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This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative
role of circulating inhibitory metabolites in drug–drug interactions using physiologically based pharmacokinetic (PBPK)
modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were
systematically evaluated in addition to the literature review of recent examples. The application of PBPK modeling in drug
interactions by inhibitory parent–metabolite pairs is described and guidance on strategic application is provided.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 505–515; doi:10.1002/psp4.12110; published online 19 September 2016.

OVERVIEW

Drug–drug interactions (DDIs), associated with altered drug
clearance, are a major source of severe adverse reactions
and drug withdrawals.1–3 For this reason, predicting and
managing the impact of DDIs, involving cytochromes P-450
(CYPs) and other drug-metabolizing enzymes, have long
been emphasized in drug discovery and development.4 In
addition, the clinical implications of transporter-based DDIs
have recently been highlighted.5–8 Mechanisms involved in
DDIs that affect enzyme activity can be broadly categorized
as reversible inhibition, mechanism-based (irreversible) inhi-
bition, and induction. Generally, the parent drug is the only
or primary perpetrator species responsible for the observed
DDI. However, the potential contribution of metabolite(s) cir-
culating at high levels in the blood has been recently debat-
ed.9 There are now noted examples where circulating
metabolites may have partially or fully contributed to the
observed clinical DDIs.9–13 As a result, recent regulatory
guidance recommends investigation of the role of metabo-
lites in clinical DDIs. Specifically, both the European Medi-
cal Agency (EMA) and US Food and Drug Administration
(FDA)14,15 have proposed criteria based on the relative

exposure of metabolite and parent drug in systemic circula-
tion. Sponsors are encouraged to investigate the in vitro
interaction potential of a metabolite when that metabolite is
present at �25% of parent area under the plasma concen-
tration–time curve (AUC) (FDA) or �25% of parent AUC
and �10% of total drug-related AUC (EMA).

PBPK modeling and simulation is a computer-based
approach that permits a quantitative mechanistic descrip-
tion of systemic drug exposure. Increased application of
PBPK in the drug discovery and development settings is
now evident.16 A PBPK model is a mathematical model
that is developed based on available data and the overall

objective of the modeling effort. Broadly, application of PBPK
may be grouped into three general categories: so-called
“top-down,” “bottom-up,” and “middle-out” approaches. A

top-down approach refers to the more traditional fitting of
models to observed clinical data. Bottom-up models are typi-
cally created at earlier stages of drug development and, as
such, rely primarily on a combination of in vitro and in silico

data. Middle-out models incorporate both in vitro and in vivo
data while also leveraging “learn and confirm” cycles of feed-
back and model optimization.

In order to evaluate the application of the guidance docu-
ments in drug development, the Metabolite-Mediated DDI

Scholarship Group (MDSG) was formed under the umbrella
of the Drug Metabolism Leadership Group of the Innovation
and Quality Consortium (IQ-DMLG). The MDSG conducted
a thorough literature review of in vitro and in vivo DDIs for

137 most-frequently prescribed drugs. The objectives of
this scholarship group were: first, to understand the fre-
quency of cases where metabolite(s) significantly contribut-
ed to DDIs, and second, to assess current practices for

metabolite in vitro inhibition studies in drug development
settings.12 Of the DDIs reviewed by the MDSG, several
drugs (including gemfibrozil, sertraline, bupropion, and
amiodarone) were identified with “surprise” DDIs: examples

in which in vivo CYP inhibition was not predicted by in vitro
CYP inhibition data. For these examples, metabolites were
proposed to contribute to the in vivo CYP inhibition. The
MDSG was subsequently interested in investigating possi-

ble strategies (i.e., PBPK) that can prospectively prompt
the assessment of CYP inhibition potential of metabolites in
order to avoid “surprise” clinical DDIs due to metabolites.

To further assess the quantitative contribution of circulat-
ing metabolite(s), a Metabolite Scholarship PBPK Modeling

subteam was formed. This team was composed of scien-
tists representing IQ member pharmaceutical companies
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with expertise in PBPK modeling and simulations. Here we
present the position of the Metabolite Scholarship PBPK
modeling team in the application of mechanistic modeling
approaches to predict and/or rationalize the role of circulat-
ing metabolites in observed clinical DDIs. We have summa-
rized the current state of the science and reviewed select
case examples of perpetrator drugs with inhibitory metabo-
lites. Based on the learnings from these examples, prag-
matic guidance is proposed for implementing mechanistic
modeling to facilitate decision making at different stages of
development.

MECHANISTIC CONSIDERATIONS AND PREDICTION

OF INHIBITORY METABOLITE EXPOSURE

The metabolite-to-parent exposure in the blood (also

referred to as AUCm/AUCp) after the intravenous or oral

administration of parent is expressed by Eqs. 1 and 2,

respectively17,18:

AUCm

AUCp
5

fm � CLp

CLm
(1)

AUCm

AUCp
5

fm � CLp

Fh � CLm
(2)

where CLp and CLm are the total in vivo clearances of the

parent and metabolite, respectively. Other critical parame-

ters include the fraction of parent metabolized to form the

particular metabolite (fm) and the fraction of parent escap-

ing hepatic first-pass extraction (Fh). It is therefore apparent

that major circulating metabolites are generally a result of

high formation clearance (fm�CLp) and/or low elimination

clearance (CLm). Intuitively, one would expect that estima-

tion of these parameters could facilitate identification of

major circulatory metabolites, which would then need fur-

ther characterization for interaction potency. However,

metabolite disposition is often complicated by a lack of

understanding of the multiple processes that define forma-

tion and elimination clearances, or of metabolite availability

at the site of interaction relevant for DDIs.
Following oral administration of the perpetrator parent

drug, metabolite(s) may be formed in the enterocytes dur-

ing intestinal first-pass extraction by a range of drug metab-

olizing enzymes, including CYPs (Figure 1). The CYP3A

family (e.g., CYP3A4 and CYP3A5) is the predominant

CYP family in the small intestine, accounting for about 80%

of total CYP content in this organ.19,20 Although the abun-

dance of CYP3A4 in the intestine accounts for only 1% of

the average CYP content in the liver,20,21 intestinal metabo-

lism has been observed to contribute more to first-pass

extraction, to a significant extent, compared to hepatic

metabolism for certain drugs.22–26 Intestinal metabolism

may result in availability of metabolite(s) within the entero-

cytes, which could inhibit the metabolism and/or active

efflux transport at the site (Figure 1). Additionally, metabo-

lites are generally more hydrophilic than the parent drug,

which may limit passive permeability and result in higher

enterocyte concentrations of metabolites compared to

parent.27 Metabolite(s) formed in the enterocytes may sub-

sequently be transported into the blood or intestinal lumen

via efflux transporters such as P-glycoprotein (P-gp), breast

cancer resistant protein (BCRP), and multidrug resistant

proteins (MRPs).28 For example, the metabolite of ropiva-

cain is secreted into intestinal lumen to a larger extent com-

pared to parent.29 Parent and the metabolite formed in

enterocytes and available in portal blood may also contrib-

ute to the inhibition of hepatic uptake transporters such as

organic anion transporting polypeptides (OATP)1B1 and

OATP1B3 and organic cation transporter 1 (OCT1).
The relationship between plasma concentration of parent

and metabolites, which is readily measurable, and exposure

at the site of interaction, which is not, is another complicat-

ing factor. It is often assumed that the drug concentration

at the site of interaction (e.g., liver inlet for uptake trans-

porters and hepatocyte cytosol for the enzymes and biliary

efflux transporters) is similar to the unbound drug concen-

tration at the plasma/blood sampling site. However, this is

not always the case. Depending on the hepatic extraction,

concentration of parent and metabolite in the inlet of the

liver could be significantly higher than concentrations

observed in venous blood. On the other hand, free liver

concentrations of the parent and metabolite at steady-state

could differ from the free blood concentration due to

involvement of drug transporters. Several uptake transport-

ers including OATPs, sodium taurocholate cotransporting

polypeptide (NTCP), OCT1 and organic anion transporter 2

(OAT2), are expressed on the sinusoidal membrane of hep-

atocytes, as well as the efflux pumps, MRP3 and MRP4.28

Additionally, canalicular efflux transporters (P-gp, BCRP,

and MRP2) may contribute to the biliary elimination. For

example, plasma and liver exposure of gemfibrozil 1-O-b-

glucuronide, the major circulating metabolite of gemfibrozil,

is determined by uptake (OATPs) and efflux transporters

(MRPs).30,31

Finally, renal clearance involving glomerular filtration

and active secretion is important in the clearance of hydro-

philic oxidative or conjugated metabolites. Overall, the

enzyme-transporter interplay at the intestine and liver, and

the contribution of active and passive renal clearance,

determines the disposition or concentration of parent and

metabolites at the relevant site of interaction. Therefore,

each of these processes, and their relative roles, must be

well understood in order to predict the exposure of the

parent and metabolite perpetrating the clinical DDIs. Due

to limited tools and key knowledge gaps in the translation

of several nonenzymatic processes, prospective prediction

of metabolite exposure at the site of interaction is highly

challenging.

MODEL-BASED APPROACHES FOR PREDICTING DDIs

CAUSED BY INHIBITORY METABOLITES

Mathematical models may be broadly grouped into descrip-

tive categories: simple static, mechanistic static, dynamic

minimal-PBPK, and full PBPK models.16 These represent a

spectrum of increasingly parameterized models, which rely
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upon an increasing number of accompanying assumptions

and required experimental inputs.

Simple and mechanistic static models
The simple static and mechanistic static models for parent

drug have been well elaborated in FDA and EMA guidance

documents.14,15 These models may be adapted by adding

the elements of inhibitory metabolites for the prediction of

clinical DDIs, which involve perpetrator parent drugs with

known inhibitory metabolites (Table 1). The most basic (i.v.

drug administration) model for the estimation of DDIs is the

static prediction of change in victim drug AUC as a function

of inhibition potency (Ki) and perpetrator exposure in the

liver (IH) for both parent and circulating metabolite

(Eq. 3)11,13:

AUCinhibited

AUC
511

IH;parent
� �
Ki;parent

1
IH;metabolite
� �
Ki ;metabolite

� �
(3)

In the most basic static models, prediction of DDI magni-

tude is driven by a single unbound perpetrator concentra-

tion. There is considerable debate in the literature regarding

selection of relevant in vivo perpetrator concentration

estimates used in the static model (e.g., average systemic
(Iav), maximum systemic (Imax), or hepatic inlet (Iinlet)).

4,32,33

Typically, basic models are applied to project a worst-
case scenario in situations where prior knowledge (experi-
mental data) is limited. Prior to the availability of clinical
exposure data, estimation of perpetrator concentration in
human may be based on the prediction from preclinical
data and desired efficacious exposure. In order to investi-
gate the role of metabolites, application of static DDI mod-
els require an understanding of metabolite concentrations
as well. Although the mechanistic static models are limited
to predictions based on single inhibitor concentrations,
models provide a more realistic estimate of DDI risk by
incorporating additional factors such as the interaction at
the level of intestine (for an orally administered drug), paral-
lel routes of elimination for the victim drug, and transporter–
enzyme interplay.4,34–38 There are several variations of
models with increasing complexity reported in the literature
and subsequently summarized in the 2012 FDA draft DDI
guidance.14 The mechanistic static model suggested by the
2012 draft FDA guidance was based on the original equa-
tions published by Rowland et al.39 Subsequently, this
approach was modified by others32,35,40 and is regularly

Figure 1 Mechanistic framework for the prediction of DDIs involving inhibitory metabolites. Intestine and liver are the major sites of
drug interactions, and concentrations of the parent and metabolites at the site of interaction is determined by enzyme–transporter inter-
play in these organs. Hydrophilic metabolites are also cleared in the urine by active and passive processes. P, parent; M, metabolite.
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used in DDI risk assessment. Further modifications can

allow for incorporation of multiple inhibitory species, includ-

ing metabolites (Eq. 4):

AUCinhibited

AUC
5

 
1

ð12FGÞ3
�

1

11

�½IG;parent �
Ki ;parent

� 	1FG

!

3

 
1

fm:CYP3
�

1

11

�½IH;parent �
Ki ;parent

1
½IH;metabolite �
Ki;metabolite

� 	1ð12fm:CYPÞ

! (4)

Here, FG is the relative fraction of substrate escaping first-
pass extraction in the gut and fm,CYP is the relative contri-

bution of the inhibited CYP to the overall metabolic

clearance of the drug. The parameter FG will be important

when considering interactions with CYP enzymes abun-

dant in the gut (e.g., CYP3A4). Various methods have

been utilized to predict the required parameters (FG and

fm,CYP) based on in vitro data (i.e., estimated intestinal

blood flow as a function of permeability Qgut and in vitro

phenotyping26,41). A much more detailed summary of
approaches used to characterize fm,CYP was recently pub-

lished by another DMLG working group.42 In guidance

documents, regulatory agencies suggested a worst-case

scenario prediction of intestinal drug concentration (Ig)

based on the ratio of molar dose amount to a hypothetical

intestine lumen volume of 250 mL. This approach

assumes instant and complete dissolution of the complete

dose, ignoring solubility and membrane permeability fac-

tors and is likely to be an overprediction of actual luminal
concentration in many cases, specifically BCS class II and

IV compounds. A more mechanistic approach was sug-

gested that requires an understanding of fractional absorp-

tion (Fa), absorption rate (ka), and estimated enteric blood

flow (Qenteric) (Eq. 5) and assumes minimal extraction
drug dose (D) by first pass metabolism43:

IG5
Fa3ka3D

Qenteric
(5)

Minimal- and full-PBPK dynamic models
PBPK models integrate compound-related data, along with

species physiology, to simulate the change of drug expo-

sure in plasma and tissue. Minimal-PBPK models incorpo-
rate select physiological parameters, including blood flows,

tissue volumes, etc., and are generally focused on organs
with critical impact on in vivo drug disposition (such as liver

and intestine), while lumping other organs (i.e., well-

perfused) into a single virtual compartment.44 While this is
appropriate for some drugs, which exhibit one-compartment

PK, minimal models may require an additional compartment
to represent distribution into poorly perfused organs. Full

PBPK models additionally incorporate sophisticated physio-

logical information that accounts for mass/drug transfer
between physiological compartments, along with mechanis-

tic models for absorption, metabolism, distribution,
and elimination and often consider population variability

(Figure 1).45 PBPK models allow for a more mechanistic

estimation of inhibitor concentration (metabolite and/or par-
ent) at the site of DDI in the relevant organ(s) compared to

simplified models (e.g., the static models). One of the pri-
mary advantages of the PBPK approach for DDI prediction

for parent drugs with known inhibitory metabolites is that it

can describe formation of inhibitory metabolite(s) quantita-
tively from parent clearance. This is of particular interest in

cases where the relationship between parent and metabo-
lite concentration in systemic circulation is time- or dose-

dependent. This approach may decrease the number of

false-positive predictions or support the design of more
informative clinical DDI studies.

Table 1 Summary of available DDI modeling approaches commonly applied in drug development

Approach Inhibitor concentrations [I] Strengths Limitations

Simple Static Total or unbound observed or predicted

for both the parent and inhibitory

metabolite(s) (Iave, Iinlet, Imax)

� Limited input data required � Very simplified often resulting in a

conservative estimate

� Liver DDI only

� Does not capture parallel clearance

and elimination pathways

� Lacks physiology inputs

Mechanistic Static Total or Unbound observed or pre-

dicted for both the parent drug and

inhibitory metabolite(s) (Iave, Iinlet,

Imax)

� Limited input data required

� Description of parallel clearance and

elimination pathways

� Ability to incorporate DDI at the

level of intestine

� Can capture transporter-mediated disposition

� Lack consideration to time-varying

perpetrator concentration

� Assume linear PK and does not con-

sider accumulation

Minimal-PBPK Simulation based on pharmacokinetic

and physiology data for both the par-

ent drug and inhibitory metabolite(s)

� Description of parallel clearance and

elimination pathways

� Can capture transporter-mediated disposition

� Typically includes liver, gut with other

tissues lumped into a virtual

“systemic compartment”

Full PBPK Simulation based on pharmacokinetic

and physiology data for both the par-

ent drug and inhibitory metabolite(s)

� Thorough physiology description

� Description of parallel clearance and

elimination pathways

� Can capture transporter-mediated disposition

� Application in special populations

� Requires extensive in vitro and in

vivo data or in silico predicted

parameters
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PBPK modeling and simulation of DDI involving

inhibitory metabolite: case examples
Three case examples were investigated by this subgroup.

Amiodarone and gemfibrozil examples have been published

individually in greater detail by members of this sub-

group.31,46 A high-level summary of amiodarone and gemfi-

brozil investigations, along with a description of the

investigation of sertraline, is provided below. In the following

three case examples, we summarize the PBPK modeling

applied to describe the role of inhibitory metabolites in

observed clinical DDIs. In addition, guidance is provided for

strategic application of mechanistic modeling in situations

where metabolites may potentially contribute to clinical DDI.

In vitro inhibition parameters, and observed and predicted

in vivo DDIs using developed PBPK models, are summa-

rized in Table 2.

Amiodarone. Amiodarone (AMIO) is an effective antiarrhyth-

mic agent with documented clinical DDIs with comedica-

tions, including simvastatin (AUC increased by 1.7-fold),

dextromethorphan (1.3–2-fold), and warfarin (1.2–2-fold) at

therapeutic doses of AMIO (200–400 mg).47–49 These clini-

cally observed DDIs were not expected based on AMIO in

vitro competitive inhibition data (Ki >45 lM for all CYPs).50

However, in vitro studies imply that the AMIO metabolite,

mono-desethyl-amiodarone (MDEA), is a more portent

inhibitor, with Ki values of 2.3 lM, 4.5 lM, and 12.1 lM for

CYP2C9, CYP2D6, CYP3A4, respectively.50,51 Considering

that MDEA is a major metabolite with plasma exposure

comparable to the parent after chronic treatment (�1–5 lM

at steady-state), it was hypothesized that MDEA may play

an important role in the observed inhibition DDI.
A PBPK model was developed using a mixed “bottom-

up” and “top-down” approach (i.e., “middle-out”) to simulate

the pharmacokinetic profile of both AMIO and MDEA.46 In

order to obtain the mechanistic understanding of how

MDEA could contribute to the clinically observed AMIO
DDIs, particular emphasis of the PBPK modeling was

placed on predicting the accumulation of both parent and
metabolite in plasma and liver after multiple doses.46 This
is especially important for AMIO, as it is used as a chronic

therapy. Key PBPK model parameters (clearance and vol-
ume of distribution) for both AMIO and MDEA, and forma-

tion kinetics for MDEA after i.v. administration of AMIO,
were defined using a combination of in silico, in vitro, and

in vivo data.46 Simulations of AMIO and MDEA pharmaco-
kinetic profiles, after single and multiple oral doses, were

performed as a verification of the PBPK model developed
using i.v. pharmacokinetic data. The AMIO-MDEA linked

PBPK model predicted both the formation and elimination
of MDEA successfully based on comparison of the observed
and simulated MDEA pharmacokinetic profiles.46 More

important, the observed accumulation of AMIO and MDEA in
plasma and liver after chronic oral dosing was well described

by the simulations. At steady-state, the simulated plasma
concentration of metabolite MDEA reached levels similar to

the parent AMIO (�1 lg/mL), consistent with clinical obser-
vations.51,52 The DDIs between AMIO and substrates warfa-

rin (CYP2C9), metoprolol (CYP2D6), and simvastatin
(CYP3A4) were then simulated using the established model;
all plausible mechanisms of CYP inhibition by AMIO and its

metabolite MDEA were considered.
In general, incorporation of the inhibitory metabolite

MDEA into the PBPK model resulted in more accurate pre-

dictions of all DDIs compared to the predictions based on
the parent alone. These simulations led to increased confi-

dence in the hypothesized mechanism of the DDI caused
by AMIO. The observed AMIO–metoprolol interaction was

attributed to the TDI of CYP2D6 mediated by MDEA. The
AMIO–simvastatin interaction was associated with competi-

tive inhibition by both parent and metabolite. Finally, the
observed DDI with warfarin was dependent on incorporation

Table 2 Summary of in vitro inhibition potency and observed and predicted in vivo DDIs for case studies

Parent Metabolite

Ki (mM) Observed AUCR

Predicted

AUCR Key learnings

Transporter/

enzymes Parent Metabolite Co-Med AUCR

Amiodarone MDEA CYP2C9, 94.6 2.3 warfarin 1.27–1.73 1.18 No interaction was predicted without

considering inhibitory metabolite.

PBPK modeling revealed possible

mechanism of clinical observed

AMIO DDIs41

CYP2D6, 45.1 4.5 metaprolol 2.11 2.45

CYP3A4 271.6 12.2 simvastatin 1.97 1.93

Gemfibrozil Gem-Glu OATP1B1

and CYP2C8

2.54 7.9 Repaglinide 5-8 5.9 No significant interactions were pre-

dicted without considering inhibitory

metabolite. PBPK modeling consider-

ing transporter and enzyme inhibition

better predicted clinical DD observa-

tions. Metabolite contributed majorly

to the observed DDIs21

CYP2C8 6.9 (7.9 mM and

12.6h21)a
Rosiglitazone 2.8 2.5

Sertraline NDMS CYP2D6 0.16b 0.46b desipramine 1.54 1.08 Consideration of parent and metabolite

inhibition potential predicted lack of

CYP2D6 DDI. Considering inhibition

potential of parent alone predicted

the risk of clinical CYP3A DDI

CYP3A 0.22b 0.11b pimozide 1.37 1.83

aKi corrected for microsomal binding.
bTime-dependent inhibition of CYP2C8 by gemfibrozil 1-O-b-glucuronide – values represent KI corrected for binding to microsomal protein and kinact,

respectively.
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of additional AMIO metabolites (DDEA, ODAA) recently
identified as more potent CYP2C9 inhibitors.51 Overall, this
work demonstrated the utility of “middle-out” PBPK model-
ing in improving the mechanistic understanding of the
observed clinical DDI. Through simulation of the proposed
mechanism of inhibition, the disconnect between the initial
DDI predictions and observed data was explained by the
contribution of a major circulating inhibitory metabolite.46

Gemfibrozil. Gemfibrozil is often prescribed and is generally
a well-tolerated drug for the treatment of patients with ele-
vated serum triglyceride levels and for reducing the risk of
coronary heart disease.53 Gemfibrozil is known to perpe-
trate various drug interactions. However, the major indica-
tion of its severe interaction potential emerged with
cerivastatin as a victim drug. Higher incidence of fatal rhab-
domyolysis was linked to increased cerivastatin exposure in
patients on gemfibrozil.54,55 Other notable gemfibrozil DDIs
involve victim drugs repaglinide (AUC ratio (AUCR)
�8),56,57 pioglitazone (AUCR �4),58 and rosiglitazone
(AUCR �2.5).59 Subsequently, cerivastatin was withdrawn
from the market, and the concomitant use of gemfibrozil
and repaglinide is contraindicated.57 On the basis of these
clinical data, gemfibrozil has been suggested as a strong
CYP2C8 inhibitor for clinical investigation by both the FDA
and the EMA.14

Gemfibrozil presents a complex interaction profile involv-
ing inhibition of multiple transporters and CYP2C8 by par-
ent and its metabolite, gemfibrozil 1-O-b-glucuronide
(Gem-Glu). Gem-Glu is a TDI of CYP2C8; both parent and
metabolite also behave as moderate inhibitors of OATP1B1,
OAT3, and weakly inhibit CYP2C9 and CYP3A4.60–62 A
PBPK model for gemfibrozil, incorporating relevant data to
capture Gem-Glu pharmacokinetics and interaction mecha-
nisms, was developed.31 The primary objectives were to
understand the quantitative role of Gem-Glu in the magni-
tude of gemfibrozil DDIs and to assess the ability of the
PBPK modeling approach to predict complex drug interac-
tions involving transporter–enzyme interplay and multiple
inhibitory species.31 The multiple interaction mechanisms
(CYP2C8 and OATP1B1) of both parent and metabolite are
simultaneously implemented in the PBPK model to predict
DDIs of representative victim drugs including cerivastatin,
pioglitazone, repaglinide, and rosiglitazone. While consider-
ation of parent alone led to a significant underprediction,
the inclusion of Gem-Glu in the PBPK model greatly
improved the accuracy of predicted AUC ratios and plasma
concentration–time profiles of victim drugs.

Model-based simulations suggest that Gem-Glu has a
much larger inhibitory effect than that of the parent in vivo,
due to its relatively higher unbound concentrations and
CYP2C8 potency. Sensitivity analyses on the impact of
metabolite-to-parent ratio on AUCR suggested that Gem-
Glu exposure at �10% of the parent moved the DDI category
from no or weak (AUCR <2) to moderate (2 < AUCR < 5) for
all four victim drugs.31 This suggests that the Gem-Glu expo-
sure that is needed to bring about complete inactivation of
CYP2C8 is only a fraction of that achieved in the clinic follow-
ing a 600 mg b.i.d. gemfibrozil dose. The regulatory recom-
mendation to trigger in vitro investigation of interaction

potential of metabolites applies to Gem-Glu due to its sys-
temic exposure being �25% of parent AUC. However, the
TDI component makes the metabolite a major perpetrating
species for CYP2C8 inhibition even when available at <10%
of parent AUC. Furthermore, the DDI risk in vivo when
metabolites inhibit both uptake transport and metabolism is
expected to be large. Overall, the default metabolite-to-
parent exposure cutoff (�25%) may not firmly reflect upon
the DDI potential following gemfibrozil dosing. Collectively,
the gemfibrozil case study reinforces the utility of in vitro data
and the modeling approaches that mechanistically integrate
the multiple components in the DDI risk assessment. Fur-
thermore, transporter–enzyme interplay and the role of per-
petrator metabolites need to be carefully considered to
achieve quantitative rationalization and/or prediction.

Sertraline. Sertraline is a selective serotonin reuptake inhib-
itor (SSRI), which is now a highly prescribed antidepressant
and psychiatric medication. Sertraline undergoes extensive
metabolism, with the major circulating metabolite being N-
desmethyl-sertraline (DMS), which is pharmacologically
less active than sertraline. Although multiple CYPs
(CYP2D6, CYP2C9, CYP2B6, CYP2C19, and CYP3A4) are
responsible for the metabolism of sertraline, CYP2C19 is
the principal drug metabolizing enzyme contributing to N-
demethylation.63–65 Under steady-state conditions, DMS
concentrations in plasma are higher than that of sertraline.
The ratio of DMS to sertraline vary from 1.1–4.1-fold
among the patients receiving sertraline at 100–300 mg/day
(Pfizer internal data). Both sertraline and DMS are weak
CYP2D6 inhibitors. Clinical studies demonstrated an increase
in AUC of CYP2D6 probe substrate desipramine by �50%.66

Sertraline is also a weak competitive inhibitor of CYP3A and
has been reported to increase the plasma concentration of
pimozide, a drug mainly metabolized by CYP3A4.67

A PBPK model was developed for sertraline and DMS,
where the sertraline model was built “bottom-up” and the
metabolite model was developed with a “middle-out”
approach; .25; metabolite model input parameters were
acquired from both in vitro studies and observed clinical
pharmacokinetics (Supplementary Table 1). The final
PBPK model recovered plasma concentration–time profiles
of both sertraline and DMS following single and multiple
doses of sertraline (Figure 2). A SimCYP default model (v.
14, Cetara) of the victim drug desipramine was used to
assess CYP2D6-mediated DDIs (Supplementary Dataset
1). Additionally, a desipramine model was verified for its
utility to assess CYP2D6-mediated interactions based on
the predictability of the interaction with paroxetine as perpe-
trator drug (observed vs. predicted AUC ratios are 5 and
5.8, respectively). Using this verified desipramine model, no
DDI was predicted when coadministered with a single
150 mg dose of sertraline (Figure 2). Furthermore, no DDI
was predicted with multiple doses of sertraline (150 mg,
8 doses), where the predicted value was only 1.08 and the
mean observed AUC ratio was 1.54 (Table 2). No signifi-
cant difference in prediction accuracy was observed when
metabolite (DMS) interaction potency was included. The
lack of predicted DDI with the parent–metabolite pair sug-
gests the possibility that other interaction mechanisms, not
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currently fully understood, are needed to be captured in the
mechanistic modeling (for example, TDI of CYP2D6) and
may need further investigation.

Using a simple static model (i.e., maximum free inhibitor
concentration in plasma divided by Ki), sertraline as a per-
petrator was categorized as “no risk” for CYP3A4-mediated
interactions when assuming parent as the lone interacting
species, as well as when the parent–metabolite pair was
considered (predicted AUC ratio <1.25). However, to mech-
anistically assess the CYP3A-mediated interactions and
rationalize the observed pimozide–sertraline clinical interac-
tion, a PBPK model was developed for pimozide, which is
primarily metabolized by CYP3A4 with a minor role of
CYP1A2.68 The pimozide model (Supplementary Dataset
2) was verified using clinical pharmacokinetic data and fur-
ther validated by simulating its clinical interaction with the
CYP3A inhibitor, clarithromycin (observed vs. predicted
AUC ratios are 2.1 and 2.5, respectively).69 The sertraline
model (parent alone) predicted a mean 57% increase in
AUC of pimozide compared to the clinically observed 37%

increase following 200 mg daily dose for 29 days (Pfizer

data on file). However, the model predicted an 83%

increase in pimozide AUC when inhibition by both sertraline

and DMS was considered. The difference of lack of interac-

tion with the simple static model vs. significant interaction

using the PBPK model is due to the mechanistic consider-

ation of CYP3A inhibition by sertraline at the gut. Overall,

unlike the case examples of amiodarone and gemfibrozil,

the sertraline mechanistic modeling suggests that consider-

ation of the major circulating metabolite does not explain

the modest CYP3A and CYP2D6 interactions observed in

the clinic, and implies the need to further investigate the

unknown mechanisms.

STRATEGIES FOR PREDICTING DDI INVOLVING

INHIBITORY METABOLITES

Of more than 100 drugs previously assessed using static

models, amiodarone, bupropion, gemfibrozil, and sertraline

Figure 2 Model-based prediction of sertraline DDIs. (a) Static model (11Imax,u/IC50) based prediction of pimozide (CYP3A substrate)
and desipramine (CYP2D6 substrate) interactions when assuming sertraline alone or in combination with metabolite, NDMS, as the
perpetrator species. (b) PBPK model simulation of the plasma concentration–time profiles of sertraline (closed triangles) and its metab-
olite (open triangles) following multiple oral dose of sertraline. (c) PBPK model prediction of pimozide-sertraline DDI. (d) PBPK model
prediction of desipramine-sertraline DDI. Plots c and d, data points represent observed data in the absence (open circles) and pres-
ence of sertraline dose; and the curves represent model prediction of control (solid curve), in the presence of sertraline alone (dotted
curves) and in the presence of sertraline and NDMS. PBPK model input parameters are provided in Supplementary Table 1.
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are the only examples where the interaction potential of
parent alone does not translate to a positive DDI observed
in the clinic. However, the major circulating metabolites of
these drugs inhibit enzymes and transporters in vitro, which
could explain the disconnect.12 We evaluated these drugs
(amiodarone, gemfibrozil, and sertraline) using PBPK
modeling to mechanistically understand the quantitative
contribution of the metabolites to the DDIs; additionally, we
reviewed the literature for other examples of metabolite-
precipitated DDIs (Supplemental Table 2). Some common
themes emerged across the three case studies reviewed.
First, PBPK models were used to quantitatively rationalize
and support the observed DDI via exploring inhibition
mechanisms of both parent and metabolite. Second, all
case studies presented in this work utilized both in vitro
and observed clinical pharmacokinetic data of metabolites
in order to build and verify model parameters for metabo-
lites, through a “middle-out” approach. Third, uncertainty in
model verification and quantitative prediction increase when

multiple metabolites are involved. And finally, true prospec-
tive prediction (“bottom-up” modeling) of metabolite-
mediated DDI can be challenging due to the uncertainty
associated with the prediction of in vivo disposition of
metabolites. Consistent with this assessment, many of the
recent published examples of mechanistic modeling to
assess metabolite mediated DDIs adopted a “middle-out”
approach (Supplementary Table 2). Nevertheless, approaches
for developing “bottom-up” PBPK models to predict metabolite
exposure using the in vitro data have been described and can
be applied for prospective predictions.70

Based on our learnings from the exercise and consider-
ing the literature examples, we believe that the following
stage-wise strategy (Figure 3) will be useful for the applica-
tion of PBPK modeling and simulation to improve under-
standing of the potential contribution of inhibitory metabolites
to clinical DDIs. In scenarios where metabolite contribution to
DDI is suspected, in vivo metabolite exposure data can be
used to support initial predictions based on the mechanistic

Figure 3 A mechanistic modeling strategy to prospectively predict DDIs involving inhibitory metabolites. Trigger metabolite inhibition
potential characterization if the parent is an inhibitor and the metabolite exposure is predicted or observed to be equal of more than
parent exposure with some considerations to the structural alerts for possible enzyme inhibition.12 Top-down metabolite models lever-
age observed in vivo metabolite data with minimal integrated mechanistic information. In this approach, the metabolite PBPK model
relies on optimization, which is dependent on high confidence in the parent PBPK model. Top-down models rely on fitting the clinical
concentration time data for the parent and metabolites. Bottom-up models must be applied in cases where in vivo data for the metabo-
lite are not yet available. This approach relies on in vivo parent data and in vitro metabolites data (formation and elimination rate) and
established in vitro/in vivo extrapolation (IVIVE). Once in vivo metabolite concentration data are available, a middle-out approach may
be applied. Finally, middle-out models are developed based on a combination of observed in vivo metabolite concentration data and in
vitro information of the mechanisms driving in vivo metabolite exposure. The middle-out approach allows for the greatest level of confi-
dence in the utility of the metabolite PBPK model based on this understanding of the underlying mechanisms driving metabolite expo-
sure. A top-down approach is typically favored when there are clinical metabolite concentration time data available; however, the
middle-out approach is considered the most mechanistically relevant.
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static model. In the absence of in vivo metabolite exposure
data, a PBPK model must be developed based on in vitro
metabolite formation and elimination rates determined in
vitro. Such “bottom-up” models may be verified when the in
vivo exposure data are available. In either scenario, a verified
PBPK model for the parent provides more confidence in the
utility of the metabolite PBPK model.

The case studies described here demonstrate the utility
of the PBPK approach as a tool to quantitatively rationalize
the underlying mechanisms of DDI involving inhibitory
metabolites. Furthermore, this approach provides insights
for prospective prediction of DDIs. Prospective DDI predic-
tion involving metabolites can be accomplished through the
integration of the disposition kinetics of both parent and
metabolite, and the in vitro interaction potency of each. The
prediction of metabolite pharmacokinetics in human may be
heavily based on in vitro or preclinical (animal) data, and
therefore, there is a need to build confidence in the expo-
sure projection of the metabolite(s).45,71 Prospective investi-
gations will typically be triggered in response to specific
clues.12,71 These include scenarios in which parent drug is
a potent inhibitor, or where metabolites are projected to cir-
culate systemically at concentrations equal to or exceeding
parent after multiple doses.12 Yu et al. concluded that it is
important to consider inhibition potential of metabolite
whenever parent is likely to inhibit CYPs.12 However, only
abundant metabolites should be considered for investiga-
tion in vitro when parent is not likely to inhibit CYPs. In
response to these clues, suspected inhibitory metabolites
must then be tested in multiple in vitro systems (including
a panel of drug metabolizing enzymes and transporters).
Furthermore, disposition attributes of the metabolites
should be investigated in a similar manner as the parent
drug so as to provide relevant inputs for the PBPK
modeling.45

In prospective PBPK model building, considerable uncer-
tainty is associated with the pharmacokinetics of both par-
ent and inhibitory metabolite. At this stage, sensitivity
analyses are highly recommended in order to predict a
range of likelihood for the simulated interaction magnitude
and to address fit-for-purpose questions at decision points.
Model parameter optimization is recommended as the clini-
cal data become available. For example, parameter optimi-
zation relevance may be evaluated through verification of
pharmacokinetic profiles for both parent and metabolite,
when both single- and multiple-dose clinical data become
available. However, any optimization steps must be based
on a sound mechanistic understanding of parent and
metabolite disposition in vivo.

Although PBPK is a better mechanistic approach, in par-
ticular scenarios, static models can be considered.72

Depending on the pharmacokinetic profile of parent and
metabolite, the prediction from static and PBPK approaches
will often be different due to the manner in which inhibitor
concentration is described by each model (static vs.
dynamic). However, predictions of the static model serve as
a useful reference for evaluating and troubleshooting the
PBPK model, which will provide higher confidence in the
predictions. The static models will generally be useful dur-
ing early development stages, such as clinical candidate

nomination, when extensive clinical metabolite data are not
available. However, estimates of inhibitory potency, clinically
relevant inhibitor concentration, and protein binding (fu,p,
fu,mic) for both parent and metabolite must be accurately
determined/projected in order to generate useful DDI
predictions.

CONCLUSION

Based on the collection of our work, it can be said that
PBPK modeling provides mechanistic understanding for
the observed clinical DDI caused by inhibitory metabo-
lite(s). However, a true prospective prediction of DDIs
involving major circulating inhibitory metabolites is chal-
lenging, primarily due to uncertainty associated with com-
plex metabolite disposition pathways leading to low
confidence in projecting metabolite exposure. Therefore,
we recommend a stage-wise modeling approach. Static
models should generally be applied in early development
when limited data are available. PBPK models will be use-
ful particularly in the later stages of development, based
on the availability of in vitro and in vivo metabolite data.
Confidence in model predictions will increase with full valida-
tion of the metabolite model as more in vivo data become
available. Overall, PBPK modeling is a useful tool to quantita-
tively rationalize observed drug interactions and understand
the underlying mechanisms including the contribution of per-
petrator metabolites.
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