ATP
release channels was reported soon after their discovery. Under
stimuli such as mechanical stress, the channel can open to release
intracellular ATP into the extracellular space which in turn can
act on P2XR or P2YR in the vicinity (Locovei et al., 2006b; Xia
et al., 2012; Beckel et al., 2014).

Panx1 has been shown to be involved in ATP release in
different models of inflammation. Pharmacological blockade
of Panx1 was shown to decrease IL-1β release and caspase-
1 production in J774 macrophages (Pelegrin and Surprenant,
2006). Other studies have investigated T-cells in relation to
antigen presentation, where Panx1, P2X1R, and P2X4R were
found to mediate calcium entry into the T-cells and IL-2
production (Woehrle et al., 2010a). These events occur as
a result of the translocation of Panx1, P2X1R, and P2X4R
toward the “immune synapse,” a complex formed during T cell
activation (Woehrle et al., 2010a). Another study found that
T-cell receptor activation leads to calcium ion influx, which
causes the extracellular release of ATP via Panx1 channels
(Schenk et al., 2008). T-cells were also suggested to participate
in cell death that involves Panx1 channels acting downstream
of activated P2X7R (Shoji et al., 2014). In the Jurkat T-cell
line, Panx1 was found to be crucial in regulating fragmentation
of apoptotic cells (Poon et al., 2014). In addition, Panx1 was
shown to mediate release of nucleotides from apoptotic cells
which signals for the recruitment of phagocytes (Chekeni et al.,
2010). Panx1 expressed in neutrophils is suggested to function
in conjunction with P2Y2R in an autocrine fashion to mediate
chemotaxis (Bao et al., 2013).

Expression of Panx1 and purinergic receptors in a range
of immune cells has thus led to research into their roles in
various inflammatory diseases. P2X7R and Panx1 are shown to
participate in neutrophil activity and recruitment, as well as IL-1β
release in a study focusing on chronic obstructive pulmonary
disease (COPD) (Riteau et al., 2010). Blockade of Panx1 function
attenuated the elevation of ATP levels normally observed in
COPD (Baxter et al., 2014). A recent study in mice has suggested
that P2X7R is involved in brain ischemia alongside Panx1
and together are thought to be involved in a neuroprotective
mechanism of ischemia pre- and post-conditioning, and in
improved memory and motor functions in mice with ischemia-
reperfusion-induced cerebral injury (Mahi et al., 2015). In
an autoimmune encephalomyelitis mouse model for multiple
sclerosis, P2X7R is upregulated during the chronic phase of
the disease (Lutz et al., 2013). Blockade of functioning Panx1
channels reduced clinical signs of encephalomyelitis (Lutz et al.,
2013). Panx1−/− and Panx2−/− double knockout mice were
more resistant to ischemic stroke, which was not observed in
single Panx1−/− or Panx2−/− knockouts (Bargiotas et al., 2011).
A further study demonstrated that exploration, sensorimotor
functions, anxiety, and behavioral symmetry in the double
knockout mice were improved (Bargiotas et al., 2012).

The aforementioned disease models thus have the following
in common with IBD: infiltration of neutrophils and other
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immune cells, changes in cytokine release, and alterations
in either pannexin and/or purinergic receptors. Similar to
connexins, pannexins are expressed in the ENS within enteric
ganglia and other cells involved in the immune response,
making pannexins potential players alongside connexins in ATP
associated dysmotility and inflammation (Gulbransen et al., 2012;
Diezmos et al., 2013, 2015). Panx1 expression was found to be
reduced in the ENS of CD patients but not in UC patients
(Gulbransen et al., 2012). In contrast, immunohistochemistry
results have shown that Panx1 immunoreactivity on human
colonic tissues was almost abolished in myenteric ganglia
of specimens from UC patients but not in those from CD
patients (Diezmos et al., 2013). Interestingly, the decrease in
Panx1 protein expression in CD as observed by Gulbransen
and colleagues was also demonstrated by Diezmos et al.
using Western blot analysis (Gulbransen et al., 2012; Diezmos
et al., 2013). Panx2 has also been examined in human colonic
tissues where up-regulation of Panx2 mRNA was found in the
muscularis layer of UC specimens, though this was not reflected
at the protein level or immunoreactivity (Diezmos et al., 2015).
The limited and conflicting results presented here warrant further
studies in this area; specifically to confirm the true expression
profile of Panx1 in normal intestine and IBD tissues, to determine
the extent in which pannexins and connexins contribute to
extracellular ATP signaling in IBD pathophysiology, and to map
the process of events leading to inflammation.

INTERACTIONS BETWEEN CONNEXINS,
PANNEXINS, AND PURINERGIC
RECEPTORS IN INFLAMMATORY BOWEL
DISEASE

Currently, there are a handful of studies that have examined
the interactions between connexins, pannexin, and purinergic
receptors. Of these studies, only a few have looked at these
proteins in the context of IBD. The study conducted by
Gulbransen et al. was the first to look at Panx1 and P2X7R
in IBD, examining expression and function in a mouse model
of colitis and in human samples from UC and CD patients
(Gulbransen et al., 2012). In amousemodel of colitis it was shown
that inhibition of P2X7R, Panx1, the adaptor protein apoptosis-
associated speck-like protein containing CARD (ASC) or caspase
activity attenuated the inflammation process that caused enteric
cell death (Gulbransen et al., 2012).

The localization of connexins, pannexins, and purinergic
receptors within the gut regions and tissues may provide insight
into their specific roles in inflammation. Panx1 expression
is ubiquitous and is found on glandular epithelium, non-
lymphoid leukocytes, blood vessel endothelium, erythrocytes,
varicosities within ganglia, and muscle tissue (Diezmos et al.,
2013). Panx2 is localized to mast cells, mucosal epithelial
cells, non-lymphoid leukocytes, smooth muscle tissue, as
well as myenteric and submucosal ganglia where Panx2
is co-localized with β-tubulin, substance P, neuronal nitric
oxide synthase, calcitonin gene-related peptide, and vesicular
acetylcholine transporter (Diezmos et al., 2015). Cx43 is

found throughout the smooth muscle layer, on interstitial cells
of Cajal, and on the cell bodies and processes of enteric
ganglia (Nemeth et al., 2000; McClain et al., 2014). As
mentioned previously, P2X7R is expressed on submucosal and
myenteric ganglia (Gulbransen et al., 2012; Kurashima et al.,
2012).

The current consensus is that ATP is released from Panx1
channels and possibly Cx43 hemichannels. This ATP functions
in an autocrine and/or paracrine manner in conjunction with
P2X7R (Figure 1). In the context of inflammation, activation
of the Panx1/P2X7R complex can lead to the formation of
the NACHT, LRR, and PYD domains-containing protein 3
inflammasome involving caspase-1 which in turn leads to release
of mature IL-1β (Surprenant and North, 2009). The mechanism
by which this occurs however is unknown (Surprenant and
North, 2009). Panx1 was suggested to regulate ATP release
which in conjunction with P2X1, P2X4, and P2X7 mediates T-
cell responses such as Ca2+ entry and IL-2 synthesis (Woehrle
et al., 2010a,b). In astrocytes, Panx1 expression is required for
the release of IL-6, IL-8, and glutamate (Wei et al., 2016).
Interestingly, Cx43 in astrocytes were shown to open in response
to IL-1β and TNF-α release frommicroglia (Retamal et al., 2007).
Panx1 may also have an important role in cell migration. Panx1
and P2X7R via different mechanisms are required for GM-CSF
promoted macrophage fusion (Lemaire et al., 2011). A more
recent study has shown that activation of vascular endothelial
cells by TNF-α causes Panx1-mediated ATP release, leading

FIGURE 1 | Cell type-specific schema of ATP release and action. ATP

(red triangles) can be released from the cell cytosol to the extracellular space

(dashed red line) via Panx1 channels or Cx43 hemichannels (pictured). Once in

the extracellular space, this ATP acts as a paracrine transmitter, as can ATP

released from nearby cells that are dead or dying (not shown). Extracellular

ATP can activate P2 receptors, such as P2X7R (pictured) that depolarises the

target cell, but also activates an inflammatory response in immune cells

(dashed gray line) with subsequent release of cytokines such as IL-1β that can

act back at Panx1 and Cx43 to modulate their function (dashed gray lines).

Activation of P2X7R also mediates the T-cell response (e.g., Ca2+ entry, IL-2

synthesis) and macrophage migration (not shown).
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to leukocyte migration during inflammation (Lohman et al.,
2015).

UC and CD can be differentiated by the cytokine profile
exhibited during disease (Khor et al., 2011). UC is thought
to be Th2 cell mediated and is associated with elevated IL-
5 levels and a lack of IL-2 or IFN-γ increase (Fuss et al.,
1996; Sanchez-Munoz et al., 2008). CD on the other hand is
suggested to be Th1 and Th17 cell mediated with elevated
IFN-γ and IL-22 (Fuss et al., 1996; Monteleone et al., 1997;
Plevy et al., 1997; Sanchez-Munoz et al., 2008; Strober and
Fuss, 2011). Common to both UC and CD inflammation are
elevated levels of TNFα, IL-1β, IL-6, IL-8, IL-12, and IL-17
(Fiocchi, 1998; Papadakis and Targan, 2000; Sanchez-Munoz
et al., 2008; Strober and Fuss, 2011). Thus, the altered expression
of cytokines observed in IBD may be linked to the differential
expression of Panx1 and Cx43 that is seen between certain cell
types.

Most studies have concluded that Panx1 is the more
important channel in mediating ATP release and in conjunction
with P2X7R is important in cytokine release such as IL-1β
(Pelegrin et al., 2008; Iglesias et al., 2009; Lemaire et al.,
2011; Thi et al., 2012; Orellana et al., 2013; Baxter et al.,
2014; Kanjanamekanant et al., 2014; Ohbuchi et al., 2014;
Poon et al., 2014; Shoji et al., 2014). Nonetheless, at least
three studies have concluded that Cx43 as the more important
channel in ATP release and inflammation particularly in
enteric glia (Decrock et al., 2009; Csoka et al., 2015; Brown
et al., 2016). Finally, some studies have concluded that neither
Cx43 nor Panx1 have a significant influence on ATP release
(Kurashima et al., 2012; Avendaño et al., 2015). In some cases,
P2X7R activation is independent of their expression (Alberto
et al., 2013; Hansen et al., 2014). Thus, it is still difficult
to determine whether Panx1 and/or Cx43 will play a more
influential role in the pathophysiology of IBD if one does
indeed exist. Table 2 summarizes a range of articles that have
determined whether Panx1 or Cx43 is more important for ATP
release.

PHARMACOLOGICAL TOOLS AND
KNOCKOUT MICE

The pharmacological tools available in the current field of
pannexin and connexin research have gradually improved with
the availability ofmore selective channel blockers. However, there
is still a lack of high affinity inhibitors for most pannexins and
connexins. For connexins, both gap junction and hemichannel
activity needs to be considered (Verselis and Srinivas, 2013).
Carbenoxolone has been used as a connexin channel blocker
but has since been shown to block Panx1 channels and alter
network activity of cultured neurons (Rouach et al., 2003).
The Cx43 mimetic peptide 5 and peptide Gap19 selectively
block Cx43 hemichannels but not gap junctions or other
connexin hemichannels (O’Carroll et al., 2008; Wang et al.,
2013b). For pannexin channels, only selective Panx1 channels
blockers exist such as mefloquine, probenecid and 10Panx1
(Good et al., 2015). However, these tools are not selective

enough to determine underlying Panx1 channel mechanisms
due to additional effects on proteins such as connexins (Good
et al., 2015). In contrast, the pharmacological tools for P2
receptors include selective antagonists for many receptors. For
example, the specific receptor antagonists A-438079 and A-
740003 have been developed for P2X7R (Donnelly-Roberts and
Jarvis, 2007).

A selection of knockout mice for connexins, pannexins and
P2X7R has been generated in previous studies. Pannexins and
connexins are generally well-conserved between humans and
mice. Pannexins show 93-94% conservation at the protein level
(Penuela et al., 2009). Likewise, Cx43 and Cx45 show 98%
conservation at the genetic level, making mice a translatable
animal model (Sohl and Willecke, 2004). Panx1 knockouts have
been previously explored in another review article, showing that
there were no major phenotypic abnormalities in the knockout
mice despite wide-spread expression of Panx1 (Penuela et al.,
2013). Panx2−/− knockout mice have been generated and did
not show major differences in phenotype compared to wild
type mice (Bargiotas et al., 2011). However as mentioned above,
Panx1−/− and Panx2−/− double knockout mice were shown
to have resistance to ischemic stroke (Bargiotas et al., 2011).
The development of Panx3 knockout mice has recently been
published and mice lacking the Panx3 gene were shown to
be less susceptible to osteoarthritis development (Moon et al.,
2015). Connexin knockouts have previously been reviewed in
the context of cardiac function, showing that a large number
of connexin knockouts are lethal (Lo, 2000). The Cx43+/−

heterozygous knockout mice are able to survive adulthood
but show a ventricular conduction phenotype (Guerrero et al.,
1997). As mentioned previously, mice with a conditional
knockout of Cx43 in GI smooth muscle showed decreased
motility (Doring et al., 2007). In P2X7R knockout mice
macrophages were found to lack the ability to release IL-1
(Solle et al., 2001).

Using combinations of the available pharmacological tools
and knockout mice hold promise in the progression of research
in this field. The hope is to confirm the specific roles of
pannexins and connexins in ATP release and in disease
pathophysiology. This task is made difficult by the still weak
selection of pharmacological tools available and the potential
problems of compensation by other subtypes in gene silencing
and knockout models. For instance, Panx3 is not normally
expressed on blood vessels but is significantly upregulated in
the arterial wall of Panx1 knockout mice (Lohman and Isakson,
2014).

CONCLUSIONS AND FUTURE
DIRECTIONS

The role of pannexin and connexin channels in gut inflammation
is an emerging and exciting topic of research. Such research
will be useful in determining the etiology of IBD, which is yet
to be fully understood. Future studies that examine the extent
of pannexin and connexin channel activation would provide
valuable knowledge in determining the involvement of P2X7R
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TABLE 2 | Literature focusing on cell type-specific function of Cx43, Panx1, and P2X7R.

Study Channel/receptor focused on in study Context

Connexin-43 Pannexin-1 P2X7 receptor

Alberto et al., 2013 • Studied

• Not important for ATP release

• Studied

• Not important for ATP release

• Studied

• Dye uptake

independent of Cx43

and Panx1

Murine macrophages

Avendaño et al., 2015 • Studied

• Increased channel opening

• Studied

• Increased channel opening

• Studied Prenatal exposure to

inflammation

Baxter et al., 2014 • Studied • Studied*

• ATP release attenuated with

channel blocker

• Studied Airway epithelia

Brown et al., 2016 • Studied*

• Responsible for majority of ATP

release

• Studied • Studied Enteric glia

Csoka et al., 2015 • Studied*

• Determined to be more

important for ATP release

• Studied • Studied Murine macrophages in

sepsis

Decrock et al., 2009 • Studied*

• Contributes to apoptosis

• Studied

Not detected

• Studied Rat C6 glioma cells

Gulbransen et al., 2012 • Not studied • Studied

• Important for mediating cell

death

• Studied Enteric neurons

Hansen et al., 2014 • Studied

• Membrane conductance not

observed

• Studied

• Dye uptake independent of

P2X7R

• Studied

• Dye uptake

independent of Panx1

Xenopus laevis expression

system

Iglesias et al., 2009 • Studied

• Does not form cell membrane

channel

• Studied* • Studied Astrocytes

Kanjanamekanant et al., 2014 • Studied

• Not deemed important

• Studied*

• Increase in release of IL-1β and

ATP

• Studied Human periodontal ligament

cells

Kurashima et al., 2012 • Studied

• Not important for ATP release

• Studied

• Not important for ATP release

• Studied Mast cells

Lemaire et al., 2011 • Studied

• Gap27 blocker had no effect

• Studied*

• Concluded to be an important

channel

• Studied Rodent multinuclear

macrophages

Ohbuchi et al., 2014 • Studied • Studied*

• Blockage of channel inhibited

ATP release

• Studied Human airway epithelia

Orellana et al., 2013 • Studied

• No effect on ATP release when

inhibited

• Studied* • Studied Astrocytes

Pelegrin et al., 2008 • Not Studied • Studied*

• Important for IL-1 release

• Studied Peritoneal mouse

macrophages

Poon et al., 2014 • Studied • Studied*

• Important for cellular

disassembly

• Not studied Jurkat cells and

Thymocytes from mice

Schenk et al., 2008 • Studied • Studied*

• ATP release reduced when

channel was blocked

• Studied Activated T cells

Shoji et al., 2014 • Studied • Studied* • Studied

• Overexpressed in T

cells of KO mice

Mouse T cells

Thi et al., 2012 • Studied • Studied*

• Concluded to play a bigger role

• Studied Osteoblasts

*Specifies the more important or significant channel in the study.
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and other purinergic receptors in the GI system, in both health
and disease states, and in defining the potential interactions of
Panx1, Cx43 and P2X7R in IBD.
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