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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) was classified as a pandemic by the World Health Organization in March 
2020. Given that this novel virus most notably affects the human respiratory system, early detection may help 
prevent severe lung damage, save lives, and help prevent further disease spread. Given the constraints on the 
healthcare facilities and staff, the role of artificial intelligence for automatic diagnosis is critical. The automatic 
diagnosis of COVID-19 based on medical images is, however, not straightforward. Due to the novelty of the 
disease, available X-ray datasets are very limited. Furthermore, there is a significant similarity between COVID- 
19 X-rays and other lung infections. In this paper, these challenges are addressed by proposing an approach 
consisting of a bag of visual words and a neural network classifier. The proposed method can classify X-ray chest 
images into non-COVID-19 and COVID-19 with high performance. Three public datasets are used to evaluate the 
proposed approach. Our best accuracy on the first, second, and third datasets is 96.1, 99.84, and 98 percent. 
Since detection of COVID-19 is important, sensitivity is used as a criterion. The proposed method’s best sensi
tivities are 90.32, 99.65, and 91 percent on these datasets, respectively. The experimental results show that 
extracting features with the bag of visual words results in better classification accuracy than the state-of-the-art 
techniques.   

1. Introduction 

In late 2019, a novel coronavirus was discovered in Wuhan, China. The 
novel coronavirus, named SARS-CoV-2, is highly pathogenic, primarily 
attacks the respiratory system, and causes a potentially dangerous disease 
known as COVID-19 [1]. The symptoms of COVID-19 are similar to 
influenza, and it primarily infects the lungs. However, unlike influenza, 
COVID-19 spreads faster, and has a higher mortality rate. Due to the 
worldwide outbreak of COVID-19 in less than three months, in early 
March 2020, the WHO declared this disease to be a pandemic. 

Early diagnosis of COVID-19 helps the treatment staff and prevents 
further damage to the lungs, and could save the patient’s life. There are 
currently several research initiatives in the field of medical image pro
cessing to help support the healthcare staff to diagnose COVID-19 in a 
shorter time. However, the automatic diagnosis of COVID-19 is a very 

challenging task due to multiple reasons. First, there are similarities 
between COVID-19 and other respiratory diseases in terms of their 
impact on the lungs. Furthermore, the number of existing COVID-19 
images is relatively small, directly impacting the successful training of 
complex machine learning models. Moreover, given the low-resolution 
of X-ray images in the datasets, the extraction of distinctive features is 
particularly challenging. 

In this paper, to address the three mentioned challenges, a two-step 
process is proposed: first, a bag of visual words is used to extract relevant 
features. Then the neural networks are used to classify images into two 
groups of non-COVID-19 and COVID-19. 

The rest of the paper is organized as follows. In Section II, the 
literature is reviewed. In section III, the proposed method is explained. 
Experimental results are presented in Section IV. Section V is dedicated 
to some concluding remarks. 
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2. Literature review 

Several approaches are proposed to facilitate the diagnosis of COVID- 
19 based on medical images. These techniques can be categorized as 
classification and segmentation. In the following subsections, these 
techniques are reviewed. 

2.1. Classification-based approaches 

Accurate classification of patients’ lungs X-ray images can support 
early quarantine of patients and limit its rapid spread. The two primary 
goals for COVID-19 classification include detecting positive COVID-19 
cases [2–4], and identifying healthy lung images from diseased ones 
such as those with viral, bacterial, and COVID-19 infections [5–8]. In 
these approaches, two types of chest X-ray, or Computed Tomography 
(CT) images, are used. 

In [2], Sethy and Behera propose a classification approach that 
consists of two steps: feature extraction using Resnet50 and classifica
tion using Support Vector Machine (SVM). Different Convolutional 
Neural Networks (CNNs), such as VGG16, AlexNet, GoogleNet, and 
Resnet, are explored for feature extraction, and the best accuracy is 
achieved when the features of Resnet50 are used for classification [2]. 
The main shortcomings of CNNs are that they are prone to losing the 
spatial information between images. Furthermore, since CNNs have a 
large number of parameters, they need large datasets for training pur
poses. To address these shortcomings, Afshar et al. proposed COVID_
CAPS based on capsule networks [3]. This network has fewer parameters 
than other CNNs, and by using capsule layers, the information between 
features is also extracted, producing better accuracy as compared to 
CNNs [3]. In [4], three-dimensional CT-scan (3D-CT) is used to detect 
COVID-19, and high accuracies are reported. In [4] at first, a pre-trained 
UNet is used to segment the lungs region from the chest images, and then 
these regions of interest (ROI) are fed to a 3D deep neural network for 
classification. With this approach, they obtain good performance in 
detecting COVID-19 without annotating the lesions in the images. Since 
extracting features is a crucial stage for classification, different 
feature-extractors are tested in [9], such as Grey Level Co-occurrence 
Matrix (GLCM), Local Directional Pattern, Grey Level Run Length Ma
trix, Grey-Level Size Zone Matrix (GLSZM), and Discrete Wavelet 
Transform. For classifying these features, SVM is trained. The best result 
was obtained when GLSZM features were used. 

In some cases, the accurate diagnosis of COVID-19 from other dis
eases is vital. There are different types of images in datasets that show 
infected lungs, but they are not COVID-19. In [6], Wang and Wong 
proposed a new architecture, called COVID_Net, which consists of 
projection-expansion-projection-extension blocks. With this architec
ture, chest X-ray images in the dataset can be classified into three 
healthy, non-COVID-19, and COVID-19 groups. For controlling the 
spread of COVID-19, screening a large number of cases is required. Due 
to this, a new large CT dataset is collected by the authors of [7]. For 
classifying these images, first, the ROI part of the lungs in each image is 
detected. Then, in the second step, transfer-learning is used in an 
Inception network to extract features. Finally, all images are classified 
with a fully connected network (FCN) [7]. Ying et al. [8] also collected a 
dataset of 3D-CT images, including healthy, bacterial, and COVID-19 
images. They first extract the ROI and feed them into a deep network 
(DeepPneumonia). This network predicts the class of each image slice. In 
the last step, the results of slice classification are aggregated, and the 
class of image is predicted. 

In [10], Sethy et al. extracted features with two methods: 
learning-based, and image processing-based. They used different CNN 
models such as Resnet50 to extract features and SVM as their classifier 
for learning-based methods. For image processing methods, algorithms 
such as local binary patterns (LBP), histogram of oriented gradients 
(HOG), and Grey Level Co-occurrence Matrix (GLCM) are selected to 
extract features, and SVM is used for the classifier. As mentioned in [10], 

the SVM is selected as a classifier instead of deep learning models 
because the latter needs more data for training and validation. Their 
experimental results show that the deep features result in better per
formance. Narin et al. in [11] use five pre-trained models such as 
ResNet50, ResNet101, ResNet152, InceptionV3, and 
Inception-ResNetV2 for separating four different categories of X-ray 
images. For this purpose, three binary classifications are implemented. 
Their experimental results show that the ResNet50 model results in 
better accuracy. 

In some cases, due to the small dataset of COVID-19 images, the deep 
neural networks are not proper. In some articles, identified models are 
changed to simple models. In [12], the Inception Net V3 is simplified 
and named truncated Inception net. By using this model on six datasets, 
the average accuracy equal to 98.77 is achieved. In [13], for detecting 
COVID-19, Inception V3 is used with the transfer learning technique. 
Transfer learning is a technique that is used in situations that the dataset 
is small. This technique is more applicable in COVID-19 detection. For 
example, in [14], this technique is used in the Xception model, and a 
good performance is achieved. 

In some cases, training from scratch results in better performance. In 
[15], different modes of feature extraction, training from scratch, 
feature extraction via transfer learning, and hybrid feature extraction 
via fine-tuning, are explored. Experimental results show that training 
from scratch is the best approach. Sahinbas and Catak in [16] consider 
different pre-trained CNN models such as VGG16, VGG19, ResNet, 
DenseNet, and InceptionV3. By using these models, the best accuracy is 
achieved when the VGG16 is used. In [17], for classifying the X-ray 
images, a multi-step method is proposed. At first, a preprocess block is 
applied for removing Gaussian noise. After that, the lung region is 
segmented from the images. In the third block, the CNN model extracts 
the features, and FCN is used to classify the images. In [18], the authors 
prepare a 5 K dataset from the public dataset and evaluate different CNN 
models such as ResNet18, ResNet50, SqueezeNet, and DenseNet-121. 
They examine different thresholds, and their best result is achieved 
when the model is SqueezeNet, and the threshold is 0.15. In [19], the 
authors conclude that using pre-trained models such as AlexNet, Goo
gLeNet, SqueezeNet compare to the new model result in better 
performance. 

2.2. Segmentation-based approaches 

Segmentation of the infected regions of the CT images can help the 
classifier to achieve higher accuracies. In [20], Yan et al. use a feature 
variation block to enhance the edge of infection areas adaptively using a 
new deep CNN. In their architecture, features of different scales are 
fused to identify the infected parts with different shapes and sizes. Fan 
et al. [21] proposed the lung Infection Segmentation Deep Network 
(Inf-Net), using a parallel partial decoder. In their work, features of 
different levels are fused to generate the global map. 

Multitask deep learning models are also used in the literature for 
image classification and segmentation purposes. Amyar et al. [22] 
proposed a multitask model that jointly separates COVID-19 from 
non-COVID-19 images and segments the lesion regions in CT images. 
Their network architecture consists of an encoder and two decoders for 
reconstruction and segmentation, and a multi-layer perceptron for 
classification. The purpose of their model is to consider useful multitask 
information to perform both segmentation and classification. 

Extracting features from the dataset is one of the essential steps for 
classification tasks. As mentioned above, in most of the recent articles, 
features are extracted by neural networks. Since in new problems the 
datasets are small, the deep neural networks face with the problem of 
overfitting. There are different approaches to address this problem. In 
some cases, extracting handcrafted features can help the neural net
works to classify the data more accurately. Therefore, in this paper, 
features are extracted by the bag of visual words for classification. 
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3. Proposed method 

This paper proposes a three-stage approach that takes a chest X-ray 
image as the input and determines the class probability as the output. 
The proposed approach includes (1) preprocessing, (2) creating a Bag of 
Visual Words (BVW), and (3) classification. The three-stage block dia
gram of the approach is illustrated in Fig. 1. These stages consist of 
subblocks, which will be explained in the following subsections. 

3.1. Preprocessing 

The lung images of COVID-19 patients contain discriminative in
formation, which, if extracted, can be used to classify COVID-19 from 
non-COVID-19 cases. The information is embedded in the intensity 
distribution of the images and needs preprocessing to be revealed. One 
of the significant issues with the COVID-19 chest X-ray datasets is the 
wide variation of images due to the patients’ age, configuration of the X- 
ray capturing devices, and positioning of patients in the field of view of 
the X-ray devices. Hence, the foreground and background areas in the X- 
ray images, and the pixel intensity distribution of images have wide 
varieties. Furthermore, X-ray images are typically low resolution. One of 
the sample images is shown in Fig. 2c. Therefore, an appropriate pre
processing method is required to help the feature extractor to focus on 
the image’s significant areas and extract distinctive features. For this 
purpose, in the preprocessing phase, histogram matching and intensity 
improvement methods are used. These methods are described below. 

3.1.1. Histogram matching 
The range of pixel intensities and the size of the images’ background 

area are different in images captured by different devices. Therefore, we 
opt to use histogram matching as an effective method to decrease the 
influence of different recording devices [23]. The average histogram of 
the training images is used to bring all the dataset images into a unified 
range of intensities. In this method, the average histogram of all images 
in the training dataset is calculated using the following equation: 

pr
(
rj
)
=

1
N

∑

i

nij

ni
(1)  

where rj, nij, ni, and N represent the jth level of intensity, number of pixels 
with intensity rj, the number of all pixels in the ith image, and the 
number of all images in the training set, respectively. This histogram 
represents the average distribution of all images in the training set. The 
first step in performing histogram matching is to calculate the average 
histogram’s cumulative distribution function (CDF). The CDF of each 
image in the training and test sets is calculated using the following 
equation: 

Pr(rk) =
∑k

j=1
pr
(
rj
)

(2) 

For all intensity levels in an image, the distance between the CDF 
value of one intensity level in the image and the average CDF value is 
calculated. In the end, the minimum value is selected for the intensity 
level. Fig. 2 shows an example of applying histogram matching. The 
mean histogram is shown in Fig. 2a. The mean CDF and CDF of an image 
before and after the transformation are illustrated in Fig. 2b. The orig
inal image, Fig. 2c, and the transformed image, Fig. 2d, are also shown. 

There are many differences in intensity levels between images in the 
dataset. The red curve spike means that for matching the histogram of 
the image to the mean histogram of train images, there are no intensity 
levels before 65 in the output image (image after transfer). 

3.1.2. Intensity improvement 
Many of the images in the dataset have low contrasts. An example of 

a low contrast chest X-ray is illustrated in Fig. 3a. A transformation that 
improves image contrast and sharpens its edges is thus useful as part of 
preprocessing. The image contrast is improved by using contrast 
stretching techniques that expand the image histogram to the desired 
range. There are two types of stretching: linear and nonlinear. Since it is 
required to emphasize high gradient points in our work, the nonlinear 
stretching model is applied. In the linear method, all intensities are 
changed. In the nonlinear method, only parts of the intensity range are 
modified. In our selected method, one percent of each image’s pixels 
from the low-intensity range of images are transferred to 0 intensity 
level, and one percent of pixels from the high-intensity range of images 
are saturated to 255. By applying the nonlinear method, the intensity 
range of the image covers the whole intensity range [0255], and the 
contrast of edges in the image will be increased [24]. In Fig. 3, an 
original image, the output of histogram matching, and the output of the 
intensity improvement are shown. The corresponding histogram of each 
image at each step is also included in Fig. 3. The histogram of the image 
in the last step compared to the histogram of the previous step is similar 
in shape, and only the intensity range is extended. It will be shown that 
these preprocessing steps will help the classification process. 

3.2. Creating bag of visual words 

Bag of visual words (BVW) is a technique that can be used for image 
classification. In BVW, an image is represented by the frequency of its 
features [25]. For implementing BVW, two steps, extracting features and 
creating a dictionary, are considered. This approach allows us to 
perform image classification based on both individual image features 
and patterns associated with groups of features. The X-ray images of the 
patients with COVID-19 infection show that the infected regions have 
higher gradients as compared to their neighboring areas, but inside the 
regions, there is less texture. A sample non-COVID-19 image and a 
COVID-19 case are shown in Fig. 4. 

In the BVW phase, keypoints and descriptors should be considered. 
Keypoints are those points in an image that standout despite basic image 
transformations such as shrinking or expansion. Descriptors are de
scriptions of these keypoints. In the context of this work, it is essential to 
select a keypoint extraction method that covers the entire lung region. 
Furthermore, selecting a descriptor extractor that focuses on significant 
gradient points and local features is helpful. 

Several techniques such as Histogram of Oriented Gradients (HOG) 
[26], Speeded Up Robust Features (SURF) [27], Harris Corner Detector 
[28], and Scale-Invariant Feature Transform (SIFT) [29] have been used 
to extract local descriptors. Our goal is to apply an algorithm to extract 
keypoints and descriptors. Then a dictionary that contains features from 
normal and abnormal lung regions is created. 

Given that the lung’s infected areas tend to be less textured and look 
whiter, our goal is to guide the system to select keypoints in texture-less 
regions to improve detection results. To implement keypoints selection, 
two primary methods of grid-based and detector-based do exist. In the 
grid-based approach, the points are selected according to a user-defined 

Fig. 1. Block diagram of the test phase of the proposed method.  
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grid step, starting from the top left corner of the image, and traversing to 
the bottom right. In the detector-based approaches, descriptors are 
extracted from the image, and keypoints will be a subset of the extracted 
descriptors. 

In this paper, SURF is used for extracting descriptors because, similar 
to SIFT, it extracts local and distinctive properties such as gradient in
formation in vertical and horizontal directions around each keypoints. 
At the same time, the SURF algorithm is faster and more robust against 
different image transformations. SURF relies on the Hessian matrix’s 
determinant for selecting the location and the scale [27]. A descriptor 
vector is instantiated for a predefined size window, which is placed 
around each keypoint. The process of keypoint selection and descriptor 
vector definition is performed for all images in the training dataset. The 
descriptor vector contains the gradient information for each image patch 
and represents a visual word in the dictionary. These descriptor vectors 
are extracted from different image scales in SURF. These scales are 
calculated with the patch sizes, which the user defines. The number and 
values of scales are essential factors in extracting distinctive descriptors. 
In Section 4 (experimental results section), the effect of methods for 
selecting keypoints and different patch sizes will be discussed. 

In the second step, when all the patches are identified and related 
descriptors are collected, the dictionary will be created. However, using 

all the descriptors for creating a dictionary is inefficient. Finding the 
closest visual words among too many descriptors results in an expensive 
search process. Since there is no ground truth for visual words in the 
dictionary, an unsupervised learning method, such as clustering, is 
applied to descriptors to select the strongest descriptors. Each descriptor 
has a score that is defined by the extractor. Then descriptors are clus
tered to form visual words in the dictionary. 

In this paper, the K-means clustering algorithm [30] with random 
cluster centers and iterative feature categorization is chosen. After each 
iteration, the center of clusters is updated. Iterations are repeated until 
the sum of distances of all descriptors from their cluster centers becomes 
less than a threshold. Finally, when all the descriptors are categorized, 
each cluster’s center will be considered a dictionary word, and the 
dictionary is formed. 

3.3. Classification 

The dictionary will be used to generate a histogram of descriptors for 
each training and test image of the dataset. This histogram is used as an 
input to the classifier. The dictionary’s size, and subsequently, the his
togram vector’s length is determined by the number of clusters in the 
previous step. It is observed that the number of clusters dramatically 

Fig. 2. (a) The average histogram of train images, (b) CDF of image before transformation (blue), CDF of the average histogram (black) and CDF of the image after 
transformation (red), (c) original image with black background, (d) the output image after transformation. 
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affects the accuracy of the classifier. Therefore, the overall system per
formance is directly related to the number of clusters. The effect of the 
length of the dictionary will be discussed in the Swection 4 (experi
mental results section). For our proposed method’s classification stage, 
any adaptive machine learning classifier or deep learning method can be 
used. Different classifiers are tested, and the best results are achieved 
when a Fully Connected Network (FCN) is used. 

4. Experimental results 

Public datasets used in [2,3] and [18,19] are selected to evaluate our 
proposed methods. In the following, the details of implementation and 

datasets and the effects of each parameter are explained. 

4.1. Implementation details 

In this paper, for implementing the proposed approach, different 
classifiers are implemented in Python programming langiage. The 
configuration of the system which is used in our experiments is as 
follows:  

• CPU: Intel(R) Core(TM) i7− 7700 K CPU @ 4.20 GHz  
• GPU: NVIDIA GeForce GTX 1080 Ti 

Fig. 3. (a) The original image and it histogram, (b) the image after histogram matching block and its histogram, (c) the image and its histogram after intensity 
enhancement. 

Fig. 4. (a) the image of non− COVID19, (b) the image of a COVID-19 case.  
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4.2. Dataset 

The proposed method is evaluated on three datasets [31–33]. Dataset 
1 consists of three datasets [31]. Due to the prolongation of the 
COVID-19 disease, more X-ray images become available, and hence, 
different versions of the dataset are created. In this paper, version 3 of 
the dataset is used. In this version, there are three groups of images: 
healthy lung X-rays, diseased but non-COVID-19 lung images, and lung 
images of COVID-19 patients. The dataset contains 152 samples of 
COVID-19 and over 13,000 samples of the other two classes of X-rays. 
For extracting a balanced number of features for the training set, 152 
samples from each of the three categories of healthy, non-COVID-19, 
and COVID-19 are selected. Then, for binary classification, healthy 
and non-COVID-19 cases are merged and considered as a non-COVID-19 
class. With these 456 samples, our proposed approach can classify the 
test images with high accuracy. The second dataset [32] includes 2040 
images of the non-COVID-19 category and 1143 images of the COVID-19 
category. In collaboration with a group of physicians, a team of re
searchers from different countries has created this database of the chest 
X-ray images for COVID-19 positive cases along with normal and viral 
pneumonia images. The third dataset [33] is named the 5 K dataset. This 
dataset includes 184 COVID-19 images and 5000 non-COVID-19 images. 
The information about these three datasets is reported in Table 1. For 
tuning the hyperparameters, the dataset [31], which is selected first, is 
used. 

4.3. Effect of different stages of the proposed model 

In this paper, the classifier has two roles. In the first role, the clas
sifier’s accuracy is used to select the preprocessing methods and the best 
value for the bag of visual words parameters. For this purpose, the 
classifier is fixed to the SVM model, and only the values of parameters 
are changed. In the second one, the classifier’s accuracy is used for 
selecting the best classifier for our problem. In the following, the effect 
of each phase of our proposed method will be explained. 

4.3.1. Preprocessing stage 
Some research works use ROI detection to remove misleading in

formation and improve the accuracy of classification. In this paper, 
instead of extracting this information with complicated methods, the 
vital information is highlighted by applying simple preprocessing 
methods. It is shown that utilizing suitable preprocessing operations 
compensates for the limitations and challenges that may exist in the 
dataset and can lead to comparable performance as with complex state- 
of-the-art approaches. The effects of the two procedures, which are 
mentioned in the preprocessing phase of Fig. 1, are explained in the 
following subsections. 

4.3.1.1. Histogram matching procedure. Experimental results show that 
images recorded with different devices result in different intensity dis
tributions, affecting classification accuracy. By performing histogram 
matching, the intensity distribution of all images will be device 
invariant. We used histogram matching for each image in the dataset by 
transferring its histogram to the average histogram of all images in the 
training dataset. Then the final classification results on our test dataset 
are compared with the two sets (with and without histogram matching). 

The confusion matrices of these two tests are reported in Table 2. These 
results show that histogram matching improved the sensitivity from 
0.838 to 0.903, but specificity decreased by 0.15, from 0.98 to 0.965. 
Given the unknown and complex nature of the COVID-19, we argue that 
detection is essential. The proposed histogram matching results in 
higher sensitivity and improves the chances of detecting diseased lungs. 

4.3.1.2. Intensity improvement procedure. As shown in Fig. 3, image 
contrasts, especially along the edges, are improved by mapping the in
tensities to a broader range. Our experimental results confirm that this 
process affects the feature extractor to generate distinctive features, 
which in turn results in better accuracy of the classifier. Two tests, with 
and without contrast enhancement, are performed to investigate the 
effect of this step. Since the descriptors include the gradient information, 
edge sharpening results in extracting distinctive descriptors. The accu
racies of these tests are 0.95 and 0.94, respectively. Hence, the contrast 
enhancement increases the accuracy by one percent. 

4.3.2. Bag of visual words stage 
The output of the bag of visual words phase is a dictionary, which is 

the core of the proposed approach. The extracted features directly affect 
classification accuracy. For this step, several parameters should be 
considered for tuning the approach. They include:  

• Keypoint selection process (Detector method or grid step)  
• Patch size  
• Strongest features  
• Dictionary size 

As mentioned earlier, detector-based and grid-based approaches can 
be used to select the location of descriptors in an image. The histogram 
associated with these extracted descriptors is used for the classification 
step. Since many of the images in the dataset are of low resolution and 
the infected areas are not highly textured, it is argued that selecting 
distinctive regions based on the detector approach is inefficient. Spe
cifically, the detector approach may miss some of the critical keypoints. 
This problem is resolved by selecting the grid-based method for selecting 
descriptors. In the grid-based approach, the points are selected accord
ing to a specified grid step. The entire lung region is then sampled, and 
the descriptors are extracted. As shown in Fig. 5, the number of key
points selected with the detector method (Fig. 5b) is less than the 
number of selected keypoints with a grid-based approach (Fig. 5a). It is 
also observed that the keypoints selected with the detector method will 
not cover all of the lung’s regions where COVID-19 may be present. 
Therefore, using a detector-based method, important information may 
be lost. Extracting descriptors using detector-based methods results in 
visual words in a small part of the intensity spectrum. In contrast, the 
grid-based method extracts more visual words, where some of them may 
not be useful. The extracting descriptor’s function returns two values: 
descriptors and their scores. The score can be used as a threshold to 
prune irrelevant or less-important descriptors from the clustering step. 

As mentioned before, SURF is used as a descriptor extractor. One of 
the advantages of algorithms like SURF for this problem is that these 
algorithms extract descriptors from different scales and provide a 

Table 1 
The details of dataset.  

Dataset COVID /Non-COVID Train COVID /Non-COVID Test Version 

[31] 152/13,482 31/200 3 
[32] 572/1020 571/1021 January- 

2021 
[33] 84/2000 100/3000 January- 

2021  

Table 2 
Confusion matrices for tests with and without histogram matching.  

With histogram matching Predict value 

Actual value  
non-COVID COVID 

non-COVID 0.965 0.035 
COVID 0.097 0.903  

Without histogram matching Predict value 

Actual value  
non-COVID COVID 

non- COVID 0.980 0.020 
COVID 0.161 0.839  
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different receptive field. Since infected regions in the lungs are of 
various sizes, selecting SURF for extracting descriptors is appropriate. 
Choosing proper scales is essential in this work. For this purpose, three 
patch sizes of 64, 96, and 128 are used. These patch sizes result in the 
best accuracy for the image sizes of our dataset. With these patches, 
descriptors are calculated around selected keypoints in three scales. The 
experimental results show that small size for patches results in extract
ing features that are not distinctive. 

As mentioned before, in SURF, in addition to the descriptors, a score 
is calculated for each descriptor, which determines the importance of 
the descriptor. In this process, the parameter which uses this informa
tion is the strongest feature. With this parameter, a threshold can be 
determined to remove weaker descriptors. By setting this parameter, the 
percentage of descriptors with high scores is selected. The value of this 
parameter can be adjusted in the range of [0,1]. Experimentally, in our 
work, this parameter is set to 0.8. Larger values result in outlier de
scriptors to be added to the dictionary. In comparison, smaller values 
result in fewer descriptors to be used as input to the clustering step. The 
reported results in Table 3 show the effect of this parameter. It can be 
seen that too small and too large values for this parameter harm the 
accuracy, sensitivity, and specificity of classification. 

Using all of the extracted descriptors is not always efficient since the 
processing cost for finding the closest descriptors is relatively high. 
Therefore, in this paper, for reducing the number of descriptors and 
clustering them, K-means clustering is used. Determining K (the number 
of clusters) is a common challenge with this approach, and the specific 
value will change based on the specific images in the dataset. The 
number of clusters determines the size of the dictionary and the length of 
the histogram that represents each image. Using a small value for the 
number of clusters results in clusters that contain samples with different 
distributions. This subsequently results in high distance errors and 
small-size dictionaries. Our experimental results also show that the 
extracted histograms are not distinctive enough, and the class accuracy 
is low when using a small dictionary. On the other hand, using a large 
value for the number of clusters results in the clustering of similar 

descriptors in different clusters, which subsequently results in higher 
processing costs. Experimental results also show that the extracted his
togram from an extensive dictionary does not necessarily result in high 
accuracy. Our algorithm is tested with different dictionaries, varying the 
size between 250 and 6000. 

The confusion matrices of experimental results are shown in Table 4. 
The results in Table 4 show the SVM classifier’s output and indicate that 
dictionaries that are too small or too large cause low accuracies. Dic
tionaries that are too small result in insufficient visual words for 
extracting distinctive features. Dictionaries that are too large create 
useless information. Experimentally it is found that the best specificity 
belongs to a dictionary of the size 6000. The best sensitivity is achieved 
when the dictionary size is 5000. Given that the algorithm’s sensitivity 
criterion (number of correctly detected COVID-19 cases) is of primary 
importance, the dictionary’s size is selected to be 5000. 

To create a better visualization of extracted histograms and their 
distinctiveness, the most useful visual words in the histograms of two 
images, one of non-COVID-19 (blue curve) and one of COVID-19 (red 
curve) class, are shown in Fig. 6. As seen, the blue bins are distinctively 
different from the red bins: hence the classifier can accurately distin
guish COVID-19 images from the non-COVID-19 cases. 

4.3.3. Classification stage 
Once a histogram vector containing all descriptors is formed in the 

previous step, a classifier can be used to make class predictions. Any 
machine learning model, such as SVMs, neural networks, and KNN, can 
be used as the classifier. Finding the right classifier is critical for the 
accuracy of our results. Consequently, several classifiers are experi
mented with to identify the one with the best results. For each classifier, 
different settings can be used for the model parameters. In this section, 
each classifier and the specific parameters that were adjusted for anal
ysis will be described. 

From the implementation perspective, in Python Scikit-learn pack
age, for Logistic Regression, the most important parameters related to 
our work are “penalty” and “solver.” Penalty defines the type of regu
larization, while solver defines the optimization function. Since there is 
no overfitting problem in this classifier, the penalty is set to ‘None.’ The 
solver parameter defines the optimization function. It is also found that 
the ‘sag’ optimization produces the best accuracy and fast convergence. 
In this paper, we also tested Linear SVM, which has a linear kernel. For 
the K-Nearest Neighbors model, the number of neighbors is varied. For 
this application, KNN produces its best accuracy for ten nearest neigh
bors. Linear Discriminant Analysis (LDA) is a technique for dimension 

Fig. 5. Keypoints selected by (a) grid-based method, and (b) detector-based method.  

Table 3 
Accuracy, sensitivity and specificity of classification for different values of 
strongest features.  

Strongest Features Accuracy Sensitivity Specificity 

0.5 0.9134 0.7096 0.945 
0.8 0.9523 0.8709 0.965 
1 0.9220 0.8387 0.935  
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reduction. It is also a classifier that automatically reduces the dimension 
and fits class conditional densities to the data with a linear decision 
boundary that uses Bayes’ rule. Singular Value Decomposition (SVD) as 
a solver is recommended for data types with many features in this 
classifier. Gaussian Naïve Bayes algorithm can also be used as a classi
fier. In this algorithm, the parameters are updated online with a partial 
fit. For updating variance, the “var_smoothing” parameter was set to 2×

10− 5. Decision Trees can be used for classification and regression. In this 
paper, a classifier is needed. For this classifier, the parameter which 
specifies the number of features to be split is set to ‘auto.’ Random Forest 
is a machine learning algorithm. Each tree in a forest is fit to sub-samples 
of the dataset. The number of trees in the forest is set to 100. All these 
classifiers can be invoked from the Svikit-learn library in Python. Table 5 
presents the results for different classifiers that are used for experi
mentation. As shown, the neural network results are superior to the 
other classifiers. More specifically, a fully connected network (FCN) is 
used. The reason for using FCN is that during the training process, the 
FCN learns to emphasize the more essential features in the bag of visual 
words and how to combine them to get the best result. Besides this 
advantage, having adjustable hyperparameters also makes this a supe
rior approach. 

Selecting the appropriate architecture is one of the first steps in 
designing and implementing a neural network model. The number of 
layers, number of neurons in each layer, loss function, and the learning 
rate are important hyperparameters, which affects the accuracy of the 
classifier. Despite their promising performance, there is still no solid 
analytic approach to determine these settings, for neural networks [34], 
and we should rely on experimental results. Different architectures have 
experimented with intending to keep the network small enough to avoid 
overfitting due to the low number of samples. Ultimately, the selected 
architecture consists of three fully connected layers. The first two layers 
have 100 neurons, and the last layer, which announces the probability of 
COVID-19 class, has one neuron. Given that the goal is to classify the 
data under two classes and the imbalanced nature of samples, the 
weighted binary cross-entropy was used for the loss function. Although 
the weights for the two classes are set, the predicted values for the 
non-COVID-19 class have lower errors, but the error of predicted values 
for the COVID-19 class is high. A combination of binary cross-entropy 
and F1 score is used for the loss function to address this problem. The 
model loss is calculated according to the following equation: 

Loss =
BCE + (1 − F1score)

2
(3)  

where BCE represents the Binary Cross Entropy value. Note that since 
the weights of the two parts of the loss function (i.e., BCE and F1 score) 
are equal, the total value is divided by 2. The F1 score is calculated based 
on the following equation: 

F1score =
2TP

2TP + FN + FP
(4)  

Where TP, FP, and FN are the ratios of the true-positive, false-positive, 
and false-negative cases, respectively. As shown in Eq. 4, the true 
negative, which determines the probability of non-COVID-19 correct 

predicted value, does not affect the F1 score value, and only TP is used. 
Hence, to decrease loss value, the model tries to learn COVID-19 samples 
better. 

The values of extracted features from images of the two classes are 
very close to each other. Therefore, to find the best curve for separating 
these two classes, the step of changes should be very small. Two pa
rameters, namely the learning rate and its decay value, which determine 
the changing step, are essential. For three datasets, different values for 
these two parameters are selected. 

4.4. Execution time 

For calculating the execution time, the duration for creating a bag of 
visual words and classifier should be calculated. For this purpose, the 
average running time for creating a bag of visual words is 0.06 s. The 
average running time for FCN classification is equal to 78 μs. The Python 
code runs on GPU, and its execution time compared to the BVS, which 
runs only on the CPU, is very low. 

5. Comparison with other methods 

In this section, our experimental results are compared with state of 
the art solutions. For a better overview, the details of different methods 
used for COVID-19 detection are reported in Table 6. 

Since COVID-19 disease spread worldwide and became a pandemic, 
different datasets from different countries are published publicly, and 
the number of their samples has changed over time. Due to this issue, 
researchers have used datasets with different numbers of COVID and 
Non− COVID samples. In Table 6, the information about the number of 
COVID and Non− COVID samples in the test set, the applied feature 
extraction method, the classifier type, and the method’s accuracy are 
reported. By using this table, our method can be compared with the 
recently published papers in this field. 

As mentioned before, the proposed method is evaluated on three 
datasets. In the following paragraphs, the results of the proposed method 
on these datasets will be explained. 

The first dataset is used in [2,3]. Afshar et al. [3] use Capsule 
Network for feature extraction and classification. We have used the 
dataset used by Wang et al. [6] for our work. The size of the dataset 
containing COVID-19 X-ray images has increased over the past few 
months. Hence, the dataset now has multiple versions. The authors of 
[3] do not specify the specific version of the dataset used for analysis. 
Sethy and Behera [2] use two datasets and rely on deep networks for 
feature extraction and SVM for classification. Our results are compared 
with the results presented in [2] and [3] on the first dataset. Compari
sons are shown in Table 7. By using 0.5 as a threshold for converting the 
outputted probability to a class number, the proposed method demon
strates higher accuracy and specificity compared to [3]. In this experi
ment, different thresholds are tested. When the threshold is set as 0.4, 
the achieved accuracy, sensitivity, and specificity are 95.7 %, 90.32 %, 
and 96.5 %, respectively. In this situation, the sensitivity, which rep
resents the accuracy of COVID-19 detection, is improved. Using either of 
the two thresholds, our approach results in better accuracy and speci
ficity but lower sensitivity than [2]. 

Table 4 
Confusion matrix for different dictionary sizes.  

Dictionary Size 250 Predicted value Dictionary Size 5000 Predicted value 

Actual value  
non-COVID COVID 

Actual value  
non-COVID COVID 

non-COVID 0.92 0.09 non-COVID 0.96 0.04 
COVID 0.23 0.77 COVID 0.129 0.871  

Dictionary Size 2000 Predicted value Dictionary Size 6000 Predicted value 

Actual value  
non-COVID COVID 

Actual value  
non-COVID COVID 

non- COVID 0.92 0.08 non-COVID 0.97 0.03 
COVID 0.13 0.87 COVID 0.19 0.81  
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For generalization, the proposed method is also evaluated on two 
other datasets. Since there are no train and test splits in the second 
dataset, the average result of the second dataset [32] on two folds is 
reported in Table 7. In this table, our proposed method’s results are 
compared with the results of [19]. The evaluation results on the third 
[33] dataset are also reported in Table 7. The results of the method in 
[18] are compared with the results of our proposed method. Since the 
classifier’s output probability on these two datasets is high, changing the 
threshold does not affect the results. 

Based on the results shown in Table 7, our proposed method’s 

accuracy for these datasets is better than state of the art solutions. 

6. Conclusion 

COVID-19 is a new infectious disease that spreads all over the world. 
Due to the highly contagious nature of this disease, its automatic 
detection is highly demanded to prevent its spread. Collecting a large 
number of COVID-19 samples in this crisis is a slow process. Therefore, 
training deep networks is prone to overfitting. However, computer 
vision approaches, like the bag-of-features technique, do not need a 

Fig. 6. Histograms of the most frequent visual words for (a) two overlapped histograms of inside of the lungs, and (b) outside regions of lungs. Visual words from 
COVID-19 images shown by red, and non-COVID-19 by blue. 
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large dataset. In this paper, a classifying method based on a bag of 
features is proposed. 

The three main phases of this approach are preprocessing, creating a 
dictionary, and classifying the images. In our proposed method, features 
are extracted with a handcrafted technique, and they are fed to a clas
sifier neural network. The proposed method is compared experimentally 
with the state of the art methods. As illustrated in Table 7, our proposed 
method’s accuracy on three datasets is 96.1, 99.84, and 98, respectively. 
These results are better than the state of the art methods. On the first 
dataset, our proposed method’s sensitivity is susceptible to the 
threshold, and with the default threshold, it is less than state of the art. 

The SURF algorithm is used in the bag of visual words for feature 
extraction. The SURF algorithm is gradient-based, and hence, the pro
posed method can be susceptible to noise. If the image’s quality is low, 
the proposed method can misclassify images. In this situation, selecting 
an appropriate preprocess method can improve the results. For this 
purpose, intensity improvement and histogram matching methods are 
applied to images. 
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