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Abstract: The striking rise of methicillin-resistant Staphylococcus aureus (MRSA) infections has become
a serious threat to public health worldwide. In an effort to search for new anti-MRSA agents from
natural products, a bioassay-guided phytochemical study was conducted on the semi-mangrove
plant Myoporum bontioides A. Gray, which led to the isolation of two new sesquiterpene alkaloids
(1 and 2) and six known furanosesquiterpenes (3–8). Their structures were elucidated on the basis
of extensive analysis of their 1D, 2D NMR and mass spectroscopic data. These two new alkaloids
(1 and 2) displayed potent anti-MRSA activity with MIC value of 6.25 µg/mL. This is the first report
of sesquiterpene alkaloids from the plants of Myoporum genus and their anti-MRSA activity.

Keywords: Myoporum bontioides; methicillin-resistant Staphylococcus aureus (MRSA); sesquiterpene
alkaloids

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) infections have become a global threat to public
health [1–3]. MRSA is responsible for several intractable infections in human being including skin
and soft tissue infections, septicemia, endocarditis, pneumonia, enteritis, meningitis, osteomyelitis as
well as toxic shock syndrome [4,5]. MRSA infections worldwide have increased rapidly from 1–5%
in the mid-1980s to 60–70% today since MRSA was first discovered by British scientist Jevons in
1961 [6]. At present, MRSA infection has surpassed hepatitis B and AIDS, ranking the first among
the three most intractable infectious diseases throughout the world [7]. In a response to antimicrobial
stress, almost all clinical MRSA isolates produce β-lactamase and a penicillin-binding protein with
low affinity for β-lactam antibiotics [8,9]. Although a variety of non-β-lactam antibiotics such as
vancomycin, teicoplanin, linezolid, and daptomycin had been recommended for the treatment of MRSA
infections [10–13], a series of drawbacks including slow bactericidal activity, low tissue penetration,
and increasing reports of resistance were described and greatly restricted their utility [13–19]. Therefore,
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there is an urgent need to discover alternative anti-MRSA candidates with novel structure scaffold and
mechanism of action for the treatment of infections arising from MRSA.

One strategy to develop new anti-MRSA agents is to search for anti-MRSA substances or lead
compounds from natural products, which has been proven to be effective in the field of new drug
development [20]. During our ongoing investigation to search for novel antibiotics from traditional
Chinese medicinal plants, Myoporum bontioides A. Gray was found to possess anti-MRSA activity.
M. bontioides, belonging to the genus Myoporum in the family Myoporaceae, is a semi-mangrove
plant distributed mainly in China, Japan, Australia, New Zealand, Mauritius, and the Hawaiian
Islands [21,22]. It grows above the tide lines by the sea and adapts to saline-alkali sand and rocky
land, which plays an important role in wind-breaking and sand-fixation, as well as greening the
environment [23]. In China, M. bontioides has been used as a folk medicine for antidermatosis,
antipyretic, and antipsychotic [24–27]. Previous phytochemical studies have revealed some
structurally diverse chemicals from this plant, including sesquiterpenoids, iridoids, monoterpenes,
phenylethanoids, and flavonoids, some of which showed important bioactivities [28–33]. Our previous
experiment showed that the extract of M. bontioides possessed anti-MRSA activity. With the aim to
find out the potential anti-MRSA substances from M. bontioides, we carried out a bioassay-guided
phytochemical study on the semi-mangrove plant M. bontioides, which led to the isolation of two new
sesquiterpene alkaloids (1 and 2) and six known furanosesquiterpenes (3–8) (Figure 1). Their structures
were elucidated on the basis of extensive spectroscopic analysis. Herein, we report the isolation and
structure elucidation of these compounds, as well as their anti-MRSA activity.
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Figure 1. Chemical structures of compounds 1–8.

2. Results and Discussion

Compound 1 was obtained as a colorless oil with a molecular formula of C15H23NO3 as
determined on the basis of HR-EI-MS data, m/z 265.1660 ([M]+), which required five degrees of
unsaturation. The 1H NMR spectrum (Table 1) showed the signals of three methyls at δH 0.90 (3H, d,
J = 6.5 Hz), 0.91 (3H, d, J = 6.5 Hz) and 1.27 (3H, s), an oxymethine at δH 4.78 (1H, t, J = 7.3 Hz), and an
olefinic methine at δH 5.97 (1H, t, J = 1.5 Hz). The 13C NMR spectrum (Table 1), coupled with HSQC
analysis, exhibited the signals of fifteen carbons in total, comprising three methyls, five methylenes,
three methines, and four quaternary carbons including one oxygenated quaternary carbon at δC 82.6
(C-7), two carbonyl carbons [δC 174.9 (C-15) and 209.2 (C-9)], and an olefinic carbon at δC 163.8 (C-3).
Detailed analysis of the NMR data indicated that compound 1 was similar to (–)-epingaione [34,35],
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a known furanosesquiterpene which was also obtained in this study as compound 3. The main
difference was that the signals of the furan group at C-4 in 3 were absent in 1. Instead, proton and
carbon signals of an α,β-unsaturated butyrolactam moiety in 1 were exhibited. These findings led us to
establish the structure of 1 as shown in Figure 1. This assignment was in accordance with the molecular
formula of 1 (C15H23NO3) and well supported by the 2D NMR spectroscopic data. The heteronuclear
multiple bond correlations (HMBC) (Figure 2) from δH 4.78 (H-4) to 121.1 (C-2), 163.8 (C-3), and 174.9
(C-15), from δH 4.00 (H-1) to 121.1 (C-2), 163.8 (C-3), and 174.9 (C-15), from δH 5.97 (H-2) to 47.7
(C-1), 163.8 (C-3), 76.1 (C-4), and 174.9 (C-15), combining with the 1H–1H COSY correlation between
δH 4.00 (H-1) and 5.97 (H-2) (Figure 2), confirmed the presence of the α,β-unsaturated butyrolactam
moiety. The observation of significant NOE correlation of H-4/H-8 (Figure 2) and the absence of NOE
correlation of H-4/CH3-14 in the NOESY spectrum further supported the β-orientation of H-4 and
α-orientation of CH3-14. Consequently, the structure of compound 1 was elucidated as shown in
Figure 1, trivially named as myoporumine A.

Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data of compounds 1 and 2 in CDCl3.

H/C
1 2

δH (mult, J in Hz) δC δH (mult, J in Hz) δC

1 4.00 (brs) 47.7 (CH2) 3.94 (d, 1.6) 47.8 (CH2)

2 5.97 (t, 1.5) 121.1 (CH) 6.94 (t, 1.5) 140.6 (CH)

3 163.8 (C) 139.7 (C)

4 4.78 (t, 7.3) 76.1 (CH) 2.26 (m) 25.9 (CH2)

5 1.88 (m)
2.24 (m) 32.5 (CH2) 1.77 (m) 26.8 (CH2)

6 1.94 (m)
2.09 (m) 37.2 (CH2) 2.23 (m) 41.6 (CH2)

7 82.6 (C) 159.8 (C)

8 2.67 (q, 15.3) 53.4 (CH2) 6.19 (q, 1.1) 124.9 (CH)

9 209.2 (C) 203.7 (C)

10 2.32 (dd, 6.9, 2.5) 53.7 (CH2) 2.31 (d, 7.0) 54.3 (CH2)

11 2.13 (m) 24.5 (CH) 1.71 (m) 26.4 (CH)

12 0.90 (d, 6.5) 22.7 (CH3) 0.92 (d, 6.6) 22.9 (CH3)

13 0.91 (d, 6.5) 22.7 (CH3) 0.92 (d, 6.6) 22.9 (CH3)

14 1.27 (s) 27.6 (CH3) 2.12 (d, 1.3) 19.4 (CH3)

15 174.9 (C) 176.8 (C)

Compound 2, obtained as a colorless oil, was deduced to have the molecular formula C15H23NO2

by the HR-EI-MS data, m/z 249.1720 ([M]+), which required five degrees of unsaturation. Its 1H and 13C
NMR spectra (Table 1), in combination with HSQC analysis, indicated three methyls, five methylenes,
three methines and four quaternary carbons [including two carbonyl carbons at δC 176.8 (C-15) and
203.7 (C-9), two olefinic carbons at 139.7 (C-3) and 159.8 (C-7). A detailed comparison of the NMR data
(Table 1) revealed that compound 2 closely resembled 1 with the main differences of the absence of
the oxygen bridge between C-4 and C-7, and the presence of the double bond between C-7 and C-8.
This deduction was in accordance with the molecular formula of 2 (C15H23NO2) and well supported
by the 2D NMR spectroscopic data, including HSQC, 1H−1H COSY, and HMBC data. The 1H–1H
COSY correlations of H-1/H-2, H-4/H-5, H-5/H-6, H-10/H-11, H-11/H-12, and H-11/H-13, together
with the HMBC correlations from H-4 to C-2, C-3, and C-15, from H-14 to C-6, C-7, C-8, and C-9,



Mar. Drugs 2018, 16, 438 4 of 8

and from H-8 to C-6, C-7, C-9, C-10, and C-14, supported the above deduction (see Figure 3). Hence,
the structure of compound 2 was determined as shown in Figure 1, trivially named as myoporumine B.
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The six known compounds (3–8) were identified as (−)-epingaione (3) [34,35],
(–)-dehydroepingaione (4) [36], myoporone (5) [37], dehydromyoporone (6) [37],
9-(3-furanyl)-2,6-dimethyl-4-nonanone (7) [38] and dihydrocrassifolone (8) [39] respectively,
by comparing their spectroscopic data with those reported in the literature.

All the isolated compounds (1–8) were evaluated for their anti-MRSA activity using the
microdilution method as we described previously [40]. As shown in Table 2, these two new alkaloids
(1 and 2) displayed potent anti-MRSA activity with MIC value of 6.25 µg/mL.

Table 2. In vitro anti-MRSA activity of the Fraction F4 and compounds 1–8.

Sample MIC (µg/mL) Sample MIC (µg/mL)

Fraction F4 25 5 50
1 6.25 6 50
2 6.25 7 >100
3 25 8 >100
4 25 Vancomycin 0.78

3. Experimental Section

3.1. General Experimental Procedures

1D and 2D Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX-500
NMR spectrometer (Bruker Biospin Gmbh, Rheistetten, Germany). High-resolution (HR) EI–MS
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was obtained on a Waters AutoSpec Premier P776 mass spectrometer (Waters, Milford, MA, USA).
UV spectra were acquired on a Perkin-Elmer Lambda 650 UV–vis spectrometer (Perkin-Elmer, Inc.,
Waltham, MA, USA). Optical rotations were measured on a Perkin-Elmer Model 341 polarimeter
(Perkin-Elmer, Inc., Waltham, MA, USA). Column chromatography (CC) was performed with silica
gel (80–100 mesh, Qingdao Haiyang Chemical Co., Qingdao, China), Sephadex LH-20 (Pharmacia
Fine Chemical Co. Ltd., Uppsala, Sweden). Preparative HPLC was performed with an HPLC system
equipped with a Shimadzu LC-6AD pump and a Shimadzu RID-10A refractive index detector using
a Shim-pack PRC-ODS C-18 column (5 µm, 20 × 250 mm). Thin-layer chromatography (TLC) was
conducted on precoated silica gel plates (HSGF254, Yantai Jiangyou Silica Gel Development Co. Ltd.,
Yantai, China) and spot detection was performed by spraying 10% H2SO4 in ethanol, followed by
heating. Analytical grade chloroform, methanol, petroleum ether, acetone, n-hexane, and ethyl acetate
were purchased from Tianjin Fuyu Fine Chemical Industry Co. (Tianjin, China).

3.2. Plant Material

Leaves of M. bontioides were collected from the Leizhou Peninsula, Guangdong province, China in
September 2010, and identified by Prof. Bingtao Li from South China Agricultural University.
A voucher specimen (No. 20100915) was deposited in the College of Materials and Energy, South China
Agricultural University.

3.3. Extraction and Isolation

The air-dried leaves of M. bontioides (12 kg) were powdered and extracted by supercritical CO2

extraction technology at 15 MPa and 30 ◦C for 15 min yield a supercritical CO2 extract (116 g). The crude
extract was subjected to silica gel column chromatography, eluted with petroleum ether/acetone
(from 100:0 to 0:100, v/v), to afford fractions F1–F6 after pooling according to their TLC profiles.
According to the result of activity screening, Fraction F4 (2.02 g) showed the most potent anti-MRSA
activity with MIC value of 25 µg/mL. Then it was subjected to silica gel column chromatography
with the elution of chloroform/methanol (from 100:1 to 100:10) to provide subfractions F4-1–F4-4.
Subfraction F4-1 was further chromatographed over a silica gel column eluting with n-hexane/ethyl
acetate (20:1 and 15:1) to afford compounds 5 (15 mg), 6 (10 mg), and 7 (4 mg). Subfraction F4-2 was
separated by Sephadex LH-20 column chromatography eluted with acetone to give compounds 3
(6 mg) and 4 (4 mg). Subfraction F4-3 was recrystallized to give compound 8 (5 mg). Subfraction F4-4

was applied on Sephadex LH-20 column chromatography with the elution of chloroform/methanol
(1:4, v/v) to give F4-4-1 and F4-4-2. F4-4-1 was further purified by preparative HPLC with a Shim-pack
PRC-ODS C-18 column (5 µm, 20 × 250 mm) using 40% methanol in water (v/v) as mobile phase at
the flow rate of 8 mL/min to obtain compound 1 (4 mg, tR 65 min). F4-4-2 was further purified by
preparative HPLC using 25% acetonitrile in water as mobile phase at the flow rate of 10 mL/min to
yield compound 2 (3 mg, tR 58 min).

Myoporumine A (1): colorless oil; [α]20
D –14.5 (c 0.20, CHCl3); UV (CHCl3) λmax nm (log ε) 255

(3.37); HR-EI-MS: m/z 265.1660 [M]+ (calcd 265.1678, C15H23NO3); 1H NMR and 13C NMR data,
see Table 1. The NMR and HREIMS spectra, see Supplementary Materials.

Myoporumine B (2): colorless oil; UV (CHCl3) λmax nm (log ε) 230 (3.21), 255 (3.47); HR-EI-MS:
m/z 249.1720 [M]+ (calcd 249.1723, C15H23NO2); 1H NMR and 13C NMR data, see Table 1. The NMR
and HREIMS spectra, see Supplementary Materials.

3.4. Anti-MRSA Assay

The anti-MRSA activity of compounds 1–8 was evaluated by the microdilution method as we
described previously [40]. The MRSA strain (No. 11646) was provided by State Key Laboratory
Respiratory Disease, Guangzhou Institute of Respiratory Disease (Guangzhou, China), which was
resistant to methicillin and sensitive to vancomycin. Resazurin was used as a visible indicator in the
assay. The count of bacterial suspension was adjusted to 1 × 105 CFU/mL with MHB. Test samples
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were diluted with the medium (DMSO) by the two-fold dilution method. The final concentrations
of each sample in the wells were 100, 50, 25, 12.5, 6.25, 3.12, 1.56, and 0.78 µg/mL. Vancomycin was
used as a positive control. Finally, the plates were incubated at 37 ◦C for 5–6 h until the color of
negative control wells (which contained DMSO instead of the test sample) change to pink. The lowest
concentration for each test sample at which color change occurred was recorded as the minimal
inhibitory concentration (MIC). MIC values of test samples were displayed in Table 2.

4. Conclusions

In summary, two new sesquiterpene alkaloids (1 and 2) and six known furanosesquiterpenes (3–8)
were isolated from the semi-mangrove plant M. bontioides. Their structures were elucidated on the
basis of extensive analysis of their 1D, 2D NMR and mass spectroscopic data. These two new alkaloids
1 and 2 showed potent anti-MRSA activity, suggesting that they could be worthy of consideration for
the development and research of anti-MRSA agents. This is the first report of sesquiterpene alkaloids
from the plants of Myoporum genus and their anti-MRSA activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/11/438/
s1, Figures S1–S13: The NMR and HREIMS spectra of compounds 1 and 2.
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