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The cosmopolitan phytoplankton species Eucampia zodiacus is a common harmful
algal bloom (HAB) species that have been found to cause HABs in essentially all
coastal regions except the Polar regions. However, molecular information for this HAB
species is limited with only a few molecular markers. In this project, we constructed
the mitochondrial genome (mtDNA) of E. zodiacus, which was also the first mtDNA
constructed for any species in the order Hemiaulales that includes 145 reported species
(including two additional HAB species Cerataulina bicornis and Cerataulina pelagica).
Comparative analysis of eight E. zodiacus strains revealed that they could not be
distinguished using common molecular markers, suggesting that common molecular
markers do not have adequate resolution for distinguishing E. zodiacus strains. However,
these E. zodiacus strains could be distinguished using whole mtDNAs, suggesting the
presence of different genotypes due to evolutionary divergence. Through comparative
analysis of the mtDNAs of multiple E. zodiacus strains, we identified a new molecular
marker ezmt1 that could adequately distinguish different E. zodiacus strains isolated in
various coastal regions in China. This molecular marker ezmt1, which was ∼400 bp in
size, could be applied to identify causative genotypes during E. zodiacus HABs through
tracking the dynamic changes of genetic diversity of E. zodiacus in HABs.

Keywords: harmful algal bloom species, Eucampia zodiacus, mitochondrial genome, genetic marker,
comparative genomics

INTRODUCTION

Harmful algal blooms (HABs) are results of rapid algal proliferation and/or aggregation of algae
that can cause massive fish deaths, contamination of seafood with toxins, and/or ecological
damages through the development of anoxia or habitat alteration (Gentien et al., 2003). HABs
have become a global epidemic with significant economic, social, and human health consequences
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(Gentien et al., 2003). In recent decades, HABs have been
increasing their frequency, persistence, regional coverage/spatial
extent and economic impact worldwide as a result of enhanced
coastal eutrophication, climate change and invasion of alien
species (Sarkar, 2018). HAB species are multitudinous but hard
to be identified accurately only using traditional morphological
examination-based methods (Chen, 2020).

The Eucampia zodiacus Ehrenberg is a common HAB species
of the genus Eucampia, family Hemiaulaceae, order Hemiaulales,
class Mediophyceae, and phylum Bacillariophyta. It is 36–72 µm
in width and 6–32 µm in height (Jin, 1965; Guo, 2004; Nishikawa
and Imai, 2011). Under the light microscope, the alga has an “H”
shape in its curved girdle view and it is elliptic in the valve view.
The cells are connected by two short, blunt elevations, forming a
spiral colony. The plastids are small and numerous, with a small-
cake-shape (Hendey, 1964; Yang and Dong, 2006). E. zodiacus has
a worldwide distribution except for the Polar regions and can be
detected almost all-year round in the water column, providing
considerable primary production (Horner, 2002; Ito et al., 2013;
Nishikawa et al., 2013).

E. zodiacus can form dense blooms in coastal waters, which
have been observed in the Tokyo Bay (Nishikawa et al.,
2011), Harima-Nada (Nishikawa et al., 2007), and Ariake sea
(Matsubara, 2012) in Japan, Bay of Fundy (Martin et al., 2008)
in Canada, Jiaozhou Bay, Haizhou Bay, Xiangshan Harbour and
many other sea areas in China (Huo et al., 2001; Zhang et al.,
2002; Liang, 2012). E. zodiacus blooms develop and last for
a longer time because it is able to grow until the complete
exhaustion of the available nutrients in the water column,
and can take up as much nitrogen as other species such as
Skeletonema species at low temperatures (Nishikawa et al., 2009;
Ito et al., 2013). Notably, E. zodiacus blooms have been reported
to cause bleaching of aquacultured nori, fisheries damage and
economic losses through algal aggregations, competitive utilizing
of nutrients (especially nitrogen) and resultant nutrient depletion
in water columns (Martin et al., 2008; Nishikawa et al., 2011).

Notably that E. zodiacus blooms displayed both spatial and
temporal attributes based on previous studies. For example,
E. zodiacus blooms often occur in winter and early spring in
Japan (Nishikawa et al., 2007), while E. zodiacus blooms have
been reported to occur most in summer in China (Huo et al.,
2001; Zhang et al., 2002; Liang, 2012). Such differential spatial and
temporal dynamics of E. zodiacus blooms suggest that E. zodiacus
has genetic diversity and different strains are different in their
ability to produce HABs.

Many common molecular markers of E. zodiacus including
18S rDNA, 28S rDNA, ITS, rbcL, and CO1 have been sequenced
and applied to characterize E. zodiacus (Sorhannus, 2007;
Rampen et al., 2009; Sorhannus and Fox, 2011; Ashworth
et al., 2013; Hamsher et al., 2013; Guo et al., 2015). However,
these molecular markers have not been evaluated for their
ability to study intra-species genetic diversity of E. zodiacus.
Some common molecular markers including 18S rDNA, 28S
rDNA, and rbcL have been used to study intra-species variation
(Riisberg and Edvardsen, 2008). However, common molecular
markers are usually inadequate for distinguishing intra-species
genetic diversity. For example, molecular markers including

18S rDNA, 28S rDNA, ITS, rbcL, and COI were demonstrated
to be ineffective in resolving intra-species genetic diversity
in the HAB species Phaeocystis globosa (Song et al., 2020).
High-resolution molecular markers can be identified through
comparative analysis of genomics sequences of the organelle
genomes and the nuclear genomes (Song et al., 2020).

Mutation rates differ among mtDNAs, plastid genomes, and
nuclear genomes and mutation rates for mtDNAs are usually
higher than that for plastid and nuclear genomes. For example,
comparative analysis of Phaeocystis antarctica and P. globosa
mtDNAs suggested that the mutation rates for mtDNAs is 10
and 3 times that of the plastid and nucleus, respectively (Smith
et al., 2014). Furthermore, mutation rates for intergenic regions
are usually much higher than that for genic regions (Guo et al.,
2015). As a result, many molecular markers have been developed
based on mtDNAs. For example, the molecular marker MSS
designed for distinguishing different mitotypes in Brassica napus
help successfully identify 570 different inbred lines collected
from various scientific research institutes in China (Heng et al.,
2015). However, until now, mtDNAs of only 33 diatoms have
been constructed and published, and by now there has been no
published mtDNAs in the entire order Hemiaulales, to which
E. zodiacus belongs. The order Hemiaulales has 145 annotated
species including two additional HAB species Cerataulina
bicornis and Cerataulina pelagica according to National Marine
Data and Information Service (NMDIS).

We hypothesize that high-resolution molecular markers
for analyzing genetic diversity can be developed through
comparative analysis of E. zodiacus mtDNAs, especially the non-
coding sequences that display higher variations. In this study,
we constructed the mtDNA of E. zodiacus for the first time,
demonstrated that common molecular markers including 18S
rDNA, 28S rDNA, ITS, rbcL, and CO1 were inadequate for
distinguishing E. zodiacus strains, and designed a new molecular
marker ezmt1 with high resolution and specificity.

MATERIALS AND METHODS

Strain Isolation, Culturing, and
Characterization
Eight E. zodiacus strains (CNS00060, CNS00061, CNS00310,
CNS00311, CNS00312, CNS00313, CNS00314, and CNS00315)
were individually isolated from seawater samples collected during
expeditions in multiple coastal regions in China, including
the Jiaozhou Bay (August, 2019 and January, 2020) on the
research vehicle “Chuangxin” operated by the Jiaozhou Bay
Marine Ecosystem Research Station, the Changjiang Estuary
(July, 2019) on the research vehicle “Zheyu 2” supported by
the Natural Science Foundation of China (NSFC), and the
Bohai Sea (October, 2019) on the research vehicle “Beidou”
supported by the National Natural Science Foundation of China,
Bohai and Yellow Sea Oceanography Expedition (NORC2019-
01) (Figure 1). Briefly, phytoplankton cells were individually
selected with a micropipette, followed by repeated washes before
being transferred to 24-well culture dishes. They were then
transferred to cell culture flask (60–750 ml) to accumulate enough
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FIGURE 1 | Sampling sites of the eight E. zodiacus strains analyzed in this study.

biomass for further molecular assays. Phytoplankton cells were
grown in L1 seawater culture medium and maintained with
temperature of 18–20◦C, irradiance of 30 µM photons m−2 s−1

and photoperiod of 12/12-h light/dark.
For morphological identification, cells were mounted on

the glass-slide and observed with a ZEISS IMAGER A2
microscope equipped with differential interference contrast
optics (Hadziavdic et al., 2014). For molecular identification,
sequences of five common molecular markers, including full-
length 18S rDNA, 28S rDNA D1-D2, ITS, COI, and rbcL
were sequenced using Sanger sequencing technology after PCR
amplification using primers listed in Table 1. PCR conditions
for amplifying 18S rDNA began with a denaturation at 94◦C
for 4 min, followed by 32 cycles of (denaturation at 94◦C for
1 min, annealing at 57◦C for 1:50, extension at 72◦C for 2 min),
and a final extension at 72◦C for 10 min (Saldarriaga et al.,
2003). PCR conditions for amplifying 28S rDNA D1–D2 began
with a denaturation at 94◦C for 5 min, followed by 35 cycles
of (denaturation at 94◦C for 30 s, annealing at 60◦C for 30 s,
extension at 72◦C for 50 s), and a final extension at 72◦C for
10 min (Lundholm et al., 2002). PCR conditions for amplifying
ITS began with a denaturation at 94◦C for 5 min, followed by 35
cycles of (denaturation at 94◦C for 40 s, annealing at 58◦C for
40 s, extension at 72◦C for 1 min), and a final extension at 72◦C
for 10 min (Utama et al., 2017). PCR conditions for amplifying
rbcL began with a denaturation at 94◦C for 5 min, followed by
35 cycles of (denaturation at 94◦C for 50 s, annealing at 53◦C for
50 s, extension at 72◦C for 1:10), and a final extension at 72◦C
for 10 min (Alverson et al., 2007). PCR conditions for amplifying

COI began with a denaturation at 94◦C for 5 min, followed by
35 cycles of (denaturation at 94◦C for 30 s, annealing at 50◦C for
1 min, extension at 72◦C for 1:10), and a final extension at 72◦C
for 10 min.

DNA Library Preparation and Whole
Genome Sequencing
Cultures at the exponential growth phase were harvested and
concentrated via centrifugation, followed by total nucleic acids
extraction with TIANGEN DNAsecure Plant Kit (TIANGEN,
DP121221). Genomic DNA sample was fragmented by sonication
via set program to a size of 350 bp. Then a single adenosine
“A” was added to the 3′ end of the double-stranded DNA
after end modification to prevent the self-connection of
the flat ends between DNA fragments, and it can also
highlight the complementary pairing with the single “T” at
the 5′ end of the next sequencing connector for accurate
connection, effectively reducing the self-connection between
library fragments. DNA fragments were then ligated with
the full-length adapter for Illumina sequencing, followed by
further PCR amplification. After PCR products were purified by
AMPure XP system (Beckman Coulter, Beverly, United States),
DNA concentration was measured by Qubit R©3.0 Flurometer
(Invitrogen, United States), libraries were analyzed for size
distribution by NGS3K/Caliper and quantified by real-time
PCR (3 nM). After cluster generation, the DNA libraries were
sequenced on Illumina Novaseq 6000 platform and 150 bp
paired-end reads were generated. The whole genome sequencing
was finished at Novogene (Beijing, China).
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TABLE 1 | Oligonucleotide primers used to amplify and sequence 18S rDNA, 28S rDNA, ITS, COI, and rbcL fragments from E. zodiacus.

Name Marker Sequence (5′–3′) References

28F SSU CGA ATT CAA CCT GGT TGA TCC TGC CAG T Saldarriaga et al., 2003

42R SSU CCG GAT CCT GAT CCT TCT GCA GGT TCA CCT AC Saldarriaga et al., 2003

R-582 SSU AAT TAC CGC GGC TGC TGG CAC CV Hadziavdic et al., 2014

F-898 SSU AGA GGT GAA ATT CTY RGA Hadziavdic et al., 2014

R-1200 SSU CCC GTG TTG AGT CAA ATT AAG C Hadziavdic et al., 2014

F-1422 SSU ATA ACA GGT CTG TGA TGC CC Hadziavdic et al., 2014

D1R-F LSU d1-d2 ACC CGC TGA ATT TAA GCA TA Lundholm et al., 2002

D2C-R LSU d1-d2 CCT TGG TCC GTG TTT CAA GA Lundholm et al., 2002

ITS1 ITS TCC GTA GGT GAA CCT GCG G Utama et al., 2017

ITS4 ITS TCC TCC GCT TAT TGA TAT GC Utama et al., 2017

rbcL66+ rbcL TTA AGG AGA AAT AAA TGT CTC AAT CTG Alverson et al., 2007

rbcL1255− rbcL TTG GTG CAT TTG ACC ACA GT Alverson et al., 2007

rbcL527+ rbcL AAA ACA TTC CAA GGT CCT GCT Alverson et al., 2007

rbcL587− rbcL GTC TAA ACC ACC TTT TAA MCC TTC V Alverson et al., 2007

Z3COI-F COI GGC AAC AGG AAC TAA TCT T This study

Z3COI-R COI CTA CTA GAA GAC AAT GCT TC This study

+ Forward PCR amplification primer; − Reverse PCR amplification primer.

Construction of mtDNA
Raw data were filtered into clean data with FASTQ following
the rules (1) identifying and removing reads with tail pollution;
(2) removing reads with low quality (>50% bases having Phred
quality < 5) and (3) removing reads with ≥ 10% unidentified
nucleotides (N). The filtered reads were assembled into scaffolds
with Platanus-allee (v2.2.2) (Kajitani et al., 2019) with default
parameters, ABySS (v2.2.4) (Jackman et al., 2017) with the
option k = 96 and SPAdes (v3.14.0) (Bankevich et al., 2012)
with default parameters. With the mtDNA of Skeletonema
marinoi (NC_028615) (An et al., 2017) and Thalassiosira
pseudonana (NC_007405) (Armbrust et al., 2004) serving as
references, scaffolds corresponding to mtDNA of E. zodiacus
were identified using BLAST with the option e-value = 0.00001,
max_target_seqs = 100. When achieving one scaffold only, we
then used MEGA (v7.0) (Matus et al., 2014) and DOTTER
(v4.44.1) to estimate whether sequences at the ends achieved
overlap. Draft mtDNA sequence was constructed by merging
the ends by taking advantage of the overlapping segments at
the ends. If no overlapping sequences were identified, draft
mtDNA sequence was formed by substituting gaps with a stretch
of N. Reads were then aligned to the draft mtDNA sequence
using BWA (v0.7.17-r1188) (Li and Durbin, 2009) with default
parameters, results of which were extracted with SAMtools
(v1.10) (Li et al., 2009) and viewed with IGV (v2.7.2) (Robinson
et al., 2011). According to alignments, assembly errors were
corrected and N regions were replaced. The final version of the
mtDNA was validated through an additional round of alignment
with BWA and visualization with IGV. Of all filtered clean
sequence data, 1.24% represented mtDNA, while contamination
accounted for 0.33%.

mtDNA Annotation
Protein-coding genes (PCGs) and open reading frames (orfs)
were annotated using NCBI ORF Finder and BLAST similarity

searches of the non-redundant databases at NCBI (Altschul
et al., 1997). tRNAs were determined by reconstructing their
cloverleaf structures using the tRNAscan-SE (v1.3.1) (Lowe and
Chan, 2016) with default parameters. rRNAs were identified
using RNAmmer (v1.2) (Lagesen et al., 2007), Barrnap (v0.9) and
MEGA (v7.0) for homologous comparison. The gene map of the
circular mtDNA of E. zodiacus was generated with Organellar
Genome DRAW (OGDraw) (Lohse et al., 2007). The mtDNA
sequence of E. zodiacus strain CNS00060 has been deposited in
GenBank with the accession number of MW026607.

For accurate comparative analysis of genes of mtDNAs of
33 diatom species in Bacillariophyta, we re-annotated all of
these 33 published mtDNAs (Table 2) by searching for missing
genes and correcting annotation errors. Nucleotide composition
was calculated using DNA Sequence Polymorphism (DnaSP)
software (v6.0) (Rozas et al., 2017).

The PCGs were extracted from the mtDNAs using BedTools
(v2.28.0) (Quinlan and Hall, 2010), the same of which from
all 34 diatoms was aligned using MAFFT (v7.471-1) (Katoh
and Standley, 2013) with default parameters. The ambiguously
aligned regions in each alignment were removed using trimAl
(v1.4) (Capella-Gutierrez et al., 2009) with the option gt = 1, and
all genes from each diatom were then concatenated with the same
order using Phyutility (v2.7.1) (Smith and Dunn, 2008). The set
of 32 PCGs shared among the 34 Bacillariophyta mtDNAs were
used for phylogenetic analysis, including atp6, 8, 9; cob; cox1,
2, 3; nad1-7, 4L, 9, 11; rpl2, 5, 6, 14, 16; rps3, 4, 8, 10, 11, 13,
14, 19; and tatA, tatC. Phylogenetic relationships were evaluated
based on the amino acid (aa) sequence dataset of these 32 PCGs.
Mitochondrial genes of two species Phytophthora ramorum
(DQ832718) and Saprolegnia ferax (AY534144) in Oomycota
were selected as out-groups (Liu et al., 2019). The evolutionary
relationship was inferred by using the maximum likelihood (ML)
method, conducted by IQ-TREE (v1.6.12) (Trifinopoulos et al.,
2016) with 1,000 bootstrap replicates. The best-fit models for

Frontiers in Microbiology | www.frontiersin.org 4 March 2021 | Volume 12 | Article 631144

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-631144 March 18, 2021 Time: 12:14 # 5

Zhang et al. Molecular Marker for Eucampia zodiacus

TABLE 2 | Genome information of 34 mitogenomes from the Phylum Bacillariophyta for comparative analysis.

Class Species Strain Habitat Accession number Size (bp) A + T (%) References

Mediophyceae (4) Eucampia zodiacus CNS00060 Marine MW026607 36,162 74.9 This study

Skeletonema marinoi voucher 06.JK029 Marine NC_028615 38,515 70.3 An et al., 2017

Thalassiosira pseudonana – Marine NC_007405 43,827 69.9 Armbrust et al.,
2004

Toxarium undulatum ECT3802 Marine NC_037988 40,429 69.9 Guillory et al.,
2018

Coscinodiscophyceae (1) Melosira undulata – Freshwater NC_037728 32,777 78.4 Pogoda et al.,
2019

Bacillariophyceae (29) Asterionella formosa BGM1 Freshwater NC_032029 61,877 73.3 Villain et al., 2017

Synedra acus – Freshwater NC_013710 46,657 68.3 Ravin et al., 2010

Psammoneis japonica – Marine NC_037989 73,622 69.2 Guillory et al.,
2018

Cylindrotheca closterium CCMP1855 Marine NC_037986 37,784 67.9 Guillory et al.,
2018

Fragilariopsis kerguelensis – Marine LR812619 37,348 68.6 –

Nitzschia palea – Freshwater MH297491 37,754 69.1 Crowell et al.,
2019

Nitzschia palea (nearly
complete)

NIES-2729 Freshwater AP018512 >36,830 – Kamikawa et al.,
2018

Nitzschia alba – Marine NC_037729 36,252 71.6 Pogoda et al.,
2019

Nitzschia sp. PL1-4 – AP018507 38,056 69.5 Kamikawa et al.,
2018

Nitzschia sp. NIES-3576 – AP018509 37,792 69.8 Kamikawa et al.,
2018

Nitzschia sp. 4 – NC_037990 36,012 71.1 Guillory et al.,
2018

Nitzschia sp. NIES-3581 – AP018510 35,897 70.8 Kamikawa et al.,
2018

Nitzschia sp. (nearly
complete)

PL3-2 – AP018505 >35,839 – Kamikawa et al.,
2018

Pseudo-nitzschia
multiseries

– Marine NC_027265 46,283 68.9 Yuan et al., 2016

Didymosphenia geminata – Freshwater NC_032171 37,765 73.1 Aunins et al., 2018

Entomoneis sp. – – MF997419 36,078 72.2 Pogoda et al.,
2019

Halamphora calidilacuna – Marine MF997424 103,605 68.8 Pogoda et al.,
2019

Halamphora coffeaeformis – Brackish NC_037727 44,653 67.1 Pogoda et al.,
2019

Berkeleya fennica – Freshwater NC_026126 35,509 70.2 An et al., 2016a

Fistulifera solaris – Marine NC_027978 39,476 71.9 Tang and Bi, 2016

Haslea nusantara – Marine NC_044492 36,288 70.8 Prasetiya et al.,
2019

Navicula ramosissima voucher 10.TA439 Marine NC_031848 48,652 68.9 An et al., 2016b

Phaeodactylum tricornutum ICE-H Marine MN956530 77,055 65.3 –

Phaeodactylum tricornutum – Marine NC_016739 77,356 65.0 Secq and Green,
2011

Proschkinia sp. SZCZR1824 – MH800316 48,863 70.4 Gastineau et al.,
2019

Surirella sp. – – MF997423 42,867 72.6 Pogoda et al.,
2019

Endosymbiont of
Kryptoperidinium foliaceum
(partial)

– – JN378734 >39,686 – Imanian et al.,
2012

Endosymbiont of Durinskia
baltica (partial)

– – JN378735 >35,505 – Imanian et al.,
2012

Eunotia naegelii UTEX FD354 Freshwater NC_037987 48,049 72.9 Guillory et al.,
2018
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FIGURE 2 | Micrographs of E. zodiacus Strain CNS00060 (broad girdle view, live material DIC). (A) Single cell with small and numerous plastids. (B) Two connected
single cells.

each partition were determined automatically using IQ-TREE
with the subroutine ModelFinder. According to the tree, mtDNAs
of S. marinoi, T. pseudonana, and E. zodiacus were selected for
multiple sequence alignment using Mauve Genome Alignment
(v2.3.1) (Darling et al., 2010) with progressive Mauve algorithm.
Pairwise comparison of the three was shown in the CIRCOS
(v0.69) (Krzywinski et al., 2009).

Single Nucleotide Variants (SNVs)
Detection in mtDNAs of E. zodiacus
Strains
Phylogenetic tree based on the whole mtDNAs showed genomic
diversity. To search for genomic variations (GVs), we aligned
Illumina sequencing clean reads of the seven E. zodiacus strains
against the mtDNA of the reference strain CNS00315 using BWA
with default parameters. Alignment results were screened using
SAMtools with default parameters, and SNVs with homozygous
support > 85% were called using VarScan (v2.4.4) (Koboldt et al.,
2012) with the option –min-freq-for-hom = 0.85.

Searching for High-Density SNVs
Regions for Designing High-Resolution
Molecular Markers
SNV positions of seven strains were integrated relative to
mtDNA of strain CNS00315 using in-house Python scripts,
which were also developed to scan for variations in 400 bp-
sliding (the length was appropriate for metabarcoding projects
using Illumina DNA sequencing technology) successive windows
(spaced at 1 bp) along the mtDNA of CNS00315. Each window
was evaluated for SNV density and its ability to resolve
eight E. zodiacus strains. The results were displayed using
CIRCOS. To amplify the identified molecular marker, we use the
forward primer: MCCCTATGGTATTAGAGA, and the reverse
primer: RTTAAGTGACCCAAGTTCTAAG. PCR amplifications
in reaction mixtures (final volume, 50 µl) began with a 5 min
denaturation step at 94◦C, which was followed by 35 cycles of
denaturation at 94◦C for 30 s, annealing at 45◦C for 1 min, and

extension at 72◦C for 1 min and then by a final extension at 72◦C
for 10 min.

RESULTS

Morphological and Molecular
Identification of E. zodiacus Strains
Eight E. zodiacus strains collected in the Jiaozhou Bay, the
Changjiang Estuary and the Bohai Sea were first identified
based on their morphological features observed using light
microscopy. These cells were generally “H” shaped with
small and numerous plastids, with the middle part of
each girdle being concave (Figure 2A). Both ends of the
apical axis had elevations, with single-cells connected and
forming a spiral population with small intercellular space
(Figure 2B). The morphological features were consistent
with published observations of E. zodiacus (Guo, 2004;
Yang and Dong, 2006).

The strains were further examined and compared molecularly
using five common molecular markers including full-length
18S rDNA, 28S rDNA D1-D2 region, ITS, COI, and rbcL. All
eight strains shared the same percent identity (PID, which
was used to quantify the similarity between the biomolecular
sequence) (99.94%) when compared to the reference sequence
of E. zodiacus on full-length 18S rDNA (Sorhannus, 2007).
Similar high PIDs were found for other molecular markers
including 28S rDNA D1-D2 (100%) (Hamsher et al., 2013), ITS
(99.28%) (Guo et al., 2015), CO1 (99.25%) (Guo et al., 2015),
and rbcL (100%) (Guo et al., 2015), respectively. Phylogenetic
analysis of molecular marker sequences obtained for all eight
strains indicated that they all clustered well with corresponding
E. zodiacus sequence records at GenBank (Supplementary
Figure S1), further confirming that these strains were all
indeed E. zodiacus. However, none of these common molecular
markers could distinguish these 8 E. zodiacus strains, suggesting
that their resolution was limited in distinguishing intra-species
genetic diversity.
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FIGURE 3 | Gene map of the E. zodiacus Strain CNS00060. Genes shown on the inside of the map are transcribed in a clockwise direction, whereas those on the
outside of the map are transcribed counterclockwise. The assignment of genes into different functional groups is indicated by different colors. The ring of bar graphs
on the inner circle shows the GC content in dark gray.

General Characteristics of the
E. zodiacus mtDNA
The complete mtDNA of E. zodiacus (strain CNS00060) was a
circular molecule that was 36,162 bp in size (Figure 3), which
was similar to but smaller than the mtDNAs of most diatoms
(Table 2). The compact genome size of E. zodiacus was primarily
due to small intergenic regions (Ravi et al., 2018). Total intergenic
regions in E. zodiacus mtDNA had a total size of 2,495 bp
(only accounting for 6.9%). Three pairs of genes overlapped with
each other, including rps4-rps2 (20 bp), nad1-tatC (20 bp), and
orf158-trnP (9 bp). The first two were synthetic and the last one
was reversed. Additionally, three pairs of genes were connected
directly without space, including rps19-rps3, rps7-rps12, and
atp6-cob. No introns were identified in the E. zodiacus mtDNA.

We found a pair of small inverted repeat (IR) region (129 bp) on
either side of the orf98 in the intergenic regions.

The AT content of the E. zodiacus mtDNA was 74.9%, which
was higher than that of most diatom mtDNAs (Table 2). The
distribution of genes on the two strands was uneven, with the
number of genes on one strand about 1.5 times of those on
the other strand. Although the diatom mtDNA sizes varied
substantially with different number of nucleotides in non-coding
sequences, the recorded diatom mtDNAs had a highly similar
gene content. All PCGs commenced with a methionine start
codon, expect for the gene atp8, which started with ATC. Start
codons of atp8 also varied in many other diatoms (Table 3). The
E. zodiacus mtDNA is relatively compact, compassing 35 PCGs,
24 tRNAs, 2 rRNAs, and 3 orfs of unknown functions. All of the
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TABLE 3 | Mitochondrial gene content in 34 mitogenomes from Bacillariophyta.

Species 34 core genes rps2 rps7 rps12 rrn5 tRNA Introns (I/II) nad11 split
coding region

Start codon of
atp8

32 PCGs 2 rRNAs

Eucampia zodiacus + + + + + − 24 0 − ATC

Skeletonema marinoi
voucher 06.JK029

+ + + + + − 25 0 − GTG

Thalassiosira pseudonana + + + + + − 25 0/1 − ATT

Toxarium undulatum strain
ECT3802

+ + + + + − 26 0 − ATG

Melosira undulata + + − + + − 24 0 − ATT

Asterionella formosa strain
BGM1

+ + + + + − 24 0/1 − TTG

Synedra acus (Ulnaria
acus)

+ + − + + − 24 0/3 − ATG

Psammoneis japonica + + + + + − 28 0/11 − ATG

Cylindrotheca closterium
strain CCMP1855

+ + + + + − 24 0/1 + ATA

Fragilariopsis kerguelensis + + + + + − 24 0 + ATA

Nitzschia palea + + + + + − 24 0 + ATG

Nitzschia palea NIES-2729
(nearly complete)

+ + + + + − 24 0 + ATG

Nitzschia alba + + + + + − 24 0 + ATG

Nitzschia sp. PL1-4 + + + + + − 24 0 + ATG

Nitzschia sp. NIES-3576 + + + + + − 24 0 + ATG

Nitzschia sp. strain 4 + + + + + − 24 0 + ATG

Nitzschia sp. NIES-3581 + + + + + − 24 0 + ATG

Nitzschia sp. PL3-2 (nearly
complete)

+ + + + + − 24 0 + ATG

Pseudo-nitzschia
multiseries

+ + + − + − 24 0/3 + ATA

Didymosphenia geminata + + + + + − 25 0 + ATG

Entomoneis sp. + + + + + − 23 0 + ATG

Halamphora calidilacuna + + + + − + 26 1/19 + ATG

Halamphora coffeaeformis + + + + + + 24 0/5 + ATG

Berkeleya fennica + + + + + + 25 0 + ATG

Fistulifera solaris + + + + + + 24 0 + ATG

Haslea nusantara + + + + + − 24 0 + ATG

Navicula ramosissima
voucher 10.TA439

+ + + + + + 23 0/5 + ATG

Phaeodactylum
tricornutum strain ICE-H

+ + + + + − 24 0/4 + ATG

Phaeodactylum
tricornutum

+ + + + + − 23 0/4 + ATG

Proschkinia sp.
SZCZR1824

+ + + + + + 24 0/4 + ATG

Surirella sp. + + + + + − 22 0 + ATG

Endosymbiont of
Kryptoperidinium
foliaceum (partial)

+ + + + + − 22 2/1 + ATA

Endosymbiont of Durinskia
baltica (partial)

+ + + + + − 23 0 + ATG

Eunotia naegelii strain
UTEX FD354

+ + + + + − 23 0/1 + ATG

The 34 core genes included 32 PCGs (atp6, 8, 9; cob; cox1, 2, 3; nad1-7, 4L, 9, 11; rpl2, 5, 6, 14, 16; rps3, 4, 8, 10, 11, 13, 14, 19; and tatA, tatC) and two rRNAs (rnl
and rns).
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FIGURE 4 | Phylogenetic tree based on maximum likelihood (ML) analysis of amino acid (aa) sequence dataset of 32 mitochondrial PCGs in Bacillariophyta.
Phytophthora ramorum and Saprolegnia ferax were used as out-group taxa. Numbers on the branches represent bootstrap values and Bayesian posterior
probabilities, respectively.

sequenced diatom mtDNAs shared 34 core genes, including 32
PCGs (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3,
nad4, nad5, nad6, nad7, nad4L, nad9, nad11, rpl2, rpl5, rpl6,
rpl14, rpl16, rps3, rps4, rps8, rps10, rps11, rps13, rps14, rps19,
tatA, and tatC) and two rRNAs (rnl and rns) (Table 3). In addition
to these core genes, we also found rps2 (which was lost in Synedra
acus mtDNA and Melosira undulata mtDNA), rps12 (which was
lost in Halamphora calidilacuna mtDNA) and rps7 (which was
lost in Pseudo-nitzschia multiseries mtDNA) in the mtDNA of
E. zodiacus. The gene rrn5, which was found in many diatom
genomes, was absent from the mtDNA of E. zodiacus. While
the gene nad11 is split into two parts most in many species in
Bacillariophyceae, the nad11 gene in the E. zodiacus mtDNA
harbored a full nad11 protein, similar to species in Mediophyceae
and Coscinodiscophyceae.

Phylogenetic Analysis of Evolutionary
Relationships
The amino acid sequence alignment of 32 concatenated PCGs
(5,836 bp combined size) which were shared by mtDNAs of
Bacillariophyta and Oomycota was constructed for phylogenetic
analysis. Phylogenetic analysis indicated that the 34 species
in Bacillariophyta formed three groups, corresponding to

three classes of Bacillariophyta, including Bacillariophyceae,
Mediophyceae and Coscinodiscophyceae (Figure 4), which was
consistent to the current classification in AlgaeBase. E. zodiacus
belongs to class Mediophyceae that also includes T. pseudonana,
S. marinoi, and Toxarium undulatum. E. zodiacus formed an
independent clade, so did the T. undulatum, which was consistent
with previous report that T. pseudonana was more closely related
to S. marinoi (An et al., 2017).

Syntenic analysis between E. zodiacus and each of
T. pseudonana and S. marinoi revealed a series of translocation
and inversion events (Figure 5). High similarity was observed
between T. pseudonana and S. marinoi mtDNAs, with only 5
small translocation events, involving cox2, cox3, trnW, trnV,
and trnM, and several free-standing orf s (each being at least
100 codons in size). In contrast, E. zodiacus mtDNA exhibited
a high level of genome rearrangement when compared to
T. pseudonana or S. marinoi. The three diatom mtDNAs
shared a relatively conservative gene block with about 41
genes (from nad11 to nad2), within which gene orders of
T. pseudonana and S. marinoi were almost identical (except
for orf272). In contrast, E. zodiacus had a translocation of
trnC, a specific orf238, and two missing genes (atp6 and cob).
What is more, we found that genes in two smaller gene blocks,

Frontiers in Microbiology | www.frontiersin.org 9 March 2021 | Volume 12 | Article 631144

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-631144 March 18, 2021 Time: 12:14 # 10

Zhang et al. Molecular Marker for Eucampia zodiacus

FIGURE 5 | Synteny comparison of E. zodiacus, T. pseudonana and S. marinoi mtDNAs. (A) Purple box indicates conserved synteny block of genes, while red box
indicates inversion event. Genes with same color share similar function. (B) Comparison of E. zodiacus, T. pseudonana and S. marinoi mtDNAs using Mauve.
(C) CIRCOS plots show synteny comparison between E. zodiacus and T. pseudonana mtDNAs. Genes with same color share similar function. (D) CIRCOS plots
show synteny comparison between E. zodiacus and S. marinoi mtDNAs. Genes with same color share similar function.
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FIGURE 6 | Phylogenetic trees based on maximum likelihood (ML) analysis of eight E. zodiacus strains. (A) Phylogenetic analysis using the whole mtDNAs of eight
E. zodiacus strains. (B) Phylogenetic analysis using the newly-developed ezmt1.

FIGURE 7 | Genomic variations density in E. zodiacus strains. The green band represented the reference genome CNS00315. From inside to outside, circles
represent three E. zodiacus strains isolated from the Bohai Sea (orange), one strain from the Changjiang Estuary (blue), and three strains from the Jiaozhou Bay
(green).

Frontiers in Microbiology | www.frontiersin.org 11 March 2021 | Volume 12 | Article 631144

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-631144 March 18, 2021 Time: 12:14 # 12

Zhang et al. Molecular Marker for Eucampia zodiacus

nad11-trnD-nad4L-trnK-atp9-rpl16-rps3-rps19 and atp8-trnA
were inverted in E. zodiacus mtDNA.

Defining a High-Resolution Molecular
Marker for Distinguishing E. zodiacus
Strains
While common molecular marker sequences were
indistinguishable among these eight E. zodiacus strains
(Supplementary Figure S1), phylogenetic tree constructed using
the whole mtDNAs showed clear between-strain differences
(Figure 6A). Comparative analysis of the E. zodiacus mtDNAs
identified a 400 bp-window with dense variations (Figure 7).
We identified 26 SNVs (position: 32,131–32,530 bp in mtDNA
of strain CNS00315). This 400 bp region partially overlapped
with orf98 (261 bp). Phylogenetic analysis using this small region
of all eight E. zodiacus strains based on the sequence alignment
suggested that it could be used to effectively distinguish these
strains as molecular marker (Figure 6B). The resolution of this
molecular marker, which we named E. zodiacus mitochondrial 1
and abbreviated as ezmt1, was high.

Specificity Evaluation of ezmt1
The specificity of a molecular marker is high if it can be used
only for distinguishing a small set of closely related species.
In contrast, the specificity of a molecular marker is low if it
can be used for distinguishing a large set of broadly related
species. In this study, we would like to identify a molecular
marker with high specificity that specifically recognizes intra-
species variations in the species E. zodiacus. To test the specificity
of newly developed molecular marker ezmt1, we first carried
out BLAST searches against the NCBI nt database, which
showed low similarity and low coverage to sequences of other
species. Second, we carried out PCR amplification assays on
DNAs extracted from 13 representative eukaryotic algae species,
including seven species in Bacillariophyta including S. marinoi,
Thalassiosira weissflogii, Chaetoceros curvisetus, Pseudo-nitzschia
pungens, Planktoniella sol, Psammodictyon constrictum, and
Rhizosolenia sp., three species in Dinoflagellata including
Alexandrium tamarense, Karenia mikimotoi, and Prorocentrum
donghaiense, three species in Ochrophyta including Aureococcus
anophagefferens, Chattonella marina, and P. globosa. Results of
all 13 PCR reactions showed that ezmt1 sequences could only
be amplified in E. zodiacus (Supplementary Figure S2), further
confirming the high specificity of ezmt1.

DISCUSSION

The E. zodiacus is a common HAB species that has been identified
in many ocean regions including the Tokyo Bay (Nishikawa
et al., 2011), Harima-Nada (Nishikawa et al., 2007), and Ariake
sea (Matsubara, 2012) in Japan, Bay of Fundy (Martin et al.,
2008) in Canada, Jiaozhou Bay, Haizhou Bay, Xiangshan Harbour
and many other sea areas in China (Huo et al., 2001; Zhang
et al., 2002; Liang, 2012). Indeed, it is the only HAB species that
has been identified in all recorded expeditions in the Jiaozhou
Bay (Liu and Chen, 2021). E. zodiacus HABs have been found
to have caused negative impacts on bleaching of aquacultured

nori, fisheries damage and economic losses (Martin et al., 2008;
Nishikawa et al., 2011). The differential special and temporal
features of E. zodiacus HABs reported in Japan (Nishikawa et al.,
2007) and China (Huo et al., 2001; Zhang et al., 2002; Liang, 2012)
suggest that it has important genetic diversity. Nevertheless, the
genomic information of E. zodiacus is limited and the genetic
diversity of E. zodiacus has not been studied.

In this project, we constructed the mtDNA of E. zodiacus for
the first time, which was also the first mitochondria genome for
all species in the order Hemiaulales. The mtDNA of E. zodiacus
was 36,162 bp in size, which is shorter than most diatom mtDNAs
that are generally compact with few repeats and a small number
of introns (Secq and Green, 2011). The small size of mtDNA
of E. zodiacus is due to its small intergenic regions, the low
repeat content and the absence of introns. First, the variations
in mtDNA sizes could be due to variations of intergenic regions
(Pogoda et al., 2019), and the average intergenic regions for
T. pseudonana and Phaeodactylum tricornutum (Secq and Green,
2011) are 157 and 841 bp, respectively. The average length of
intergenic regions of E. zodiacus mtDNA was only 39 bp. Second,
repeats in diatom mtDNAs are either small or concentrated in
only a small number of sites, without interrupting the genes in
the mtDNAs or gene densities of the mtDNAs. For example,
only a single 35 kb-long repeat was found in the mtDNA
of P. tricornutum (Secq and Green, 2011). No such repeats
were found in the mtDNA of E. zodiacus. Third, the introns
in the diatom mtDNAs are generally found in a few genes
including cox1 (Guillory et al., 2018), rnl, rns, cob, cox2, cox3,
and nad7 (Pogoda et al., 2019). No introns were found in
E. zodiacus mtDNA.

There is very little difference in gene content of diatom
mtDNAs, except for orf s, some of which are found within
introns (Pogoda et al., 2019). The only gene that was not found
in the E. zodiacus mtDNA was rrn5, which is found only in
a few diatom species (Secq and Green, 2011; Valach et al.,
2014). The rrn5 may exist in the common ancestor of organelle
genomes but have lost afterward (Valach et al., 2014). A full
nad11 gene was found in the E. zodiacus mtDNA. This gene
is present in many diatom mtDNAs including the mtDNAs of
T. undulatum (Guillory et al., 2018) and Asterionella formosa
(Villain et al., 2017), while it is split into two parts in the mtDNAs
of many species in Bacillariophyceae including Cylindrotheca
closterium (Guillory et al., 2018) and Nitzschia palea (Crowell
et al., 2019). Three ribosomal protein coding genes rps2, rps7,
and rps12 are lost in some diatom mtDNAs (Pogoda et al., 2019).
However, all of these three genes are found in the E. zodiacus
mtDNA.

The advantage of compact E. zodiacus mtDNA is not known
(Secq and Green, 2011; Liu et al., 2014). However, as intergenic
regions may facilitate intragenomic recombination, as observed
in mtDNAs of mosses (Liu et al., 2014), the small intergenic
regions in E. zodiacus mtDNA may be associated with low
intragenomic recombination activities, which may be critical
for maintaining the stability of the mtDNA. Furthermore, the
organization of genes is important to the transcription of
polycistronic operons (Liu et al., 2014), thus the small genome
size of E. zodiacus mtDNA may be important in insuring proper
transcription of genes in the mtDNA.
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While the number of genes in diatom mtDNAs show high
similarity, their syntenic relationships vary greatly in a lineage-
specific manner. Numerous genome rearrangement events were
observed between E. zodiacus and mtDNAs of other diatom
species, which may be explained by the large evolutionary
distances between E. zodiacus and other diatom species. However,
the mtDNA of E. sodiacus shared relatively high syntenic
similarity with mtDNAs of representative diatoms including
T. pseudonana and S. marinoi (Figures 5A,B) of another order
in class Mediophyceae, supporting the current taxonomic status
of E. zodiacus, which is also supported by phylogenetic analysis
based on core genes. mtDNAs of more closely related species
are needed to understand the origin and the evolutionary
relationship of such genome rearrangements.

An ideal molecular marker usually requires many criteria.
First, low intra-genome variation among multiple copies
of a molecular marker is critical for ensuring enough
representativeness and reduce ambiguity (Xiao-Kun et al., 2019).
Second, a molecular marker should have conserved flanking
sequences to facilitate the design of universal primers and
obtain an appropriate sequence length in a single amplification
(Guo et al., 2015). For example, the short variable region V4
region of the 18S rDNA sequence, which is frequently used for
metabarcoding analysis of microbial eukaryotes (Decelle et al.,
2014; Liu et al., 2020). Third, a molecular marker should have
appropriate specificity, dependent on its applications (Fechner
et al., 2010). To be specific, when surveying large number of
species in large areas, low specificity is preferred. When focusing
on specific species, like in this project, for tracking E. zodiacus
strains, high specificity is more desirable.

For this project, we isolated and characterized eight
E. zodiacus strains from three different sea areas in China,
spanning about eight latitudes (30.3625◦N–38.3658◦N)
and covering three seasons (summer, autumn, and winter).
Despite such large geographical span and seasonal differences,
phylogenetic analysis based on common molecular markers
could not distinguish these strains, suggesting that they shared
high genetic similarity. We found clear distinction among
different E. zodiacus strains based on whole mtDNAs, suggesting
unambiguous genetic differences among different E. zodiacus
strains. Through sequence alignment and comparative analysis,
we identified a molecular marker ezmt1 that could adequately
distinguish different E. zodiacus strains. Common molecular
markers of E. zodiacus may fit part of the criteria listed
above, while ezmt1 satisfies all criteria. The ezmt1 could be an
effective molecular marker for studying E. zodiacus all over
the world. On the one hand, we can distinguish and track
different strains of E. zodiacus, especially during blooms, to
evaluate strain-specific differential contribution to blooms.
For example, E. zodiacus blooms occurred in Japan in winter
(Nishikawa and Yamaguchi, 2006; Nishikawa et al., 2009)
revealed different features with that in China usually occurred in
summer (Huo et al., 2001; Zhang et al., 2002; Liang, 2012), which
suggested that different E. zodiacus strains involved. The newly
designed molecular marker ezmt1 may help study the genetic
evolutionary relationship between them. On the other hand, by
further collecting large number of samples, we can study the
geographical distribution pattern of E. zodiacus strains.

CONCLUSION

E. zodiacus is the first species having its complete mitogenome
sequenced in the order Hemiaulales. The availability of the
E. zodiacus mtDNA will facilitate evolutionary study of mtDNAs
in Bacillariophyta, especially in the order Hemiaulales. Through
comparative analysis of mtDNAs among different E. zodiacus
strains, we identified a molecular marker ezmt1 that can
effectively distinguish different E. zodiacus strains. The ezmt1
holds great potential in research on genetic diversity in
E. zodiacus, and, more importantly, on tracking causative strain
in E. zodiacus HABs.
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