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The medial prefrontal cortex (mPFC) has been classically defined as the brain region
responsible for higher cognitive functions, including the decision-making process. Ample
information has been gathered during the last 40 years in an attempt to understand
how it works. We now know extensively about the connectivity of this region and
its relationship with neuromodulatory ascending projection areas, such as the dorsal
raphe nucleus (DRN) or the ventral tegmental area (VTA). Both areas are well-known
regulators of the reward-based decision-making process and hence likely to be involved
in processes like evidence integration, impulsivity or addiction biology, but also in helping
us to predict the valence of our future actions: i.e., what is “good” and what is “bad.”
Here we propose a hypothesis of a critical period, during which the inputs of the mPFC
compete for target innervation, establishing specific prefrontal network configurations
in the adult brain. We discuss how these different prefrontal configurations are linked
to brain diseases such as addiction or neuropsychiatric disorders, and especially how
drug abuse and other events during early life stages might lead to the formation of
more vulnerable prefrontal network configurations. Finally, we show different promising
pharmacological approaches that, when combined with the appropriate stimuli, will be
able to re-establish these functional prefrontocortical configurations during adulthood.

Keywords: prefrontal networks, decision-making, critical period, ventral hippocampus, basolateral amygdala

THE mPFC AS A HIGH-ORDER COGNITIVE AREA

A remaining question in the field of neuroscience is how our brain shapes the decision-
making process, i.e., the ability to coordinate thought and action to achieve internal goals.
Classic studies show the medial prefrontal cortex (mPFC) is an important region involved in
the decision-making process, and patients with damage in the frontal lobe show deficits in
attention and behavior control (Hagberg, 1987) and inability to acquire and use behavior-
guiding rules (Shallice, 1982; Wise et al., 1996). Recent research, not only in humans but
also in rodents, has shown that the mPFC is a key region for high executive functions such as
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rule learning and other different aspects related to working
memory (Kesner and Churchwell, 2011). In this regard, lesion
studies with damage in the prelimbic (PrL) and infralimbic (IL)
cortices have been shown to produce deficits in both spatial
(Horst and Laubach, 2009) and visual working memory (Di
Pietro et al., 2004). Another task related to working memory is
the temporal order memory; it requires the animal to remember
the last visited arm in a maze and has also been shown to be
dependent on the PrL and the anterior cingulate (AC) cortices
(Chiba et al., 1997; Barker et al., 2007). Interestingly, the PrL
cortex has also been suggested to mediate behavioral flexibility,
i.e., the ability to change learned rules to obtain a reward, as in
rotating rewards and inverting patterns for reward retrieval (Dias
and Aggleton, 2000; Rich and Shapiro, 2007).

Regarding the decision-making process, lesions in the AC
lead to disruptions in effort-based tasks, such as reduced
willingness to climb a barrier to get a large reward (Rudebeck
et al., 2006). Supporting these findings, effort-based decisions
increased activity not only in the AC but also in the PrL and
other prefrontocortical regions such as the lateral orbital cortex
(Endepols et al., 2010). Similarly, the willingness to wait for a
larger reward is also dependent on regions of the mPFC (Mobini
et al., 2002; Churchwell et al., 2009).

TOP-DOWN CONTROL OF mPFC ON
NEUROMODULATION

One of the most accepted theories of how the mPFC controls
the decision-making process is the top-down control from
the mPFC (Miller and Cohen, 2001), which states that the
mPFC provides biased signals representing the goals and the
means to achieve those goals. These signals would be sent
to efferent regions throughout the brain, including sensory
or motor executive regions, but also those areas related to
memory retrieval and emotions. These biased signals would
determine how the flow of neural activity is guided to achieve
those goals (Miller and Cohen, 2001). However, the mPFC
also connects, both directly and indirectly, to important regions
responsible for the modulation of mood, decision making
and addiction, such as the ventral tegmental area (VTA)
and the dorsal raphe nucleus (DRN; Russo and Nestler,
2013). This neuromodulatory route represents an alternative
top-down pathway through which the mPFC controls behavior
(Challis and Berton, 2015).

After the establishment of the physiological and
computational principles underlying reward prediction coding
(Schultz et al., 1997), a vast number of studies have reported that
multiple behaviors function according to the reward prediction
principles and its associated neuromodulatory circuits (Dayan
et al., 2000). These networks are responsible for the learning
of expected behavioral outcomes through the enhanced release
of dopamine (DA) on specific locations (Schultz, 2016). While
previously the focus has been set on the different routes
through which DA is secreted: mesolimbic, mesocortical,
nigrostriatal and tuberoinfundibular pathways (Luo and Huang,
2016), we want to stress the relevance of a reverse circuit in
the regulation of certain behaviors related to addiction and

neuropsychiatric disorders: from the mPFC to the striatum
and then to the dopaminergic regions. In this line, the main
efferent projections from the PrL target the caudate-putamen
and the core of nucleus accumbens (NAcc), while the IL targets
the medial shell of NAcc (Heidbreder and Groenewegen, 2003;
Hoover and Vertes, 2007). Interestingly, the NAcc core and
shell display different activities during the establishment of
rewards: While the core is active before a newly-devalued
cue, the shell decreases its activity (West and Carelli, 2016);
hence granting both PrL and IL cortices different roles in the
reward circuitry.

These basal ganglia have been long suggested to loop with
the mPFC, being these loops key for the incentive learning and
control of motor behaviors through activity in the substantia
nigra (SN) and the VTA (Allen and Tsukahara, 1974; Lanciego
et al., 2012; Leisman et al., 2014). These two regions are
the source of dopaminergic transmission in the brain and
have been suggested to feed back to the basal ganglia (Haber
et al., 2000), pointing to the relevance of the mPFC in the
DA circuitry. Therefore, the mPFC would exert an integrative
role in processing motor and sensory inputs; and together
with the basal ganglia, would be controlling the learning
of appropriate and incentivized series of motor behaviors
that include motor skills and habits (McNab and Klingberg,
2008; Graybiel and Grafton, 2015). Similarly, we suggest that
a similar mechanism might exist, by which the integrative
role of the mPFC would control higher cognitive behaviors
as well.

In this line, the study of inputs to the VTA and the
SN indicates strong projections from different areas such as
the NAcc as indicated, but also from the dorsal striatum
and the lateral hypothalamus (LH), among others (Geisler
and Zahm, 2005; Watabe-Uchida et al., 2012). Interestingly,
a similar pattern has been described when studying the
input projections to the dorsal raphe, the area responsible
for serotonergic innervation. Serotonin (5HT) has also been
shown to modulate decision making, as well as to interact with
the reward prediction error circuitry. Moreover, the altered
expression of 5HT is associated with the onset of different
mood disorders, including major depressive disorder (Challis
and Berton, 2015). Interestingly, the areas projecting to the
dorsal raphe include the ventral and dorsal striatum, the
LH and the septum (Gabbott et al., 2005; Commons, 2016;
Ogawa and Watabe-Uchida, 2018).

It is important to note that different parts of these
dopaminergic and serotoninergic regions, as well as their specific
inputs, have been suggested to mediate different functions of the
prediction reward system (Ogawa and Watabe-Uchida, 2018).
However, it is also relevant to support our hypothesis that most
of the areas projecting to the dopaminergic and serotoninergic
regions are also the main targets of the mPFC (Gabbott et al.,
2005; see Figure 1).

The DRN is the main source of 5HT in the brain and receives
dense monosynaptic input from the mPFC that contacts both
serotoninergic and GABAergic neurons. Optogenetic activation
of the mPFC onto the DRN produces strong disynaptic
inhibition (Zhou et al., 2017). Nevertheless, the net effect
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FIGURE 1 | (A) Diagram of a sagittal section of the rodent brain illustrating how the integration of information in the medial prefrontal cortex (mPFC) affects both
directly (in blue) and indirectly (in red) monoaminergic nuclei in the brain, as an example for the top-down control of the mPFC. The rest of the connections are
colored in gray. (B) Diagram illustrating some of the main inputs to the mPFC. We have colored in red the projection from the BLA and in blue the projection from the
vHC: two regions we hypothesize to compete for target innervation in the mPFC. The rest of the connections are colored in gray.

of mPFC input on DRN activity, caused by the balance
between direct excitation to serotonergic neurons vs. disynaptic
inhibition, can be modulated not only by endocannabinoids
(Geddes et al., 2016) but also by stressful experiences such
as social defeat (Challis et al., 2014). A disrupted balance
between excitation and inhibition (E/I) in the DRN after
mPFC activation has been hypothesized to be an underlying
factor for developing depressive-like symptomatology and that
high-frequency deep brain stimulation (DBS) protocols of the
mPFC (as performed in humans and rodents) can restore the E/I
balance towards a higher excitation onto serotonergic neurons,
thus enhancing DRN output and providing a mechanistic
explanation for the antidepressant action of DBS of the mPFC
(Challis and Berton, 2015).

Altogether, these data suggest that top-down control from
the mPFC is exerted through the action of monoamines, such
as DA) and 5HT. These two systems have been long suspected
to play opposite roles in the reward circuitry (Solomon and
Corbit, 1974), with DA reinforcing positive reward prediction
error, and 5HT facilitating learning of new adaptive behaviors
and inhibiting non-adaptive responses (Boureau and Dayan,
2011; Cools et al., 2011). Recent findings have shown that these
processes are not only caused by the different effects of these
neurotransmitters—5HT promoting LTD (He et al., 2015) and
DA facilitating LTP (Li et al., 2003; Otani et al., 2003)—but
are caused by their different release dynamics. In fact, in a
conditioning paradigm, the action of DA is faster after reversal
learning than that of 5HT. However, in that same experiment,
DA was also shown to be withdrawn more rapidly during
the negative prediction error, favoring the slow 5HT signals
(Matias et al., 2017). Suggesting that DA reinforces a positive
reward, but 5HT indicates a mismatch between expectations
and reality.

Nevertheless, the mPFC is also interconnected to other
regions that mediate the activity of neuromodulatory areas,
such as the medial thalamus, or the periaqueductal gray area
(Cameron et al., 1995; Vertes et al., 2012). In this line, a
recent functional imaging study has shown that the connectivity
between the mPFC and these regions is altered in the rumination
of patients with chronic pain (Kucyi et al., 2014).

It is also important to note that an increasing amount
of evidence is highlighting the relevance of critical periods
for the establishment of functional connectivity between the

mPFC and its afferent regions, and how such connectivity is
disrupted in different psychiatric disorders such as addiction or
depression (Crews et al., 2007; Contreras-Rodríguez et al., 2016;
Pujol et al., 2019).

INPUTS TO THE mPFC

The data discussed here supports the classical view of the mPFC
as a key player in our decision-making process. However, to
better understand how it achieves these goals, we focus here
not only on its outputs but also on its inputs. It has been
long suggested that mPFC has a role in integrating diverse
information from many different brain regions (Fuster, 1985,
1995). In this line, several studies have described the connectivity
of the mPFC (Gabbott et al., 2005; Hoover and Vertes, 2007)
revealing that the mPFC is a very interconnected structure
within its different parts and with other regions, forming part
of a brain-wide network of interconnected structures involved
in mood control (Gilbert et al., 2010; Riga et al., 2014).
It receives direct input from the ascending neuromodulatory
monoaminergic systems, like the DRN, the VTA or the locus
coeruleus. Also, its most dorsal part receives strong projections
from the somatosensory and motor cortices, resulting in the
motor response, or attention control (Passetti et al., 2002).
On the other hand, the ventral parts are usually associated
with cognitive spatial and mnemonic processes (Heidbreder
and Groenewegen, 2003) receive strong projections from limbic
structures, such as the hippocampal formation and the amygdala,
as well as other regions such as the claustrum, the entorhinal
cortex, the mediodorsal nucleus of the thalamus or the
supramammillary nucleus in the hypothalamus (see Figure 1;
Hoover and Vertes, 2007).

From these regions, the ventral Hippocampus (vHC) and
the basolateral amygdala (BLA) are two of the most important
regions conveying different types of information to the mPFC
due to their role in different functions such as memory
formation, spatial navigation or fear processing (Spellman and
Gordon, 2015). We hypothesize that the integration that takes
place during early life stages in the mPFC between these two
different sources of information is a key factor, that determines
the behavioral outcome of the animal in a given scenario,
i.e., depending on the strength of each input and how it is
processed by the mPFC.
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A DISTRIBUTED BRAIN NETWORK FOR
MOOD CONTROL IN HEALTH AND
DISEASE

Focusing on these two regions directly projecting to the mPFC,
the vHC has been traditionally thought to be important for
emotional memories (Fanselow and Dong, 2010), although
recent studies have shown that this area also manages
spatial information (Kjelstrup et al., 2008; Wirt and Hyman,
2017). On the other hand, the BLA would convey more
emotional-related information to be processed into the mPFC
(Garcia et al., 1999; Senn et al., 2014), and is necessary to
express fear-related behaviors such as freezing (Helmstetter and
Bellgowan, 1994). Alterations of its connectivity in humans
has already been suggested to underlie aggressive behaviors
(Leutgeb et al., 2016).

Interestingly, when reviewing the literature, opposite
alterations in these two structures can be found after
different experimental conditions: patients suffering from
major depression show reduced activity and volume in the
hippocampus (Sheline et al., 1999; Campbell et al., 2004;
Videbech and Ravnkilde, 2004; Milne et al., 2012), but an
increase in these parameters when measured in the amygdala
(Anand et al., 2005; Hamilton et al., 2012). In animal models
of depression, such as chronic or prenatal stress, animals
show dendritic atrophy in the hippocampus (Sousa et al.,
2000; Mychasiuk et al., 2012) and dendritic growth in the
amygdala (Vyas et al., 2002). These changes can be reversed
by antidepressants such as Fluoxetine (Magariños et al., 1999;
McEwen and Chattarji, 2004), by promoting an increase
in spine density of pyramidal neurons in the hippocampus
(Hajszan et al., 2005). Fluoxetine and other antidepressants
also produce an increase in BDNF mRNA in the hippocampus
(Nibuya et al., 1995; Larsen et al., 2008). While stress produces
a decrease in BDNF in the hippocampus, it leads to an increase
in the amygdala (Lakshminarasimhan and Chattarji, 2012),
suggesting an important role of BDNF in the structural
changes observed.

In humans, a common polymorphism in the BDNF gene is
the substitution of Val to Met at codon 66, known as Val66Met
(Shimizu et al., 2004). This allele has been associated with
several neuropsychiatric disorders (Harrisberger et al., 2015).
Interestingly it has been shown that this polymorphism of BDNF
is associated with an increased activity of the amygdala and,
conversely, a decreased activity in the hippocampus. This has
been suggested as the underlying reason for an impaired fear
extinction in patients and slightly impaired memory retrieval
(Hariri et al., 2003; Soliman et al., 2010; Hajek et al., 2012).

Furthermore, recent evidence measuring functional
connectivity after fear acquisition shows that the connectivity
between the amygdala and the mPFC is decreased during fear
memory consolidation, while that between the hippocampus
and the insular cortex, another important region in the decision-
making process (Droutman et al., 2015; Von Siebenthal et al.,
2017), is enhanced (Feng et al., 2014).

Together, these results point to a prefrontocortical network
configuration in major depression dominated by a reduced

functional connectivity with the amygdala. Interestingly, an
increased functional connectivity between the prefrontal cortex
and the amygdala have been reported in animal models
of autism (Huang et al., 2016) as well as in human
subjects with autism spectrum disorders (Iidaka et al., 2019).
Highlighting the relevance of precise mechanisms controlling
the functional connectivity balance across this distributed
network of brain structures for mood control. Furthermore,
prefrontocortical configurations associated with the disease not
only span top-down afferents but also hyperconnectivity and
hyperplasticity of local microcircuits have been reported in
animal models of autism (Rinaldi et al., 2008).

On the other hand, recent evidence has shown that certain
pharmacological treatments, such as antidepressants, seem to
reverse certain pathological network configuration, through
structural plasticity dependent mechanisms, to a balance of
these two inputs and, interestingly, when administered to
control animals, it leads to a hippocampal dominated network
configuration. It has been shown recently that the activation of
the projection from the vHC to the mPFC both optogenetically
and chemogenetically in the adult brain, can replicate the effects
of the fast-acting antidepressant ketamine for a short time
(Carreno et al., 2016).

A CRITICAL PERIOD OF OPPORTUNITY

Critical periods are defined as temporal windows of
enhanced plasticity in brain development, during which a
specific circuit or region is highly sensitive to experience
(Hensch, 2005).

It has been shown in several sensory cortices that, during these
critical periods, the incoming developing inputs compete in an
experience-dependentmanner for target innervation: i.e., left and
right eye compete for innervation of the visual cortex (Hubel
and Wiesel, 1970) or different whiskers compete for space in the
barrel cortex (Van der Loos and Woolsey, 1973).

During the critical period of the fear system, at a time
point when fear memories can be extinct easily, there is
an increase in the connectivity from the vHC to the mPFC
(Pattwell et al., 2016), which is in agreement with other studies
suggesting that the projection from the ventral hippocampus
to the mPFC can disrupt expression of fear memories (Sotres-
Bayon et al., 2012). We have shown evidence for the vHC
and the BLA competing for target innervation in the mPFC
(Guirado et al., 2016). In this line, we hypothesize that the
mPFC has a critical period in which its different incoming
inputs compete in an experience-dependent fashion. Moreover,
the specific results of this competition would determine a
specific prefrontal network configuration, which, we believe, is
a key element to understand neurodevelopmental trajectories to
different psychiatric disorders.

Interestingly, not only the inputs onto the mPFC undergo
late development and susceptibility during this critical period. It
has been shown that the prefrontal-amygdalar output undergoes
late development in mice (Arruda-Carvalho et al., 2017) as late
as 45 days of postnatal development. Moreover, the increase
in serotonergic tone, produced by the blockage of serotonin
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transporter by antidepressants during this period, has been
shown to increase the output innervation from the mPFC to
the DRN (Soiza-Reilly et al., 2019). It is worth noticing that the
alteration in the strength of mPFC projections to the amygdala
and the DRN has been shown as a factor associated with
increased risk to develop anxiety and depression (Chen et al.,
2018; Soiza-Reilly et al., 2019).

In line with the idea of a critical period in the mPFC, both
classical and fast-acting antidepressants, as well as optogenetic
and chemogenetic stimulations, only revert temporarily the
behavior in paradigms of mental diseases (Carreno et al.,
2016). Therefore, we propose that to achieve long-lasting
effects, a critical period plasticity context is required for the
remodeling of prefrontal network configurations. Most animal
models of neuropsychiatric disorders are based onmanipulations
during early life and/or adolescence (Nestler and Hyman,
2010; Andersen, 2015), probably during that critical period in
the mPFC.

We hypothesize that after the closure of this critical period,
the brain will remain with a specific network configuration
according to the strength of its mPFC inputs during such
a time window. Moreover, we suggest two specific mPFC
configurations: one dominated by the amygdala and one
by the ventral hippocampus (see Figure 2). These specific
configurations can be correlated with specific behaviors through
adulthood, as discussed above, building a bridge between
behavior and network connectivity that could explain, to a
certain extent, the decision-making process.

Epidemiological data have shown that early life trauma,
including physical abuse, sexual abuse or neglectful

parenting is correlated not only with alcohol abuse (Clark
et al., 1997), but also to other substances, including
THC (Bensley et al., 1999; Dube et al., 2003). Moreover,
vulnerability to stress and depression has been associated
with rodents with increased drug abuse (Riga et al.,
2018), showing the interconnectivity of these disorders
and a possible common origin. In this line, we propose
here that aversive experiences during early life lead to a
prefrontocortical network dominated by the amygdala,
which would be more vulnerable to brain diseases such as
neuropsychiatric disorders or addiction. The impact of early
life trauma seems to be restricted to certain time windows,
supporting the idea of a prefrontal cortex critical period
(Rutter et al., 2007).

The good news is that the combination of drugs that
reopen critical period plasticity, such as Fluoxetine (Guirado and
Castrén, 2018), with the proper experimental conditions, can
effectively allow the network configuration to change to a healthy
state during adulthood. We have proven this principle both in
the visual (Maya Vetencourt et al., 2008) and in the fear systems
(Karpova et al., 2011).

Moreover, we have recently found that the combination
of behavioral therapy (re-socialization in isolated animals)
after chronic Fluoxetine treatment, increases the strength of
the projection from the vHC to the mPFC and reduces
abnormal aggressive behavior in a long-time manner (Mikics
et al., 2018). Interestingly, other substances whose efficiency
as antidepressants is undergoing a revision both in the
context of clinical treatment as well as basic research, such
as MDMA (Nardou et al., 2019), ketamine (Berman et al.,

FIGURE 2 | Diagram showing two different neurodevelopmental trajectories according to its prefrontocortical inputs: (1) an amygdaloid-dominant scenario, with
strong projections from the basolateral amygdala to the mPFC, with increased volume in the amygdala which, as discussed in the main text, is related to increased
fear expression and neuropsychiatric disorders; and (2) a hippocampal-dominated network, associated to antidepressant action and increased neuroplasticity. We
also indicate the possibility of new treatments able to revert the network configuration as explained in the main text.
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2000; Li et al., 2010) or isoflurane (Antila et al., 2017), have
been shown to reopen a critical period for social behavior
through different molecular mechanisms of plasticity, including
oxytocin, mTOR and TrkB (Li et al., 2010; Antila et al., 2017;
Nardou et al., 2019).

Thus, new approaches using drugs aiming at the reopening of
critical periods of plasticity (Castrén and Antila, 2017; Guirado
and Castrén, 2018), together with environmental conditions or
the experimental manipulation of the activity of these prefrontal
inputs, will provide a new proof of concept to explore new
and efficient treatments for addiction and neuropsychiatric
disorders. Furthermore, future research studying how different
inputs are integrated and processed in the mPFC will help
us understand further the decision making process and the
human mind.
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