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Background: Observational studies have shown gut microbiomes were

associated with cardiovascular diseases (CVDs), but their roles remain

controversial, and these associations have not yet been established causally.

Methods: Two-sample Mendelian randomization (MR) was used to investigate

whether gut microbiome had a causal e�ect on the risk of CVDs. To obtain

comprehensive results, we performed two sets of MR analyses, one with

single nucleotide polymorphisms (SNPs) that smaller than the genome-wide

statistical significance threshold (5 × 10−8) as instrumental variables, and the

other with SNPs that lower than the locus-wide significance level (1 × 10−5).

Summary-level statistics for CVDs, including coronary artery disease (CAD),

myocardial infarction, heart failure, atrial fibrillation, stroke and its subtypes

were collected. The ME estimation was performed using the inverse-variance

weighted andWald ratio methods. Sensitivity analysis was performed using the

weighted median, MR-Egger, leave-one-out analysis, MR pleiotropy residual

sum and outlier and MR Steiger.

Results: Based on the locus-wide significance level, genetically predicted

genus Oxalobacter was positively associated with the risk of CAD (odds ratio

(OR) = 1.06, 95% confidence interval (CI), 1.03 – 1.10, P = 1.67 × 10−4), family

Clostridiaceae_1 was negatively correlated with stroke risk (OR = 0.83,95% CI,

0.75–0.93, P = 7.76 × 10−4) and ischemic stroke risk (OR = 0.823,95% CI,

0.74–0.92, P = 4.15 × 10−4). There was no causal relationship between other

genetically predicted gut microbiome components and CVDs risk. Based on

the genome-wide statistical significance threshold, the results showed that the

gut microbiome had no causal relationship with CVDs risk.

Conclusion: Our findings reveal that there are beneficial or adverse causal

e�ects of gutmicrobiome components onCVDs risk and provide novel insights

into strategies for the prevention and management of CVDs through the

gut microbiome.
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Key messages

Several studies have shown significant alternations in the

structure and composition of gut microbiome in cardiovascular

diseases (CVDs) patients. However, the causality between the

gut microbiome and CVDs remains unclear. In this 2-sample

Mendelian randomization analysis, we found that genetically

predicted genus Oxalobacter was positively associated with

coronary artery disease risk and family Clostridiaceae_1 was

associated with decrease risk of stroke and ischemic stroke.

Introduction

Cardiovascular diseases (CVDs) remain the leading cause of

mortality and morbidity in the world, though the treatment of

CVDs has advanced (1). CVDs cause 17.7 million deaths (31%

of global deaths) every year, a figure equivalent to a third of all

deaths in US and a quarter of all deaths in Europe (2). The causes

of CVDs are not fully understood through substantial progress

in prevention and control (3). Therefore, it remains crucial to

identify protective or causative factors for CVDs.

The human gut microbiome is a complex ecosystem

that provides essential functions to its host. Recently, several

studies have shown significant alternations in the structure

and composition of gut microbiome in cardiovascular diseases

(CVDs) patients. Emoto et al. (4) reported the changes

in gut microbiome composition in patients with coronary

artery disease (CAD), such as the reduced abundance of the

Bacteroidetes and the grown abundance of the Lactobacillales.

Zuo et al. (5) found that Ruminococcus, Streptococcus and

Enterococcus were overgrown in patients with atrial fibrillation

(AF), and Faecalibacterium,Alistipes,Oscillibacter, and Bilophila

were reduced. Research has provided further evidence of

a link between gut microbiome and CVDs susceptibility

through direct gut microbial transplantation. Gregory et al.

(6) shown that atherosclerosis susceptibility can be transmitted

via transplantation of gut microbiota. However, the causal

association between the gut microbiome and CVDs remains

unclear, as many other factors such as age, gender and

ethnicity can influence not only gut microbiome but also CVDs

development, which complicating this matter. What’s more,

evidence from traditional epidemiological studies fails to address

the confusion caused by various biases and reverse causality and

is limited by small sample sizes.

In this context, Mendelian randomization (MR) provides

a way to explore causality between exposures and outcomes

without any potentially detrimental intervention (7). In this

study, we performed a 2-sample MR study to elucidate the

potential impact of genetically predicted gut microbiome on 9

CVDs: CAD, myocardial infarction (MI), AF, heart failure (HF),

and stroke and its subtypes. We also performed multivariable

Mendelian randomization (MVMR) to assess the potential

mediating effects of blood pressure on the identified causal

associations, as numbers of studies have demonstrated that

blood pressure is a risk factor for CVDs (8, 9).

Materials and methods

Study design

We conducted a 2-sample MR study using data obtained

from the publicly available GWAS catalog to investigate the

causality between gut microbiome and CVDs (http://www.ebi.

ac.uk/gwas). Ethical approval and consent to participate were

given in the original publications. Figure 1 shown an overview

of the study design.

Selection of genetic instrumental
variables

Single nucleotide polymorphisms (SNPs) associated with

the composition of human gut microbiome were selected

as instrumental variables (IVs), which from a large-scale,

multiethnic GWAS study involving 18,473 individuals from

various countries with 122,110 loci of variation (10). To

obtain more comprehensive results, this study collected two

groups of SNPs (11). One group was lower than the genome-

wide statistical significance threshold (5 × 10−8) and the

other group was smaller than the locus-wide significance level

(1 × 10−5) (11). All SNPs were required to independently

(linkage disequilibrium [LD] (9), r2 ≤ 0.01) predicted human

microbiome composition. Only the one with the lowest

P-value was selected if there were SNPs with highly linkage

disequilibrium. To prevent potential pleiotropy, we further

searched these SNPs using PhenoScanner V2 (http://www.

phenoscanner.medschl.cam.ac.uk/) to assess whether the IVs

were potentially related to confounders or risk factors for CVDs

(Supplementary Table 12) (12, 13). The IVs were excluded from

the analysis once they were potentially related to confounders

or risk factors for CVDs, such body mass index, past tobacco

smoking, low density lipoprotein or other factors that have been

reported (14–16).

Outcome data sources

Summary-level data for CAD were extracted from a large-

scale meta-analysis GWAS including 122,733 cases and 424,528

controls from the CARDIoGRAMplusC4D consortium and

UK Biobank (17). Summary statistics for MI were also came

from a large-scale GWAS meta-analysis of 48 studies from

CARDIoGRAMplusC4D consortium with 43,676 cases and

128,199 controls (18). Genetic associations with AF were derived
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FIGURE 1

Study flow diagram. Dashed lines indicate potential pleiotropic or direct causal e�ects between variables that may violate MR assumptions. IV,

instrumental variable; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure; AF, atrial fibrillation; IS, ischemic stroke; CES,

cardioembolic stroke; LAS, large-artery atherosclerotic stroke; SVS, small-vessel stroke; IVW, multiplicative random e�ects inverse-variance

weighted; MR, Mendelian randomization; WME, weighted-median estimator; MR-PRESSO, MR pleiotropy residual sum and outlier.

from a large-scale GWAS that comprised 55,114 cases and

482,295 controls of European ancestry (19). Summary data

for HF obtained from a GWAS meta-analysis of 26 studies

from HERMES consortium, including 47,309 cases and 930,014

controls of European ancestry (20). Aggregated data for stroke

were came from a large-scalemeta-analysis GWAS conducted by

MEGASTROKE consortium, which comprised 40,585 cases and

406,111 controls of European ancestry (21). Among these cases,

34,217 patients were ischemic stroke, which was further divided

into three subtypes, including 7,193 cardioembolic stroke cases,

4,373 large-artery atherosclerotic stroke cases and 5,386 small-

vessel stroke cases. There was no overlap between the exposures

and outcomes GWASs population.

Instrument strength

The variance (R2) in the MR studies stands for the

proportion of the variability of the exposure explained

by each genetic instrument (22). Based on previously

study, the R2 for the gut microbiomes was calculated as

the following formula: R2 = 2 × EAF × (1− EAF) ×

beta2/
[

2× EAF × (1− EAF) × beta2 + 2× EAF × (1− EAF)

×N × se2
]

, where EAF means effect allele frequency, beta and

se means the estimated effect and its standard error of

SNP on certain gut microbiome, and N means the sample

size (22). Furthermore, we used the following formula to

calculate the F-statistics to evaluate the weak instrument bias:

F = R2 × (N − 2)/(1 − R2), where N refers to the sample

size (23).

Statistical analysis

In this 2-sample MR, we harmonized the effect of

gut microbiomes and CVD datasets, which comprised

comprehensive information on SNPs, especially effect allele,

standard error, beta-coefficient, P-value and sample size. When

a specific gut microbiome-associated SNPs were missing from

the outcome datasets, proxy SNPs (r2 > 0.8) were applied.

SNPs without suitable proxies were excluded from the analyses.

The multiplicative random effects inverse variance-weighted

(IVW) method was applied for the primary MR analysis,

which meta-analyzed the SNP-specific Wald estimates with

the assumption of balanced pleiotropy (24). The Wald ratio

method was performed when the MR estimate contained only

one single SNP.

Sensitivity analysis

To examine the existence of horizontal pleiotropy that

violated the mainMR assumptions, this study performed several

statistical tests. Cochran Q statistic was calculated to quantify

the heterogeneity in effect sizes produced from the selected

genetic IVs. An MR pleiotropy residual sum and outlier (MR-

PRESSO) analysis was also be applied to check and adjust for

horizontal pleiotropy by removing outliers (25).In addition, an

MR-Egger regression and weighted-median estimator (WME)

were performed for sensitivity analyses. We estimated the

deviation of the MR-Egger intercept to detect the horizontal

pleiotropy, and the difference from 0 indicating potential bias
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in the MR estimates (26). The WME method was supplemented

to generate robust and consistent estimates of the effect, even

though up to 50% of the weight came from invalid IVs (27). We

also applied a leave-one-out analysis to detect for any pleiotropy

affected by a single SNP. Besides, the MR Steiger test was

performed to evaluate the potential effect of reverse causality of

CVDs on gut microbiome (28).

To consider multiple-testing correction, the significance

threshold for various taxa levels was set as P = 0.05/n, n means

the taxa size. For example, the significance threshold for locus-

wide significance level group was as following: class P = 3.13 ×

10−3
= 0.05/16, family P = 1.43 × 10−3

= 0.05/35, genus

p= 3.82× 10−4
= 0.05/131, order P = 2.50× 10−3

= 0.05/20,

and phylum P = 5.56 × 10−3
= 0.05/9. In MVMR, a cutoff of

P = 0.05 was given. All these analyses were implemented using

the “TwoSampleMR” package in R Version 4.1.2.

Results

Genetic instruments for gut microbiomes

After removing SNPs that had LD effects and possibly

related to confounders or risk factors for CVD, a total of 2,789

(P <1 × 10−5) and 17 (P <5 × 10−8) SNPs were selected

as IVs (Supplementary Table 1). These SNPs were categorized

according to five biological categories, including phylum, class,

order, family and genus. For instance, a total of 2,672 SNPs

is associated with CAD in locus wide significance level which

then categorized into 9 phyla (115SNPs), 16 classes (216 SNPs),

20 orders (265 SNPs), 35 families (470 SNPs), 131 genera

(1606 SNPs), and A total of 14 SNPs is associated with CAD

in genome-wide statistical significance threshold. The main

information of SNPs was collected systematically for further

analysis, including effect allele, other allele, beta-coefficient,

standard error, P-value and EAF.

Locus-wide significance level

Causal e�ects of gut microbiomes on CVDs

We found evidence that genus Oxalobacter was positively

related to CAD risk (odds ratio (OR) = 1.06, 95% confidence

interval (CI), 1.03 – 1.10, P = 1.67 × 10−4) but were not

associated with the other 8 CVDs. We observed that family

Clostridiaceae_1 was associated with deceased risk of stroke

(OR = 0.83, 95% CI, 0.75–0.93, P = 7.76 × 10−4) and

ischemic stroke (OR = 0.82, 95% CI, 0.74–0.92, P = 4.15 ×

10−4), whereas the associations with the other CVDs were not

significant (Table 1). In addition, no causal relationship was

found between other genetically determined gut microbiome

components and CVDs risk.
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We then performed MVMR to adjust for CVD

related traits to reassess the causality observed in our

primary analysis and to explore the potential mediators

(Supplementary Tables 10, 11). The causal association

between genus Oxalobacter and CAD attenuated to null

after adjusting for systolic blood pressure (SBP, OR = 1.01,

95% CI, 0.97–1.05, P = 0.617), diastolic blood pressure

(DBP, OR = 1.00,95% CI, 0.96–1.04, P = 0.922), or both

(OR = 1.04,95% CI, 0.99–1.09, P = 0.119). The causal

relationship between family Clostridiaceae_1 and stroke

also weakened to null after adjusting for SBP (OR = 1.03,

95% CI, 0.97–1.09, P = 0.319), DBP (OR = 1.02, 95% CI,

0.96–1.08, P = 0.480), but causality remained when adjusted

for both SBP and DBP (OR = 1.07, 95% CI, 1.00–1.13, P

= 0.045). The causality between family Clostridiaceae_1

and ischemic stroke also weakened to null after adjusting

for SBP (OR = 1.01, 95% CI, 0.95–1.08, P =0.670), DBP

(OR = 1.02, 95% CI, 0.95–1.09, P = 0.525), or both

(OR = 1.05, 95% CI, 0.98–1.12, P = 0.205). These results

suggest that gut microbiome might affect CVDs risk through

blood pressure.

Sensitivity analyses

In the Cochran’s Q statistic, heterogeneity was detected

in several diseases. After using the random effects model

to estimate IVW, these results did not change significantly

(Supplementary Tables 3, 6). The MR-Egger regression

results showed that there was no horizontal pleiotropy

between the genus Oxalobacter and CAD (P = 0.896),

family Clostridiaceae_1 and stroke (P = 0.145), family

Clostridiaceae_1 and ischemic stroke (P = 0.851). The

MR-PRESSO analysis showed that there are no outliers in

the analysis of genus Oxalobacter, family Clostridiaceae_1.

The results obtained by WME method were consistent

with those achieved with the IVW method (Table 1).

There was no significant change in the risk estimations

for genetically predicted in leave-one-out analysis, proving

that the causal relationship was not driven by specific

SNPs (Supplementary Figures 1–3). There were no weak

instrumental variables bias as the F statistics of the SNPs

were all >10 (Table 2; Supplementary Table 1). The MR

Steiger test indicated that there was no reverse causality

(Supplementary Table 5).

TABLE 2 Characteristics of SNPs used for gut microbiome in MR analyses (P < 1 × 10−5).

Bacterial traits SNP EA OA EAF Beta SE P-value Sample size R
2

F statistic

Family Clostridiaceae1 rs56188186 A G 0.076 0.097 0.022 8.24E-06 13,218 0.001 19.801

rs12490337 C G 0.246 −0.062 0.014 6.91E-06 14,253 0.001 20.297

rs62397761 A G 0.286 0.062 0.014 9.08E-06 14,248 0.001 20.440

rs2817172 C T 0.413 0.056 0.012 5.27E-06 13,789 0.001 20.665

rs10875374 C T 0.448 −0.054 0.012 8.10E-06 14,253 0.001 20.194

rs881532 A G 0.523 −0.053 0.012 7.90E-06 14,250 0.001 20.058

rs12186080 G A 0.839 0.075 0.016 5.34E-06 14,244 0.001 21.209

rs550843 T C 0.851 −0.073 0.017 7.09E-06 14,234 0.001 19.040

rs12341505 G A 0.889 0.081 0.018 4.54E-06 14,250 0.001 20.624

rs4723021 T C 0.942 −0.106 0.024 7.42E-06 13,682 0.001 19.328

rs2795528 G A 0.951 −0.181 0.039 3.81E-06 6,411 0.003 21.425

Genus. Oxalobacter rs12002250 A C 0.060 0.217 0.047 1.42E-06 4,297 0.005 21.669

rs36057338 G T 0.076 0.208 0.042 8.80E-07 4,244 0.006 24.312

rs11108500 A G 0.077 −0.199 0.043 3.74E-06 4,303 0.005 21.698

rs1569853 T C 0.138 −0.138 0.030 3.65E-06 4,492 0.005 21.607

rs6000536 C T 0.211 −0.131 0.025 2.06E-07 4,654 0.006 26.626

rs736744 C T 0.585 0.118 0.021 2.57E-08 4655 0.007 31.122

rs6071435 T A 0.636 −0.106 0.021 1.07E-06 4,635 0.005 24.098

rs4428215 G A 0.740 0.130 0.024 7.51E-08 4,655 0.006 28.918

rs10464997 G A 0.847 0.138 0.029 3.30E-06 4,650 0.005 21.805

rs6993398 G A 0.847 0.127 0.028 7.13E-06 4,656 0.004 20.804

rs3862635 C T 0.922 −0.172 0.039 9.19E-06 4,469 0.004 19.078

rs111966731 T C 0.928 0.213 0.047 7.30E-06 3,931 0.005 20.409

SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; SE, standard error.

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.971376
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fcvm.2022.971376

Genome-wide statistical significance
threshold

When the MR analysis on gut microbiome was performed

as an entire, the results of IVW, MR Egger, WME and

weighted mode showed that gut microbiome was not related

with any CVD risk (Supplementary Table 7). The Cochrane Q

statistics results showed no significant heterogeneity except for

HF (P = 0.049) (Supplementary Table 7). In addition, the F

statistics of all SNPs were >10. After using the random effects

model to estimate IVW, the result for HF did not change

significantly (Supplementary Table 7). There was no evidence

of horizontal pleiotropy between IVs and CVDs as shown

by MR-Egger regression analysis (Supplementary Table 7).

The results of gut microbiome classification also indicated

that no causal relationship between gut microbiome and

CVDs (Supplementary Table 8). Heterogeneity and horizontal

pleiotropy were failed to be examined due to the limited number

of included SNPs.

Discussion

In this study, we used MR to investigate the potential causal

relationship between gut microbiome and 9 CVDs. Our findings

indicate that genetically predicted level of genus Oxalobacter

might be the risk factor for CAD, and family Clostridiaceae_1

was related to a reduced risk of stroke and ischemic stroke,

probably acting through blood pressure. We failed to find

evidence to support a causal association between other gut

microbiome and CVDs in both locus-wide significance level and

genome-wide statistical significance threshold.

A compelling finding of this study is that genus Oxalobacter

might increase the risk of CAD. The type species of genus

Oxalobacter is Oxalobacter formigenes, which has been widely

studies in nephrolithiasis (29). Oxalobacter was thought

to prevent calcium nephrolithiasis through two different

mechanisms: degradation of oxalate in the gut lumen with

reduction of mucosal absorption and promotion of endogenous

oxalate secretion by the gut mucosa (30). However, studies

on the role of Oxalobacter in CAD are limited. Emoto et al.

(4). analyzed the gut microbiota composition in CAD patients

for the first time but did not find a link between the genus

Oxalobacter and CAD. Recently, Zheng and her colleagues (31)

found that 28 genera, including Oxalobacter, were significantly

increased in CAD patients, which was consistent with our

findings. It is a pity that Zheng et al. did not conduct

further research and discussion on this finding. Thus, it is

necessary to further study the possible role of Oxalobacter in

CAD development.

Although many studies have examined changes in

Clostridiaceae in stroke patients, the relationship between them

remains unclear. Previous studies have found an overabundance

of Clostridial species in post-stroke mice, which as a part of

stroke-induced shift in microbiological composition (32). On

the contrast, Lee et al. (33) found that Clostridiaceae were

enrich in microbiota of young stroke mice compared to aged

and associated with improved outcomes. In human, Xia et al.

(34) found that stroke patients had decreased abundance of

Clostridiaceae compared to health control, which was accord

with our findings. They also found that decreased abundance of

Clostridiaceae was strongly associated with more severe brain

injury and a greater likelihood of unfavorable outcomes. It

should be noted that the results of this study suggested that

Clostridiaceae was related to both stroke and ischemic stroke,

but ischemic stroke account for 85% of all stroke cases. This

suggests the causality of Clostridiaceae and stroke may be due to

its causal relationship with ischemic stroke to some extent.

The mechanisms of the neuroprotective effects of

Clostridiaceae on stroke are not fully understood. One possibility

is the protective effect of Clostridiaceae-driven short-chain fatty

acids (SCFAs) on ischemic stroke. Studies have demonstrated

that higher risk of stroke was correlated with lessened levels of

butyrate-producing bacteria in the Gut microbiome (35). Sun

et al. (36) observed that Clostridium butyricum, the type species

of Clostridiaceae, has a neuroprotective effect against cerebral

ischemia/reperfusion injury mice, and this neuroprotective

effect may be involved to its ability to reverse the decrease of

butyric acid content in the brain. Furthermore, researchers

have shown that poor stroke outcome in older mice can be

reversed by poststroke bacteriotherapy supplemented with 4

SCFA-producers, including Clostridium symbiosum (33).

In the initial studies, trimethylamine N-oxide (TMAO), a

metabolite formed after diet, has attracted extensive attention

as a potential causal link between gut microbiome and CVDs.

Wang et al. (37) first identified TMAO as a gut microbiota-

derived factor that has been shown to predict risk for CVDs.

Studies have observed that high TMAO levels were positively

associated with the risk of major cardiovascular events (38).A

meta-analysis of date from 19 studies shown that participants

with higher levels of TMAO had a 62% increased risk

for the development of cardiovascular events (39). However,

researchers failed to demonstrate a significant association of

genetically predicted higher levels of TMAO and its predecessor

with cardiometabolic disease through MR (40).

Our study has several advantages. The main advantage is the

MR design, which enables us to estimate the causality between

gut microbiome and 9 CVDs without disturbance from residual

confounding or reverse causal relationship. We strictly screen

the related SNPs using Plink clumping and Phenoscanner before

the MR analysis. As far as we know, this is the first MR analysis

on this topic.

There are also several limitations in this study. First, the

available data we used were not individual-level statistics, so

it might lead to inevitable biases in our results. Second, due

to the lack of demographic data in the original research, we
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were unable to conduct the subgroup analysis, such as gender-

specific causal association between gut microbiome and the risk

of CVDs. Third, gut microbiome gene regulation can be greatly

influenced by epigenetic phenomena (e.g., methylation) and

developmental compensation mechanism (41), which may also

influence the association between gut microbiome and CVDs,

but such effects cannot be assessed because these are inherent

defects of MR.

In conclusion, our MR study supports that there are

beneficial or adverse causal effects of gut microbiome

components on CVDs risk. We find suggestive evidence

that genus Oxalobacter are causally association with higher risk

of CAD and family Clostridiaceae_1 are causally related to lower

risk of stroke and ischemic stroke. Our findings provide novel

insights into strategies for the prevention and management of

CVDs through the gut microbiome.
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