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Automated digital TIL analysis 
(ADTA) adds prognostic value 
to standard assessment of depth 
and ulceration in primary 
melanoma
Michael R. Moore1,20, Isabel D. Friesner2,20, Emanuelle M. Rizk1,20, Benjamin T. Fullerton1, 
Manas Mondal1, Megan H. Trager3, Karen Mendelson4, Ijeuru Chikeka5, Tahsin Kurc6, 
Rajarsi Gupta6, Bethany R. Rohr7, Eric J. Robinson8, Balazs Acs9,10, Rui Chang11, 
Harriet Kluger12, Bret Taback13, Larisa J. Geskin5, Basil Horst14, Kevin Gardner15, 
George Niedt5, Julide T. Celebi4, Robyn D. Gartrell‑Corrado16, Jane Messina17, 
Tammie Ferringer18, David L. Rimm9, Joel Saltz6, Jing Wang2,19,20*, Rami Vanguri15,20* & 
Yvonne M. Saenger1,20*

Accurate prognostic biomarkers in early-stage melanoma are urgently needed to stratify patients 
for clinical trials of adjuvant therapy. We applied a previously developed open source deep learning 
algorithm to detect tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) images 
of early-stage melanomas. We tested whether automated digital (TIL) analysis (ADTA) improved 
accuracy of prediction of disease specific survival (DSS) based on current pathology standards. ADTA 
was applied to a training cohort (n = 80) and a cutoff value was defined based on a Receiver Operating 
Curve. ADTA was then applied to a validation cohort (n = 145) and the previously determined cutoff 
value was used to stratify high and low risk patients, as demonstrated by Kaplan–Meier analysis 
(p ≤ 0.001). Multivariable Cox proportional hazards analysis was performed using ADTA, depth, and 
ulceration as co-variables and showed that ADTA contributed to DSS prediction (HR: 4.18, CI 1.51–
11.58, p = 0.006). ADTA provides an effective and attainable assessment of TILs and should be further 
evaluated in larger studies for inclusion in staging algorithms.
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There is an urgent need for prognostic biomarkers for high-risk early-stage melanoma. While it is established 
that immunotherapy is of benefit for advanced melanoma, defined as unresectable stage III and stage IV mela-
noma, the decision making for stage II and resectable stage III is more challenging for clinicians. In recent years, 
immunotherapies and targeted therapies have been approved in the adjuvant setting for Stage IIIA-D (lymph node 
positive) melanoma1–6. Clinical trials are underway for deep primary melanomas (Stage II). However, immu-
notherapy is associated with significant side effects and expense, with the yearly cost of immunotherapy for a 
single early-stage melanoma patient in the United States reaching over $100,0007,8. Further, the 5-year melanoma-
specific survival (MSS) rates for patients with stage IIA-IIC range from 94 to 82%9. Thus, although some patients 
benefit from adjuvant therapy, treating all stage II-III patients would result in unnecessary expense and toxicity.

The current American Joint Committee on Cancer (AJCC) staging guidelines are used to clinically assess 
primary melanoma in order to predict the likelihood of recurrence and death from melanoma for the purpose 
of clinical decision making. Staging of the primary tumor (T stage) includes evaluation of Breslow thickness and 
ulceration, each of which is an independent predictor of MSS and recurrence-free survival (RFS)10–12. In this 
work we sought to test whether digital analysis of tumor infiltrating lymphocytes could add to current staging 
of primary melanoma tumors based on depth and ulceration.

Lymph node metastases are also commonly evaluated in staging (N stage) after T stage has been determined. 
However, lymph node dissection has not been shown to improve survival, confers some surgical risk, and in a 
minority of cases cannot be performed for anatomical reasons. Further, lymph node biopsy, while it provides 
prognostic information, is not always sufficient to independently guide therapy13. For example, Stage IIIA and 
IIIB melanoma patients (1–3 positive lymph nodes, 5-year MSS of 93% and 83%, respectively) live longer than 
stage IIC patients (node negative, 5-year MSS of 82%), complicating decisions to administer adjuvant therapy9. 
As such, it is crucial to develop readily clinically applicable biomarkers to improve risk assessment for early 
stage melanoma patients.

Many previous studies have sought to identify prognostic immune biomarkers for primary melanoma. Prog-
nostic biomarkers that have been proposed in early-stage melanoma include Ki67 expression14–16, presence of 
driver mutations such as the BRAF mutation17, and gene expression profiles, one of which, based on the epithelial 
to mesenchymal transition, is commercially available18,19. Our research team has previously identified and vali-
dated a prognostic 53-gene signature (Melanoma Immune Profile, or MIP) that includes interferon-related genes, 
as well as a biomarker based on the ratio of cytotoxic T lymphocyte to macrophages within tumor stroma18,20–22. 
However, these biomarkers are all based on direct analysis of the tissue using immunohistochemical or genetic 
expression assays, a process which requires standardization across laboratory settings, and often mailing of 
specimens resulting in slow turn-around times. Further, because the initial biopsy that yields the diagnosis of 
melanoma is typically a small shave or punch biopsy specimen, tissue is often in limited supply and some speci-
mens may become exhausted during the process of testing.

Biomarkers based on the analysis of Hematoxylin and Eosin (H&E) stained slides offer an alternative that 
facilitates the rapid estimation of prognostic risk and can be evaluated on electronically shared H&E images. In 
this study, we assess immune activity within the tumor using H&E images through quantitative evaluation of 
tumor-infiltrating lymphocytes (TILs). TILs, which are lymphocytes either in direct contact with tumor cells 
or that infiltrate the tumor nest, have been widely investigated as potential prognostic biomarkers in primary 
melanoma10,11,23. Pathologists currently use two methods to evaluate TIL density and distribution in the tumor 
microenvironment. A grade of 0, or absent, indicates an absence of TILs; a grade of 1 or 2, or non-brisk, indi-
cates mild or moderate focal, mild multifocal, or mild diffuse TIL infiltrate; and a grade of 3, or brisk, indicates 
moderate diffuse or greater TIL infiltrate throughout the tumor region10,23. Several studies have found that the 
risk of recurrence is significantly greater for tumors with a TIL grade of 0 compared to those with a TIL grade of 
323,24. However, other studies have contested the validity of TILs as prognostic biomarkers because the qualitative 
evaluation of TILs is prone to intra- and inter-observer variability25,26. Despite the known role of the immune 
system in modulating tumor progression, the subjective nature of conventional TIL assessment and the variability 
in data obtained by pathologists at different academic centers have currently led to TILs not being included in 
standard AJCC staging methods9.

Digital pathology introduces a potentially more effective method to standardize TIL assessment and may 
minimize observer variability. Previous studies have sought to quantitatively automate analysis of TILs in can-
cer patients, including those with melanoma, but have not shown to improve accuracy of standard pathology 
evaluation27,28. A prior study employed a convolutional neural network (CNN), developed after training was 
performed on H&E whole slide images from the Cancer Genome Atlas (TCGA), which included thirteen tumor 
types including melanoma28. This deep learning computation method to identify lymphocytes in whole slide 
images is a major component of the National Cancer Institute-supported Quantitative Imaging in Pathology 
(QuIP) software suite. QuIP TIL CNN tiles images into patches and evaluates the probability of TILs in each 
tile, and, if a tile has a probability of TIL presence of at least 77.5%, it is considered a positive tile. A total score 
for each image is calculated based on the number of positive tiles over the total number of tiles. Each patient’s 
ADTA score is the median score of all of the patient’s images. The automated detection of lymphocytes generated 
quantitative assessments of TILs that highly correlated with molecular estimates of TILs in the TCGA samples 
in all of the different types of cancer28. The results generated by the QuIP TIL CNN were also validated by using 
ground truth labels generated by a panel of three pathologists. In this work, we employ this CNN to evaluate 
TILs in early-stage melanoma to predict disease specific survival (DSS) with ADTA.
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Results
Automated digital TIL analysis (ADTA) correlates with standard pathology TIL assessment in 
primary melanoma tumors in training cohort.  Images in the training cohort consisted of 80 sub-
jects from Columbia University Irving Medical Center (CUIMC) diagnosed with primary melanoma tumors 
amenable to surgical resection between 2000 and 201429. Demographics for the training population are shown 
in Table 1. Workflow for ADTA and representative H&E images are shown in Fig. 1. Features correlating with 
disease specific survival (DSS) by univariable Cox analysis in the training cohort included depth, TIL grade, and 
sentinel lymph node biopsy (SLNB) status (Depth: HR = 1.32, CI 0.78–2.25; p = 0.306; TIL grade: HR = 0.35, CI 
0.00–0.95, p = 0.039; SLNB status: HR = 2.98, CI 1.04–8.55, p = 0.043, Supplemental Table S1) showing that this 
population generally conforms to trends observed in melanoma patients in the United States. TIL analysis by 
pathologists is complex and influenced by the growth phase and thickness of the melanoma30. Thus, in order 
to validate the ADTA method, TIL analysis was performed on these samples and correlated with TIL density 
as assessed by a pathologist using the criteria of brisk, non-brisk, and absent. Pathologists’ TIL grading for the 
training cohort correlated with ADTA (ρ = 0.515, p < 0.001, Fig. 2A).

Selection of cutoff for ADTA‑based biomarker for prediction of disease specific survival 
(DSS).  TIL assessment by pathologists has generally shown correlation with clinical outcomes although 
accuracy has varied across institutions and the strength of these correlations has not been sufficient to include 
TILs in AJCC staging. In order to test whether ADTA correlated with patient outcomes and might provide 
additional information beyond standard pathology evaluation of the melanoma lesion, patients in the training 
set were divided into two groups based on whether or not they died of melanoma. In order to develop a clear 
metric for clinical application, a Receiver Operating Characteristic curve (ROC) was used to define a cutoff most 
accurately distinguishing patients who died of melanoma from those who did not. When the cutoff, 0.065, was 
applied to the training cohort, Kaplan Meier (KM) analysis showed that the binary ADTA score correlated with 
DSS (p = 0.0220, Fig. 2B). This cutoff was then defined as the basis for determining high and low-risk groups in 
the validation set.

ADTA biomarker correlates with DSS in validation cohort.  The validation cohort consisted of 
patients from Yale School of Medicine (YSM) and Geisinger Health Systems (GHS) with demographics shown 
in Table 2 (N = 145). Demographics for patients from each institution are shown separately in Supplemental 
Table S2. (YSM, N = 100, GHS, N = 45). ADTA correlated weakly with pathologist TIL grading in the validation 
set (ρ = 0.211, p = 0.011, Fig. 3A). ADTA correlated more strongly with pathologist TIL grading for each popula-
tion separately (ρ = 0.345, p < 0.001 for YSM and ρ = 0.354, p = 0.019 for GHS, Supplemental Fig. S1), demonstrat-
ing difficulties in combining TIL scoring from multiple pathologists. Additionally, a significant difference was 
found among ADTA scores when patient ADTA scores were stratified by the patients’ corresponding TIL grade 
(p < 0.0001, Supplemental Fig. S2). ADTA score distributions further stratified by TIL grade within cohorts and 
institutions are shown in Supplemental Fig. S2. KM analysis showed that the binary ADTA score effectively cor-
related with DSS (p < 0.001, Fig. 3B). As shown in Fig. 3B, the number of patients at risk at 0 months of follow up 
was 27 and 118 for the low-risk and high-risk groups, respectively. The number of patients at risk at 100 months 
of follow up was 13 and 35 for the low-risk and high-risk groups, respectively. KM analysis separating the valida-
tion cohort by institution shows that accuracy of DSS prediction was significant in YSM and GHS populations 
(p = 0.0139 and p = 0.0141, Supplemental Fig. S3). The data shows that the ADTA biomarker correlated with DSS 
in the combined validation cohort and that results were consistent across both populations. 

ADTA risk status enhances standard pathology assessment methods, improving accuracy of 
survival prediction based on depth and ulceration.  Within the validation set, depth, ulceration, T 
stage, and TIL grade correlated with DSS by univariable analysis (depth: HR = 1.53, CI: 1.17–2.00, p = 0.002; 
ulceration: HR = 1.67, CI 1.02–2.74, p = 0.043; T stage: HR = 1.23, CI 1.09–1.39, p = 0.001; TIL grade: HR = 0.61, 
CI 0.00–1.00, p = 0.049, Fig. 4A). ADTA correlated with DSS by univariable analysis (HR = 4.79, CI 1.74–13.22, 
p = 0.002, Fig. 4A). Univariable analysis separating the validation cohort by institution is shown in Supplemental 
Table S3. A multivariable Cox proportional hazards model performed using depth and ulceration as co-variables 
showed that ADTA contributed significantly to DSS prediction (HR = 4.18, CI 1.51–11.58, p = 0.006, Fig. 4B). 
In contrast, a multivariable Cox proportional hazards model including conventional pathologist TIL grading, 
depth, and ulceration found that only depth significantly added to the model (HR = 1.40, CI 1.03–1.89, p = 0.031, 
Supplemental Table S4). Notably, when T stage, which uses depth and ulceration as inputs, was used as a covari-
able, ADTA significantly improved accuracy of the overall model (HR = 4.15, CI 1.50–11.49, p = 0.006, Fig. 4C). 
These results show that ADTA adds value to pathology evaluation of the primary tumor. Most patients with deep 
primary melanomas have a surgical biopsy of the sentinel lymph node procedure followed by, in many cases, a 
completion dissection if the sentinel lymph node is positive. Because staging protocols evolved over time, a sig-
nificant proportion of patients in our validation cohort did not have sentinel lymph node procedures and were 
staged clinically. However, in order to estimate whether ADTA added to final staging, based on available infor-
mation in our medical records, we ran a multivariable cox analysis with stage as a co-variable. Any patient with 
a known positive lymph node or documented satellite metastasis was scored as a stage III and patients without 
these findings were scored as stage I or II based on depth. ADTA significantly improved accuracy of the overall 
model (HR = 4.61, CI 1.67–12.71, p = 0.003, Supplemental Table S5). This data shows that ADTA enhanced the 
predictive value of standard pathology features of depth and ulceration in the validation set, outperforming 
conventional dermato-pathologist assessment using depth and ulceration.
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Table 1.   Patient characteristics of the training cohort. DMR distant metastatic recurrence, DSS disease-
specific survival, NED no evidence of disease, OS overall survival.

(n = 80)

Clinical characteristics

Sex, n (%)

Male 56 (70.0)

Female 24 (30.0)

Age

Median, n (range) 67 (22–96)

Location of tumor, n (%)

Trunk 45 (56.3)

Extremity 33 (41.2)

Unknown 2 (2.5)

Pathologic characteristics

Depth (mm)

Median, n (range) 2.0 (0.3–26.0)

Ulceration, n (%)

Absent 43 (53.8)

Present 33 (41.2)

Unknown 4 (5.0)

TILs

Absent 4 (5.0)

Non-brisk 50 (62.5)

Brisk 20 (25.0)

Unknown 6 (7.5)

Microsatellite lesions, n (%)

Absent 77 (96.3)

Present 2 (2.5)

Unknown 1 (1.2)

Staging characteristics

T-stage, n (%)

T1a or T1b 19 (23.8)

T2a 9 (11.2)

T2b or T3a 32 (40.0)

T3b or T4a 16 (20.0)

T4b 4 (5.0)

SLNB status, n (%)

Completed 44 (55.0)

Positive, n (% of completed) 11 (25.0)

Negative, n (% of completed) 33 (75.0)

Not completed 14 (17.5)

Unknown 22 (27.5)

Stage, n (%)

I 19 (23.8)

II 48 (60.0)

III 13 (16.2)

Outcome characteristics

Patient follow-up (months)

Median, n (range) 58 (7–173)

DMR, n (%)

Distant recurrence 21 (26.2)

No distant recurrence or local recurrence only 59 (73.8)

OS, n (%)

Alive (at least 2 years) 55 (68.8)

Dead 25 (31.2)

DSS, n (%)

Alive or NED at death 62 (77.5)

Median follow-up (months) 65.0

Dead with melanoma 18 (22.5)

Median follow-up (months) 34.5
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Discussion
Digital pathology is gaining prominence in modern clinical practice and will likely become crucial to diagnosis 
in the near future. In this work, we show that digital pathology images can be analyzed to provide TIL estimates 
that improve standard pathology assessments and have potential to contribute meaningfully to clinical care. This 
is the first report, to our knowledge, that digital analysis of TILs not only correlates with survival, but adds to 
standard pathology predictors. ADTA contributed significantly to prognostic accuracy in the context of clinical 
predictors using multivariable Cox analysis (p = 0.006, Fig. 4B) whereas standard qualitative TIL analysis by a 
dermato-pathologist did not (p = 0.323, Supplemental Table S4). This method is distinct from a previous AI based 
prognostic developed by our group using a convolutional neural network29 in that it focuses exclusively on TILs 
and represents a new application of a previously developed open source software and thus can be directly applied 
to clinical samples by pathologists28.

ADTA requires pathologist supervision. This work was done with supervision of a pathologist blinded to 
clinical outcomes (G.N.) as depending on tumor cell morphology, the distinction between tumor and sur-
rounding tissue is difficult to determine for untrained personnel. The need for pathologist supervision poses a 
limitation to the rapidity of ADTA and introduces some user variability, as the area determined to be the tumor 
region could differ depending on the pathologist. This could lead to slightly varying cutoff values given that 
the cutoff is determined based on the scores assigned to each patient, which rely on the specified tumor region. 

Figure 1.   A detailed view of our approach. (a) Workflow for ADTA, based on Saltz et al. (QuPath v0.1.2: https​
://qupat​h.githu​b.io/; QuIP: https​://sbu-bmi.githu​b.io/quip_distr​o/; TIL identification: https​://githu​b.com/SBU-
BMI/quip_class​ifica​tion). Representative H&Es of (b) high-risk (low lymphocytic infiltrate) and (c) low-risk 
(high lymphocytic infiltrate) patients, as defined by the algorithm.

Figure 2.   ADTA performance on training cohort. (a) ADTA score correlates with pathologist TIL grading 
defined as absent, non-brisk, or brisk (ρ = 0.515, p ≤ 0.001 using Spearman’s rank correlation coefficient). (b) KM 
curve for DSS created using ROC-defined cutoff (p = 0.0220 using log rank (Mantel Cox) test).

https://qupath.github.io/
https://qupath.github.io/
https://sbu-bmi.github.io/quip_distro/
https://github.com/SBU-BMI/quip_classification
https://github.com/SBU-BMI/quip_classification
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(n = 145)

Clinical characteristics

Sex, n (%)

Male 72 (49.7)

Female 73 (50.3)

Age

Median, n (range) 62 (20–90)

Location of tumor, n (%)

Trunk 29 (20.0)

Extremity 16 (11.0)

Unknown 100 (69.0)

Pathologic characteristics

Depth (mm)

Median, n (range) 2.75 (0.15–13.00)

Ulceration, n (%)

Absent 81 (55.9)

Present 64 (44.1)

Unknown 0 (0.0)

TILs

Absent 17 (11.7)

Non-brisk 108 (74.5)

Brisk 19 (13.1)

Unknown 1 (0.7)

Microsatellite lesions, n (%)

Absent 114 (78.6)

Present 31 (21.4)

Unknown 0 (0.0)

Staging characteristics

T-stage, n (%)

T1a or T1b 23 (15.9)

T2a 14 (9.7)

T2b or T3a 44 (30.3)

T3b or T4a 40 (27.6)

T4b 24 (16.5)

SLNB status, n (%)

Completed 41 (28.3)

Positive, n (% of completed) 19 (46.3)

Negative, n (% of completed) 22 (53.7)

Not completed 4 (2.8)

Unknown 100 (68.9)

Stage, n (%)

I 31 (21.4)

II 66 (45.5)

III 48 (33.1)

Outcome characteristics

Patient follow-up (months)

Median, n (range) 72.5 (1.4–456.2)

DMR, n (%)

Distant recurrence 69 (47.6)

No distant recurrence or local recurrence only 76 (52.4)

OS, n (%)

Alive (at least 2 years) 97 (66.9)

Dead 48 (33.1)

DSS, n (%)

Alive or NED at death 82 (56.6)

Median follow-up (months) 99.8

Dead with melanoma 63 (43.4)

Continued
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Going forward, developing a method to automate the identification of the tumor region would eliminate the 
need for pathologist supervision, reduce user variability, and provide more uniformity across cohorts and users. 
Furthermore, the ability for a single script to run the QuIP TIL CNN and subsequently calculate the median 
value over all images for a given patient would reduce manual processes. Interestingly, while ADTA correlated 
with pathologist-assessed TILs, it was more closely associated with outcome. Notably, ADTA is not identical 
to pathology assessment of TILs as it includes evaluation of the entire tumor area rather than focusing on the 
vertical growth phase31. ADTA may correlate better than pathology assessment across institutions because, while 
ADTA correlated with pathologists’ assessment, individual pathologists may have slightly different standards of 
classification leading to difficulties combining datasets as demonstrated by the fact that correlation weakened 
when we combined our two validation sets. Further, ADTA allows for a precise cutoff to be defined which may 
enhance detection of the threshold of TILs required to provide meaningful evidence of anti-tumor immunity, 
rather than relying on qualitative differences between brisk and non-brisk. Lastly, ADTA has the advantage of 
allowing for standardization and quantification across institutions. Data from the three populations included in 
this study suggest that the algorithm has potential to be readily applied to H&E images across institutions, an 
important consideration for application to clinical care.

One limitation of the dataset is that the groups are unbalanced; only a minority of patients (19%) in the 
validation set fell into the good prognosis group. This group did quite well compared to the high-risk group. In 
the low-risk group, 15% of patients died of melanoma, of whom 0% died in less than two years. In the high-risk 
group, 50% died of melanoma, of whom 36% (14% of total) died within two years. This data is consistent with 
prior results suggesting that high TIL infiltration is protective for the minority of patients who fall into the good 
prognosis group and may reflect the biologic implications of high levels of infiltrating lymphocytes. Notably, for 
standard TIL analysis performed at a single institution, similar data has been reported with a minority of patients 
having higher TILs indicative of favorable outcome23.

A second limitation is that, due to changes in practice over time and local preference, many patients did 
not have sentinel lymph node procedures performed. Thus, while we conclude that ADTA improves pathology 
assessment of the primary tumor, we cannot determine whether ADTA adds value to complete surgical staging. 
Certainly, however, from the clinician and patient’s standpoint, it does appear to be desirable to obtain as much 
clinically relevant data as possible from the original biopsy in addition to proceeding with surgical resection 
of lymph nodes, a procedure that carries some, if minimal, risk particularly for elderly patients. Further, in the 
real-world setting, patients are increasingly opting against completion lymph node dissection (CLND) and, in 
some cases, SLNB32. Additional studies are required to address the value of ADTA in the context of complete 
lymph node staging. Finally, it must be noted that additional information regarding the phenotype of TILs can 
be obtained using staining methods including simple immunohistochemistry and quantitative immune-fluo-
rescence. While direct analysis of H&E can only quantify gross lymphocyte infiltration, it is readily applicable 
to the diagnostic slides from any biopsy and thus simpler to apply clinically than more complex staining proto-
cols. Further, there is currently no well validated staining based prognostic biomarker in early stage melanoma, 
although several are under development20,33.

Median follow-up (months) 33.0

Unknown 0 (0.0)

Table 2.   Patient characteristics of the validation cohort. DMR distant metastatic recurrence, DSS disease-
specific survival, NED no evidence of disease, OS overall survival.

Figure 3.   ADTA performance on validation cohort. (a) Correlation between ADTA score and pathologist TIL 
grading defined as absent, non-brisk, or brisk (ρ = 0.211, p = 0.011 using Spearman’s rank correlation coefficient). 
(b) KM curve for DSS created using pre-defined cutoff (p < 0.001 using log rank (Mantel Cox) test).
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In summary, the above data strongly suggests that ADTA may be superior to conventional qualitative TIL 
assessment particularly over larger multi-institution cohorts and be sufficiently useful to include in standard 
pathology evaluation of melanomas and possibly in AJCC staging. As digital pathology becomes more broadly 
utilized, TIL algorithms, such as the open source QuIP TIL CNN software, may be further developed into apps 
and included in the digital process as part of standard staging. Such apps would provide additional prognostic 
information at minimal cost. Further assessment on larger databases is warranted as it has the potential to 

Figure 4.   Cox regression analysis of validation cohort. (a) Univariable Cox regression analysis of disease-
specific survival on validation cohort including ADTA, depth, ulceration, T-stage, and TIL grade. (b) 
Multivariable Cox regression analysis of disease-specific survival on validation cohort including ADTA, depth, 
and ulceration. (c) Multivariable Cox regression analysis of disease-specific survival on validation cohort 
including ADTA and T-stage.
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provide patients with more accurate assessment of their risk of dying of melanoma, and would be relatively 
straightforward to perform.

Methods
Clinical information and patients.  This project was approved by CUIMC’s Institutional Review Board 
(IRB) and was determined not to necessitate written consent from subjects as the study is retrospective and of 
low risk; therefore, informed consent was waived by the ethics committee (CUIMC’s IRB). This experiment 
was conducted in agreement with the ethical guidelines outlined by the Declaration of Helsinki. Subjects were 
obtained from previously generated databases for a study concerning the development of a deep learning algo-
rithm to predict melanoma recurrence29. Subjects were selected based on the criteria that there was at least one 
available H&E slide and at least 24 months of clinical follow up information, unless the subject died of mela-
noma. All patients included had available distant metastatic recurrence (DMR) information. Complete patient 
demographics for the training cohort are found in Table 1. The validation cohort consisted of patients from 
two institutions: Yale School of Medicine (YSM, N = 100, Supplemental Table S2) and Geisinger Health System 
(GHS, N = 45, Supplemental Table S2). The complete patient demographics for the patients in this validation 
cohort are found in Table 2. Patients were characterized based on whether they died of melanoma over the fol-
low up period29.

Imaging.  Primary melanoma biopsies were collected and lymph node biopsies were excluded. All slides used 
in this project were reviewed by a dermato-pathologist from each institution to confirm the presence of mela-
noma and assess TIL grade. Slides were scanned using LEICA SCN 400 system with a high throughput 384 slide 
auto-encoder (SL801) to generate .scn images at 40x (CUIMC, GHS) or using Aperio ScanScope XT platform 
(Leica Biosystems) to generate. svs images at 20 × (YSM). Many patients had multiple whole slide images for 
one tumor, as separate images were generated for distinct areas of melanoma tissue. This is frequently the case in 
primary melanomas due to tissue sectioning methods. Ten patients were excluded from the training cohort due 
to the presence of excessive melanin, which obscured the image, and one patient was excluded because the tissue 
was torn. One patient was excluded from the validation cohort because the size of the image was incompatible 
with QuPath, the program used to create the binary masks.

Analysis pipeline.  The QuIP TIL CNN (https​://githu​b.com/SBU-BMI/quip_class​ifica​tion) was employed 
using Python 3.5 and TensorFlow 1.8 to analyze both the training and validation cohorts and was run on Ubuntu 
16.04 (CPU: Intel Xeon W-2195 @ 2.30 GHz; GPU: NVIDIA GP102GL [Quadro P6000]). The algorithm tiled 
each image into 100 × 100 pixel patches and evaluated the probability that lymphocytes exist in each patch. For 
each image the algorithm generated a file with the x and y coordinates of the upper left vertex and the probability 
of lymphocytic infiltration associated with each patch. Each H&E image in the analysis was manually annotated 
with a loop drawn specifically around tumor areas in QuPath 0.1.2 (https​://qupat​h.githu​b.io/), an open source 
digital pathology program that allows visualization of H&E images34. Image annotation analysis was performed 
by a technician under the supervision of a dermato-pathologist (G.N.). Binary masks were then generated using 
the annotations in QuPath and applied to the output files of the deep learning algorithm to consider only proba-
bilities of patches inside the tumor region. Patches with a probability of lymphocytic infiltration above 77.5%, an 
empirically determined threshold by the creators of the algorithm, were considered “positive” for lymphocytes. 
The “ADTA Score” (# of TIL positive patches in the tumor/# of total patches in the tumor) was then calculated for 
each image. Detailed method was previously published28. Each patient was assigned a score based on the median 
value of the TIL ratios for all images assigned to the patient.

Statistics.  Statistical analysis was performed using XLSTAT Version 2019.1.3 on Excel Version 15.0.5127 
and GraphPad Prism Version 8.0.1. Statistical significance was defined at p ≤ 0.05. Receiver Operating Curves 
(ROC) and univariable and multivariable Cox proportional hazards models were created using the “Survival 
Analysis” tool in XLSTAT. Kaplan Meier (KM) curves were created on GraphPad prism and p values were deter-
mined using log-rank (Mantel-Cox) test. Spearman correlation coefficients were used to evaluate correlation 
between pathologists’ TIL grading and the ADTA score.

Data availability
All datasets analyzed during the current study are available from the corresponding author on reasonable request.
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