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Abstract

Purpose Fibroglandular tissue may mask breast cancers,

thereby reducing the sensitivity of mammography. Here,

we investigate methods for identification of women at high

risk of a masked tumor, who could benefit from additional

imaging.

Methods The last negative screening mammograms of 111

women with interval cancer (IC) within 12 months after

the examination and 1110 selected normal screening exams

from women without cancer were used. From the mam-

mograms, volumetric breast density maps were computed,

which provide the dense tissue thickness for each pixel

location. With these maps, three measurements were

derived: (1) percent dense volume (PDV), (2) percent area

where dense tissue thickness exceeds 1 cm (PDA), and (3)

dense tissue masking model (DTMM). Breast density was

scored by a breast radiologist using BI-RADS. Women

with heterogeneously and extremely dense breasts were

considered at high masking risk. For each masking mea-

sure, mammograms were divided into a high- and low-risk

category such that the same proportion of the controls is at

high masking risk as with BI-RADS.

Results Of the women with IC, 66.1, 71.9, 69.2, and 63.0%

were categorized to be at high masking risk with PDV,

PDA, DTMM, and BI-RADS, respectively, against 38.5%

of the controls. The proportion of IC at high masking risk is

statistically significantly different between BI-RADS and

PDA (p-value 0.022). Differences between BI-RADS and

PDV, or BI-RADS and DTMM, are not statistically

significant.

Conclusion Measures based on density maps, and in par-

ticular PDA, are promising tools to identify women at high

risk for a masked cancer.

Keywords Breast cancer screening � Volumetric breast

density � Masking � Risk stratification � Supplemental

screening

Introduction

Thanks to screening programs, breast cancers are often

detected at an early stage. Nevertheless, not all breast

cancers in breast cancer screening participants are actually

detected by screening. Approximately 16–33% of the

breast cancer cases are the so-called interval cancers,

which means that they are diagnosed in between two

screening rounds [1, 2], even though the introduction of

digital mammography may have led to an increase

in sensitivity [3, 4]. In general, interval cancers are

detected at a later stage and have a worse prognosis [5–7].

Fibroglandular tissue may mask cancers, and therefore

sensitivity of mammography decreases with an increase in

breast density. It has been shown that there is a relationship

between breast density and screening program sensitivity

[8–13]. In addition, compared to women in the lowest

density category, women with dense breasts also have a

higher breast cancer risk [14–16], which amplifies the

negative effect of masking.
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To detect more cancers at an early stage, personalized

screening programs have been proposed [17, 18]. Adjusted

to the personal needs of individual women, screening could

be offered with different time intervals or with other

modalities than mammography, such as ultrasound or MRI.

Tomosynthesis might be an option as well, although the

effect is limited for extremely dense breasts [19]. In this

discussion, the reduced sensitivity of mammography due to

the masking effect of density plays an important role. In

recent years, many states in the United States passed breast

density notifications laws. Radiologists are obliged to

inform women about their breast density and the affiliated

risks. In some states, additional imaging is reimbursed for

women with dense breasts.

For the measurement of breast density, several methods

are available. In clinical practice, the 4-point ACR BI-

RADS scale is commonly used [20, 21]. To make this

estimate less subjective, algorithms have been developed to

estimate the breast density by computing the percentage

dense area projected on the mammogram or by computing

the percentage of fibroglandular tissue volume within the

breast. An overview of different algorithms is presented by

He [22].

Although breast density relates to masking, the relation

between the risk of masking and density is likely to be

more complex than a simple dependence on the amount of

fibroglandular tissue. Also, the distribution of dense tissue

may play a role. This is reflected in the new BI-RADS

definition that no longer considers the total amount of

fibroglandular tissue within the breast, but rather the

densest area [21]. How the risk of masking should be

quantified is an open question. The aim of this study is to

compare three different quantitative masking measure-

ments and the visual BI-RADS density assessment of a

radiologist, in their ability to predict the risk of an interval

cancer.

Materials and methods

Data

Digital mammograms from the Dutch breast cancer

screening program were analyzed. The mammograms were

acquired on Lorad Selenia systems (Hologic, Bedford,

USA). Women aged 50–75 years are invited biennially to

participate in the screening program. Details about the

screening program and the dataset can be found elsewhere

[23–25]. Written informed consent was not required for

this study. Women automatically consent to the use of their

anonymized data for scientific purposes by participating in

screening. Data of participants who objected to the use of

their data were removed.

The research archive used contains unprocessed mam-

mograms of one screening unit. In the period 2003–2012,

more than 130,000 exams of more than 55,000 women

were acquired. Mediolateral oblique (MLO) images were

always taken, while craniocaudal (CC) images were taken

in the first screening round and in 60% of subsequent

rounds. Through linkage with the Netherlands cancer reg-

istry and the screening organization, 1210 breast cancers

were identified, of which 836 were screen-detected can-

cers. The remaining 374 breast cancers were diagnosed

outside the screening program. Of these interval cancers,

275 were diagnosed within 24 months (screening interval),

of which 113 cancers within 12 months after the exami-

nation. The last available screening examination before

cancer diagnosis is used in this study. Women with breast

implants were excluded from the study as the density maps

cannot be correctly computed for mammograms with

implants.

In this study, a selection of the interval cancers, the

cancers that were diagnosed within 12 months after the

examination, is used (N = 111, two women were excluded

because of breast implants). The reason is that we want to

focus on false negative exams due to masking. Interval

cancers may also be due to other factors. In particular, fast

growing cancers may not be detectable at the time of

screening because they still are too small or not yet inva-

sive. We assume that by excluding interval cancers

detected more than 12 months after screening, a larger

proportion of the interval cancers are due to masking. This

idea is supported by Weber et al. [26] who found that a

larger proportion of the interval cancers found in the sec-

ond year after the screening examination show no signs of

abnormality in the screening mammogram compared to the

interval cancers found in the first year.

For each patient with an interval cancer, 10 participants

were chosen as controls. The control participants needed to

have had a mammographic examination in the same month

in which the last screening examination of the interval

cancer patient was performed. To be eligible as control, the

women should not have been recalled on the basis of this

mammographic examination and they should not have been

diagnosed with breast cancer within 2 years after this

examination. Women with breast implants were not eligi-

ble as control. Controls without a density map, due to

failure of the computation, were replaced.

Methods

Quantitative masking risk measures based on volumetric

breast density measurements were computed. For this
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purpose, a research version of the commercial software

Volpara (v1.5.0, Volpara Health Technologies, Wellington,

New Zealand) was used, which provides quantitative breast

density maps in addition to the percentage of dense tissue

volume. In these density maps, the pixel intensity is map-

ped to the fibroglandular tissue thickness at each pixel

location.

Three different automated measurements were investi-

gated to estimate masking risk: (1) percent dense volume

(PDV), defined as the fibroglandular tissue volume divided

by the breast volume; (2) percentage dense area (PDA),

computed as the percentage area on the density map where

the dense tissue thickness exceeded 1 cm; and (3) a dense

tissue masking model (DTMM) in which the size distri-

bution and cancer location probability are taken into

account. The idea behind the second method is that a

certain amount of fibroglandular tissue is necessary to hide

a cancer. With the threshold of 1 cm, the size of a region

where cancers may be masked is estimated and we assume

that the relative area of this region is related to masking

risk. A strength of this method is the simplicity. In the third

method, this idea is refined with the tissue masking model

which captures two aspects. First, instead of using a fixed

thickness threshold, it is modeled that larger cancers

require more dense tissue to be masked than smaller can-

cers. For this, the normalized distribution of breast cancer

size is taken into account. Second, the probability distri-

bution of cancer location is used to take into account that

dense tissue presence in regions where cancers more often

occur should give a stronger increase in masking risk than

dense tissue presence elsewhere. A detailed description is

in the section ‘‘Appendix’’.

The methods were applied to all available images in an

exam, i.e., MLO and CC views of both breasts. If CC views

were missing, their results for the different methods were

imputed. This was done for each method separately using

linear regression analysis in controls with both MLO and

CC views available. To come to a single score per exam,

results were averaged over the four views.

Next to the automated measurements, for the purpose of

this study, the breast density category of every exam was

assessed by a radiologist (10 years of experience in breast

imaging) according to the fifth edition of the BI-RADS

atlas [21]. Mammograms were evaluated without knowl-

edge of the cancer status.

To implement supplemental screening strategies in

clinical or screening practice, it is necessary to divide the

women into two groups: women at low masking risk and

women at high masking risk. In practice, a threshold needs

to be determined and all women with a measure above the

threshold would receive additional imaging. The best

threshold is unknown for the automated measures and

depends on the screening population and the proportion of

women that one is willing to offer supplemental screening

or the number of interval cancers that should be detected

with additional imaging.

To measure to what extent the methods can identify

women at high masking risk, the mammograms were

divided in a high and low masking risk group by thresh-

olding the risk measure. Then, the sensitivity of the

masking measures was computed as the number of interval

cancers in the high-risk group divided by the total number

of interval cancers. The false positive rate is calculated as

the percentage of normal controls selected as at high

masking risk at the same threshold. In the context of risk

stratification for supplemental screening, the proportion of

controls selected as at high masking risk can be seen as

supplemental screening rate and the proportion of interval

cancers gives an estimate about the cancers that might be

detectable with additional imaging at that supplemental

screening rate.

The automated masking measures were compared to the

radiologist scores when distinguishing BI-RADS density a

and b versus BI-RADS density c and d. Bootstrapping was

used to obtain 95% confidence intervals (CIs) and derive p-

values.

Since breast density is a risk factor for breast cancer

[14–16], it may be expected that the average breast

density of women with cancer is higher than that in

controls. Consequently, any predictive value of PDV for

the presence of interval cancers might be caused by PDV

being a risk factor, rather than being a ‘masking factor’.

To investigate the potential impact of this effect on our

results, an additional experiment was conducted in which

it was tested to what extent PDV can distinguish women

with any breast cancer from controls. Again, cases with

the highest PDV were selected by thresholding, and the

proportion of cancers as a function of the proportion of

controls selected was computed. For this experiment,

mammograms of the screen-detected breast cancers and

the interval cancers detected within 24 months were

used. Only the interval cancers detected later than

24 months after the last examination were not used, as

we assume that these cancers might well have been

detected when women would have attended another

screening round.

Results

The mean age of interval cancers and controls is 57.7 and

59.2 years, respectively. In 14.4% of the interval cancers,

the cancer was diagnosed after first participation in the

screening program, while 15.2% of the controls belong to

women who attended the screening program for the first

time. Only 3 interval cancers (2.7%) were diagnosed in
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women older than 70 years, while 110 women (11%) of the

control group were older than 70 years.

In Fig. 1, the percentage of interval cancers selected as

at high masking risk is plotted against the percentage of

controls selected when thresholding the different masking

measures. As mentioned earlier, the proportion of controls

selected as at high masking risk can be interpreted as the

supplemental screening rate when a masking measure

would be used in practice to identify women eligible for

supplemental screening. The percentage of interval cancer

selected as at high masking risk is a measure for the

potential benefit of supplemental screening, since it is the

proportion of women with interval cancers that would have

been included in the selection if supplemental screening

had been offered. The percentage of interval cancers

selected for several supplemental screening rates is given

in Table 1, while the supplemental screening rate required

to include a certain percentage of women with interval

cancer is presented in Table 2.

The density scores determined visually by the radiolo-

gist were used to differentiate non-dense breasts from

dense breasts, using the BI-RADS b–c transition as

threshold. With BI-RADS, 38.5% (CI 35.7–41.3) of the

controls were considered dense and thus at high masking

risk. Of the interval cancers, 63.0% (CI 53.5–72.0) were

classified as dense, using BI-RADS. If the thresholds of the

three masking measurement methods were set such that

there too the proportion of controls classified as at high

masking risk was 38.5%, then 66.1% (CI 55.8–76.2),

71.9% (CI 63.1–80.2), and 69.2% (60.0–77.9) of the

women with an interval cancer were considered at high

masking risk with PDV, PDA, and DTMM, respectively.

Significantly more women with interval cancers would be

included in the selection process with PDA compared to

BI-RADS (p-value 0.022). Differences in proportions

between BI-RADS and PDV, and BI-RADS and DTMM

were not statistically significant with p-values of 0.187 and

0.067, respectively.

The ability of PDV to distinguish breast cancers from

controls is displayed in Fig. 2. The cancers detected at a

screening examination (N = 836) and the interval cancers

that were diagnosed within the screening interval of

24 months after a negative screening examination

(N = 275) were eligible for the analysis (N = 1111). The

PDV estimate was available for 1103 cancers. The curve

for predicting interval cancers shows a much higher area

under the curve than the curve predicting all breast cancers.

These results show that PDV is not ‘just’ a predictor for

breast cancer risk, but in particular a good predictor for the

risk of developing an interval cancer (as a proxy for risk of

masking).

Discussion

In this study, we investigated the ability of several mea-

surements of masking risk to distinguish false negative

screening mammograms from true negative screening

mammograms. The aim of our work is to find a method that

is suited to identify women who are at high risk to be

diagnosed with an interval cancer after a negative screen-

ing exam. In a personalized screening workflow, such a

method could be applied to all negative screening mam-

mograms to select the subgroup of women who would

benefit most from additional imaging with MRI or

ultrasound.

There are various reasons why interval cancers are not

detected by screening, and masking is only one of them.

Some cancers may be not detected by screening because

they grow fast and the screening interval is too long. As we

focus in this study on masking, we included in our exper-

iment only those interval cancers that were diagnosed

within 12 months after the negative mammogram, to

exclude true interval cancers, the cancers that show no

signs of abnormality on the mammogram. True interval

cancers are more common in the second year after the

examination than in the first year [26]. Given that the exact

cancer location was unknown and that the diagnostic

mammograms were not available, it was not possible to

review the interval cancers and to confirm that masking is

the cause for a cancer diagnosis outside the screening

program. It is noted that by excluding the interval cancers

after 12 months, our study results are also more represen-

tative for screening programs with a 1-year interval.

Fig. 1 By thresholding the masking measures, cancers and controls

were separated into high- and low-risk groups. The percentages of

cancers and controls in the high-risk group are plotted against each

other as function of the threshold
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In current clinical practice, the BI-RADS density

assessment categories are used to decide whom to offer

supplemental screening. Using a separation into a low-risk

group (BI-RADS density a and b) and high-risk group

(BI-RADS density c and d) with a 38.5% supplemental

screening rate, it was found that between 63.0 and 71.9% of

the women diagnosed with an interval cancer in the study

data within 12 months of a negative screening would be

included in the high-risk group for additional imaging.

Automated measures have a higher sensitivity than the

radiologist, and this difference was statistically significant

for the new proposed measurements PDA at the chosen

supplemental screening rate.

We compared the ability of PDV to distinguish cancers

(screen-detected and interval) from controls to make sure

that we capture more than the breast cancer risk in relation to

breast density. Thereby, we confirmed that cancers are more

common in dense breasts than in non-dense breasts. Never-

theless, we can conclude that the differences in PDV distri-

butions of interval cancers and controls are not only caused

by the increased breast cancer risk that is associated with an

increased breast density, and that PDV is capturingmasking.

Cancers and controls were only matched for the month

of acquisition and not for age and participation in the breast

cancer screening program. The mean age of the controls

was higher than the mean of the cases. Given that breast

Table 1 On the masking measures, a threshold can be applied to

separate cases and controls into a high- and a low-risk group. By

adjusting the threshold on a masking measure, the percentage of

controls (also interpretable as supplemental screening rate) is

adjusted. The percentage of interval cancers that would be included

in the selection at several supplemental screening rates is given in this

table. Using BI-RADS breast density c and d as high-risk categories,

38.5% of the controls are considered at increased masking risk and

63.0% of the women with interval cancer would be included in the

selection. In total, 111 cancers and 1110 controls were used

Percentage of controls (‘supplemental screening rate’) Percentage of interval cancers that would have been identified to be at high risk of

masking

PDV PDA DTMM

5 14.4 18.9 14.4

10 27.9 29.7 27.0

15 40.5 34.2 40.5

20 45.9 45.9 47.7

30 54.1 64.0 60.4

38.5 66.1 71.9 69.2

40 70.3 73.0 69.4

50 77.5 79.3 79.3

PDV percent dense volume, PDA percent dense area, DTMM dense tissue masking model

Table 2 On the masking measures, a threshold can be applied to

separate cases and controls into a high- and a low-risk group. The

threshold on the masking measure can be adjusted such that a specific

percentage of the women with interval cancer is included in the high-

risk group. The corresponding percentage of controls (supplemental

screening rate) is given here for several percentages of interval

cancers and the different masking measures. In total, 111 cancers and

1110 controls were used

Percentage of interval cancers that would have been identified to be at high risk of masking Percentage of controls (‘supplemental screening

rate’ that should be aimed for)

PDV PDA DTMM

5 1.4 1.4 2.0

10 4.3 2.4 4.1

15 5.0 3.3 5.5

20 5.9 5.1 7.1

30 10.3 11.0 11.7

40 13.7 17.4 15.0

50 22.9 22.8 21.9

60 33.2 27.1 29.1

70 39.6 36.2 40.1

80 51.4 50.5 51.5

90 61.7 67.6 67.8

PDV percent dense volume, PDA percent dense area, DTMM dense tissue masking model
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density decreases with age [27], one could argue that the

difference in density distribution between cases and con-

trols is caused by differences in age. However, the control

group contained more women who participated in the

screening program for the first time than the cases, leading

to an effect in the opposite direction. While only three

interval cancers (2.7%) were found in women between 71

and 75 years of age, 11% of the controls belong to this age

group causing the higher mean age in controls. If we had

matched for age at the time of acquisition, women above

70 years would have been underrepresented in the controls,

and the controls would have been not representative for the

screening population.

Mainprize et al. [28] have been working on the quan-

tification of masking as well. In their model, a detectability

map is created for each pixel location by simulating lesions

and by using local estimates of the noise power spectrum

and volumetric breast density. They validated the masking

measurement with an observer study on regions of interest

of 150 cancer free CC mammograms. High correlations

were found between the mean value of the detectability

maps and the computerized and human observer study.

However, Mainprize only used cancer free mammograms

in his study and simulations in regions of interests. Hence,

it remains an open question to which extent the mean value

of the detectability map differs between false and true

negative screening mammograms and whether it can be

used as a predictive masking score.

A limitation of our study is the fact that CC images were

not available for all exams. Until recently, MLO was the

standard view in the screening program where we acquired

our data, while CC images were obtained by indication.

Therefore, to avoid bias when averaging over views, we

imputed data for missing CC views based on the available

MLO view and statistical analysis of differences between

MLO and CC views. Furthermore, cases and controls were

matched to the month of acquisition to guarantee the same

guidelines and circumstance in image acquisition with

regard to taking the CC views. Another limitation is that BI-

RADS density assessments of only one radiologist were

available. Many studies found inter- and intra-reader vari-

ability in breast density assessment using BI-RADS [29–32].

Therefore, to make a definitive comparison between the

automated methods and radiologists assessments, an exten-

sive reader study should be conducted with multiple readers.

In conclusion, results suggest that the new proposed

masking risk measurements may have a better performance

than visual BI-RADS assessment in distinguishing false

negative screening mammograms from true negative

screening mammograms. Therefore, these measurements

may be considered as predictive masking measure when

implementing supplemental screening for women at a high

risk for interval cancers.
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Appendix

The dense tissue masking model (DTMM) captures two

aspects: (1) the larger the lesion, the lower the masking

risk; and (2) the larger the dense tissue thickness at a

location, the higher the masking risk. Therefore, the

masking risk for a lesion with diameter dt at a location with

density d is defined as

masking dt; dð Þ ¼ d � dt

d
if d� dt:

From this, the masking risk for each pixel location (x,y) is

estimated by summing over all possible tumor diameters

considering the normalized cancer size distribution s(dt).

The size distribution was obtained for invasive mas-

ses. In the mammograms, a contour was drawn around

the mass and the effective diameter was determined

(diameter = 2 (area/p)1/2). The distribution was nor-

malized to a value of one. With the use of the size dis-

tribution, we take into account that lesions with the size

of few millimeters are in general not detectable and that

extremely large cancers are not common in screening.

The masking risk at a location(x,y) with density d(x,y) is

then

masking x; yð Þ ¼
Xdt¼dðx;yÞ

dt¼0

s ðdtÞ �masking ðdt; dðx; yÞÞ

masking ðx; yÞ ¼
Xdt¼dðx;yÞ

dt¼0

s ðdtÞ �
dðx; yÞ � dt

dðx; yÞ :

Furthermore, the cancer location probability distribution

(CLPD) is taken into account. With the use of the CLPD, it is

acknowledged that lesions are more common in the center of

the breast and less common close to the periphery. The CLPD

was as well obtained with the invasive mass-like lesions as

described in [33]. The probability of masking is then

masking ðx; yÞ ¼ CLPD (x; yÞ �
Xdt¼dðx;yÞ

dt¼0

s ðdtÞ

� dðx; yÞ � dt

dðx; yÞ :

With the formula above, the masking risk is determined

for each pixel location (x,y). To come to a single score for

each image, the masking risk is averaged over all pixels

within the breast. Different CLPDs and size distributions

were used for the MLO and CC images.
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