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Abstract
Prediction of protein secondary structure from FTIR spectra usually relies on the absorbance in the amide I–amide II region 
of the spectrum. It assumes that the absorbance in this spectral region, i.e., roughly 1700–1500 cm−1 is solely arising from 
amide contributions. Yet, it is accepted that, on the average, about 20% of the absorbance is due to amino acid side chains. 
The present paper evaluates the contribution of amino acid side chains in this spectral region and the potential to improve 
secondary structure prediction after correcting for their contribution. We show that the β-sheet content prediction is improved 
upon subtraction of amino acid side chain contributions in the amide I–amide II spectral range. Improvement is relatively 
important, for instance, the error of prediction of β-sheet content decreases from 5.42 to 4.97% when evaluated by ascend-
ing stepwise regression. Other methods tested such as partial least square regression and support vector machine have also 
improved accuracy for β-sheet content evaluation. The other structures such as α-helix do not significantly benefit from side 
chain contribution subtraction, in some cases prediction is even degraded. We show that co-linearity between secondary 
structure content and amino acid composition is not a main limitation for improving secondary structure prediction. We 
also show that, even though based on different criteria, secondary structures defined by DSSP and XTLSSTR both arrive at 
the same conclusion: only the β-sheet structure clearly benefits from side chain subtraction. It must be concluded that side 
chain contribution subtraction benefit for the evaluation of other secondary structure contents is limited by the very rough 
description of side chain absorbance which does not take into account the variations related to their environment. The study 
was performed on a large protein set. To deal with the large number of proteins present, we worked on protein microarrays 
deposited on BaF2 slides and FTIR spectra were acquired with an imaging system.

Keywords  FTIR spectroscopy · Secondary structure · Protein spectroscopy · Protein microarrays · Amino acid side chain

Introduction

Fourier transform infrared (FTIR) spectroscopy has become 
a global tool for the study of protein structure (Barth 2007; 
Wang et al. 2008), protein glycans (Derenne et al. 2020) and 
lipids (Dreissig et al. 2009; Derenne et al. 2014). Numer-
ous publications report the establishment of a mathematical 
relationship between protein FTIR spectra and secondary 

structure content (Lee et al. 1990; Prestrelski et al. 1992; 
Pribic et al. 1993; Severcan et al. 2001; Smith et al. 2002; 
Oberg et al. 2003, 2004; Wilcox et al. 2016). To improve 
protein secondary structure prediction from FTIR spectra, 
we recently defined a large reference protein set, called 
cSP92, containing 92 commercially available proteins for 
which high-resolution structures are available (De Meutter 
and Goormaghtigh 2020) and we investigated the potential 
of partial deuteration to improve secondary structure predic-
tion (De Meutter and Goormaghtigh 2021a) This protein 
set was designed to span the entire structural space in terms 
of secondary structures and also higher-order structures as 
described by CATH (Orengo et al. 1997). Great care was 
taken to check that the proteins used in the experimental 
work have the same origin/sequence as the protein from 
which the high-resolution structure was obtained. Finally, 
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the purity of the proteins retained in cSP92 and used in the 
present experimental work was checked by SDS-PAGE.

Protein secondary structure prediction is usually based 
on the analysis of the amide I and amide II band of pro-
teins. The mathematical process implicitly assumes that 
the absorbance in this spectral region, i.e., roughly 
1700–1500 cm−1, is solely arising from amide contributions. 
Yet, it is accepted that, on the average, about 20% of the 
absorbance in this region is due to amino acid side chains 
(Chirgadze et al. 1975; Rahmelow et al. 1998) and this 
value varies obviously from protein to protein according to 
its primary structure. Evaluating the contribution of amino 
acid side chains in the amide I–amide II spectral region is, 
therefore, of utmost interest. There are numerous examples 
in the literature of analyses of some specific side chain for 
understanding how enzyme work, e.g., (Barth 2002; Barth 
and Zscherp 2002; Liu et al. 2005; Lórenz-Fonfría et al. 
2015; Rudack et al. 2015; Kottke et al. 2017) but there is 
much less work reporting systematic information on all side 
chains. The first extensive series of data was reported by 
Chirgadze et al. (1975) and Venyaminov and Kalnin (1991), 
reviewed in Goormaghtigh et al. (1994a). These data have 
the advantage to express side chain contributions as a sum 
of Lorentzian/Gaussian bands whose parameters (band posi-
tion, width, intensity, fraction of Gaussian component) are 
known. It is, therefore, easy to synthetize these contributions 
for each protein as a function of the actual amino acid con-
tent. Numerous papers have added information to this first 
set of data as reviewed extensively by Barth (2000, 2007). 
More recently, another extensive study of the infrared spec-
tra and molar absorption coefficient of the 20 amino acid 
side chains was reported by Wolpert and Hellwig (2006). 
The latter data were obtained on free amino acids and do not 
therefore include the effect for a side chain being included in 
a peptide. Yet, it remains one of the most extensive sources 
of consistent information on side chain absorption. At the 
opposite, Ramelow et al. (1998) included amino acids in 
short peptides and extracted mathematically the side chain 
contributions. Due to experimental limitations, results are 
not as detailed as for free amino acids but have the advantage 
of considering the side chains in a peptidic environment. 
Numerous papers also report theoretical computations of 
side chain contributions. There are extremely valuable to 
better understand the spectra and to test the effect of the 
environment on the spectrum. For instance, a series of such 
computations has been carried out in Ghomi’s lab (Derbel 
et al. 2007; Hernández et al. 2009, b, 2010a; Pflüger et al. 
2010). Yet, results cannot be directly used to process experi-
mental data as frequencies, scaling and band widths are not 
precisely known.

The key issue for the purpose of this work is that the 
actual amino acid side chain contributions in the amide 
I–amide II spectral region depends on many parameters. 

Besides physical parameters such as temperature (Anderson 
et al. 2014) or pressure (Scott and Vanderkooi 2011), most 
variability comes from the environment of the side chain 
including H-bonds, local pH, local polarity of the medium, 
coupling with other vibrations (Bagchi et al. 2009), etc. 
which cannot be accessed nor taken properly into account. 
Furthermore, the expected ionization may be strongly 
affected by modification of pKa such as in bacteriorhodop-
sin where Asp96 has a pKa above 12 (Zscherp et al. 1999). 
It can, therefore, not be expected that an exact subtraction 
of amino acid side chain contribution can be obtained. We 
address in this paper the question of the potential secondary 
structure prediction improvement that could be achieved by 
subtracting a rough estimate of the side chain contributions 
in the amide I–amide II spectral range.

To deal with the large number of proteins present in 
cSP92, we recently proposed to work on protein microar-
rays deposited on BaF2 slides. Protein sample density is in 
the range of 2,000–4,000 samples per cm2 (De Meutter et al. 
2016, 2017) and FTIR spectra are acquired with an imag-
ing system. This approach results in fast measurement and 
high signal-to-noise ratio spectra. It has been applied here 
to obtain all FTIR spectra presented.

Materials and methods

Proteins and protein secondary structure content

The list of the proteins, their commercial source and their 
characterization (sequence, purity, etc.) has been reported 
earlier (De Meutter and Goormaghtigh 2020). The high-res-
olution structure PDB files were obtained for each protein 
from the PDB repository (Bernstein et al. 1977). A list of the 
selected PDB files for each protein can be found in De Meut-
ter and Goormaghtigh (2020). Each PDB file was analyzed 
by DSSP (Kabsch and Sander 1983) which defines 8 second-
ary structure types: H, α-helix content denoted here dH to 
indicate it has been obtained according to DSSP definition; 
dE, β-sheet; dG, 310-helix; dI, π-helix; dT, helix-turn; dB, 
β-bridge and dS, bend. The amino acids that do not belong 
to one of these structures are assigned to d-. In this work, we 
also define whatever is not α-helix or β-sheet as “dOthers”, 
i.e. dOthers = 100-dH-dE. All values are expressed in % of 
the total number of amino acids present in a protein.

Another set of secondary structure definitions has also 
been tested. XTLSSTR (King and Johnson 1999) has been 
initially designed for the analysis of circular dichroism 
(CD) spectra. It identifies xH, α-helix; xE, β-strand (E); xG, 
310-helix; xT, hydrogen-bonded turn; xN, non-hydrogen-
bonded turn and xP, poly(L-proline) II type 31-helix. It also 
makes a distinction between the core of the α-helix “H” and 
the side or unconnected stretch “h”. The sum xH + xh is, 
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therefore, the total α-helix content. It similarly makes a dif-
ference between xE and xe. Overall, large discrepancies can 
be observed between dH and xH or dE and xE as the defini-
tions are different (De Meutter and Goormaghtigh 2021c).

All structural features have been extracted and tabulated 
from the PDB files and the DSSP files output files by a mod-
ule of the home-made Kinetics software running under Mat-
lab, as described elsewhere (De Meutter and Goormaghtigh 
2020).

Protein microarrays printing

Details of the experimental procedure are described else-
where (De Meutter et al. 2016, 2017). Microarrays were 
printed with an Arrayjet Marathon noncontact inkjet Micro-
arrayer (ArrayJet, Roslin, UK) on 40 × 26 × 2 mm3 BaF2 
slides (Neyco, France). Drops of ca. 100 pL protein solution 
were deposited to form regular arrays. Spot diameter was 
about 80 μm. Spot-to-spot distances in the X and Y direc-
tions were 200 μm or 220 µm, resulting in ca 2,000 protein 
samples per cm2.

FTIR imaging of protein microarrays

FTIR imaging of protein microarrays has been described 
earlier (De Meutter et al. 2016, 2017). Briefly spectra were 
recorded as the average of 64 scans/pixel, between 3650 
and 900 cm−1 at a nominal resolution of 8 cm−1. FTIR data 
were collected using an Agilent mid-IR imager equipped 
with a liquid nitrogen cooled 128 × 128 Mercury Cadmium 
Telluride (MCT) Focal Plane Array (FPA) detector and a 
15X objective (NA = 0.62). Automated spectrum extraction 
was described previously (De Meutter et al. 2017), includ-
ing the procedure followed to subtract the background. A 
single spot usually contained ca 300 pixels, i.e., 300 spectra. 
After correction for background, spectra filtered for signal-
to-noise ratio and maximum absorbance were averaged (De 
Meutter et al. 2016, 2017). Finally, the average spectra of 
quadruplicates obtained for a same protein were averaged, 
yielding one spectrum per protein. Spectra were then base-
line-corrected by subtraction of a straight line interpolated 
between the spectral points at 1720 and 1480 cm−1. Scaling 
was obtained by dividing the spectra by the area under the 
spectrum between 1720 and 1480 cm−1.

Subtraction of amino acid side chain contribution

Side chain contributions, in first approximation represented 
as the sum of Lorentzian–Gaussian bands, can be easily 
reconstituted (Goormaghtigh et al. 1996; Raussens et al. 
2004; Goormaghtigh 2009). The key issue is the use of 
realistic parameters to represent the side chain absorption 
as discussed under Results and Discussion. Briefly, each 

vibration mode requires at least 4 parameters: band intensity, 
band position, band width and fraction of Gaussian. Usu-
ally one side chain contribution is made out of several such 
bands. For instance, in the amide I–amide II spectral range, 
arginine has a strong absorption near 1673 cm−1 assigned 
to νas(CN3H5

+), a less strong one near 1633 cm−1 assigned 
to νs(CN3H5

+) and a weaker one at 1522 cm−1 assigned to 
δs(CN3H5

+). In such a case, the three contributions have 
to be summed up to obtain the contribution of arginine. In 
other instances, different ionization states have to be taken 
into account. For instance, aspartic acid has a major band 
at 1729 cm−1 assigned to ν (C=O) for the protonated form 
of the carboxylic acid and a major band at 1570 cm−1 for 
the ionized form assigned to νas(COO−). In such a case, 
the experimental pH and the pKa are taken into account to 
compute the fractional contribution of both forms which are 
then summed up. Finally, all the side chain contributions are 
added to obtain the overall contribution of the side chains 
that will be ultimately subtracted from the protein spectrum. 
The parameters used to compute the side chain contributions 
are reported in Table S1.

Secondary structure prediction from FTIR spectra

The mathematical relation between FTIR spectra and sec-
ondary structure content has been established as described 
earlier (De Meutter and Goormaghtigh 2021b). Briefly the 
ascending stepwise linear regression (ASLR) introduces, in 
an ascending stepwise manner, one absorbance at a time 
in a linear regression model (Goormaghtigh et al. 2006, 
2009). Partial least square regression (PLS) is a multivari-
ate approach that minimizes the number of latent variables 
(LVs) required for prediction (Geladi and Kowalski 1986; 
Wold et al. 2001). It was computed by the software running 
under Matlab developed by Norgaart et al. (Nørgaard et al. 
2000; Leardi and Nørgaard 2005). Support Vector Machine 
(SVM) dedicated to solving regression problems (Tange 
et al. 2015; Ghorbani et al. 2016) was used according to the 
formulation introduced by Suykens et al., with the Matlab 
toolbox built by the authors (Pelckmans et al. 2002).

Two types of validations were obtained. Cross-validation 
was run in a leave-one-out mode, i.e., one protein spectrum 
at a time was removed from the training set and used to 
challenge the model obtained with all the other proteins. 
The quality of the prediction was computed as the root 
mean square standard error in cross-validation (RMSECV). 
This error was compared with the standard deviation of the 
secondary structure content (STDDEVREFCV) by comput-
ing ζCV = STDDEVREFCV/RMSECV (Oberg et  al. 2004; 
Kinalwa et al. 2010). ζ indicates how much better the pre-
diction is with respect to guessing the mean values is the 
prediction. For instance, a value of ζ = 3 for the α-helix 
whose content distribution in cSP92 is characterized by 
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STDDEVREFCV = 18.3% means that the error of prediction 
is 6.1%. When ζ is close to 1, it indicates spectroscopy does 
not bring much added value to secondary structure predic-
tion. It must be noted that ζ is related to the correlation coef-
ficient (Fearn 2002).

A second calibration used a single subset of the cSP92 
protein spectra as test set. The Kennard–Stone algorithm 
(Kennard and Stone 1969) was used to select one third of 
the spectra with a uniform distribution of the secondary 
structure content. The quality of the prediction was judged 
from the root mean square error of prediction for the Ken-
nard–Stone selected test set (RMSEKS) and ζKS was com-
puted as STDDEVREFKS/RMSEKS. It must be noted that 
STDDEVREFCV is different from STDDEVREFKS.

Computations

Image analysis, spectrum processing, subtraction of side 
chain contributions and multivariate analyses were all per-
formed with Kinetics, a home-made software running under 
MatLab (The MathWorks Inc.).

Results and discussion

Description of amino acid side chain bands

It must be kept in mind that it remains difficult to select the 
best parameters describing amino acid side chain absorption 
as they vary very significantly as a function of the envi-
ronment. Side chain contributions used in this work will 
be described as an overlap of Lorentzian–Gaussian bands 
(Goormaghtigh et al. 1996; Raussens et al. 2004). Amino 
acid side chain band parameters have been reported in H2O 
(Venyaminov and Kalnin 1991) and D2O (Chirgadze et al. 
1975) and extensively used to correct FTIR spectra of pro-
teins in the course of 1H/2H exchange (Raussens et al. 1997, 
2004; Meskers et al. 1999). Yet, while working with cSP92 
protein spectra, it was noticed that the subtracted contribu-
tion does not always match the shape required to correct the 
1H form of the protein spectra. In this paper we introduce the 
data provided by Wolpert and Hellwig (2006) and revised 
some these values in view of the data provided by Rahmelow 
et al. (1998) as indicated in Table S1. The missing elements, 
usually the band width, were taken from Venyaminov and 
Kalnin (Venyaminov and Kalnin 1991). All band parameters 
are provided in Table S1. Table S1 highlights the modifica-
tions brought to the original data published by Wolpert and 
Hellwig. With these parameters, resulting corrected spectra 
appeared to be of better quality but subtraction of two side 
chains, Glu and Tyr, remained problematic, i.e., the posi-
tion of the band was obviously shifted with respect to their 
actual contribution in cSP92 protein spectra, resulting in 

local negative deviation in the corrected spectra. For this 
reason, it was of interest to investigate whether cSP92 pro-
tein spectra themselves could be a source of information.

Extracting amino acid side chain contributions 
from protein FTIR spectra

In principle, the 92 spectra of the cSP92 protein set absorb-
ance matrix (between 1720 and 1480 cm−1) A can be tenta-
tively expressed as a linear combination of concentrations (C 
matrix) and “pure” spectra (S matrix) for the amide bonds 
and amino acid side chains, A = S.C. The C matrix contains 
the content in dH, dE, dOthers and in the 9 amino acids 
which have a significant contribution in the amide I–amide 
II spectral range (see list in Table S1). All concentration val-
ues were obtained from the DSSP output files as described 
in Materials and Methods. The S matrix can therefore be 
obtained by simple matrix division. Such an approach had 
been suggested by Rahmelow et al. (1998) for a series of 
short peptides, usually tripeptides, including the different 
amino acids.

Extracting S is obviously a more difficult enterprise here 
as the variance in the concentrations is limited, some co-
linearity is present (see later and Fig. S1) and there is no 
unique pure component perfectly representing each second-
ary structure or amino acid side chain. Indeed, the spectrum 
of each secondary structure or side chain present important 
variations related to the environment. This variability can 
obviously not be realistically reflected in a unique spectrum. 
Yet, keeping these limitations in mind, it is interesting to 
examine the shape of the pure components present in S 
obtained by matrix division. Results are reported in Fig. 1. 
It is surprising to extract for the α-helices (dH), β-sheet (dE) 
and the “Others” structure spectra that exactly match the 
expectations. Both the rather narrow amide I band centered 
at 1656 cm−1 together with amide II centered on 1544 cm−1 
are characteristic features of the α-helix. The much broader 
amide I band centered at 1654 together with amide II at 
1536 cm−1 structures are the exact features expected for 
the “Others” which mainly contains the disordered part of 
protein structure. The same comment stands for the β-sheet 
structure with, for amide I, a maximum at 1634 cm−1 and a 
marked shoulder around 1690 cm−1 together with amide II 
at 1536 cm−1. These spectral features are typical of β-sheet 
structures (Arrondo et al. 1993; Goormaghtigh et al. 1994b; 
Barth 2007). The picture is less clear for the amino acid side 
chains. We compare below the position of amino acid con-
tributions that appear in Fig. 1 with the values reported for 
free amino acids reported by Wolpert and Hellwig (2006). 
In the amide I region, arginine side chain contribution is 
rather correctly obtained with bands at 1673 and 1646 cm−1 
(1673 and 1633 cm−1 for the free amino acid) though the 
relative absorbance of the two contributions is not respected. 



645European Biophysics Journal (2021) 50:641–651	

1 3

Lysine presents a maximum at 1640 cm−1 (1636 cm−1 for 
the free amino acid). Asparagine and glutamine profiles 
do not match the two bands expected near 1672–1681 and 
1610–1618 cm−1 found in free amino acids. In the amide II 
region, aspartate presents a maximum at 1580 cm−1 and glu-
tamate at 1572 cm−1. These values are significantly higher 
than the 1570 and 1559 cm−1 reported for free amino acids. 
Upon subtraction of amino acid side chain contribution (see 
later) it appeared that the specific contribution of glutamate 
had to be shifted from 1559 to 1570 cm−1 to avoid negative 
absorbance values after subtraction. This correction was 
confirmed by the observation glutamate νas(COO−) absorbs 
at 1572 in Fig. 1 and was applied in this work. Tyrosine 
contribution maximum appears at 1514 cm−1 in Fig. 1 while 
it is found at 1518 cm−1 in free amino acids. In the course of 
this work, we also observed that the band had to be shifted 
to 1514 cm−1 to account to the observed position in pro-
tein spectra. This is the second modification we brought to 
the parameters describing the side chain contributions in 
this paper. This latter modification was further confirmed 

by direct observation of the position of the tyrosine ring 
vibrations on the second derivatives of the original spectra. 
As this band is very narrow, it is strongly enhanced by tak-
ing the second derivative and thereby easily observable as 
shown in the inset of Fig. 1a. The inset shows clearly that 
1518 cm−1 does not match the observation while 1514 cm−1 
does.

Subtraction of amino acid side chains

Taken together, the overall contribution of side chains in 
the amide I–amide II spectral range may vary by a factor 
larger than 2. To obtain a general overview of potential dif-
ferences in the relative contributions of side chain absorp-
tion for each protein, the fractional content of each amino 
acid was multiplied by the intensity of its contribution in 
the amide I–amide II spectral range. Proteins were then 
sorted according to the sum of these contributions. Such an 
approach indicates that side chains in alpha-2-MRAP (PDB 

Fig. 1   Shape of the different 
components contributing to 
the FTIR spectrum of cSP92 
proteins in the amide I–amide 
II spectral region. The C matrix 
contains for each protein the 
concentration in dH, dE, dOth-
ers, Asp, Glu, Tyr, Gln, Asn, 
Arg and Lys. Other amino acids 
absorb here but the intensity 
of their contribution is minor. 
a Shape of the α-helix (dH), 
β-sheet (dE) and the “Others” 
structures (dOthers). b Shape of 
the amino acid whose main con-
tribution is found the amide I 
region of the spectrum. c shape 
of the contribution of amino 
acids whose main contribution 
is found in the amide II region 
of the spectrum. The inset in 
part A. of the figure reports the 
second derivative between 1580 
and 1480 cm−1 of the protein 
spectra of cSP92 and the two 
red vertical lines report the 
observed tyrosine ring vibra-
tion at 1514 and the expected 
value for free Tyr amino acid at 
1518 cm−1
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code 2P03) absorb more than twice as much as in Elafin 
(PDB code 1FLE), as illustrated in Fig. 2.

While the global area assigned to amino acid side chains 
is quite different in Fig. 2a, b, in both cases, the amino acid 
contribution appears as a rather broad baseline underlying 
amide I and amide II. Yet, depending on amino acid com-
position, this overall contribution can be definitively more 
intense in a specific spectral region. Some proteins have 
indeed “anomalous” content in some specific amino acids. 
In the amide I spectral range, arginine is one of the most 
problematic as it presents a strong contribution at 1673 and 
1633 cm−1. The mean content in arginine in cSP92 is 4.3% 
but some protein have none such as metallothionein (PDB 
code 4MT2) while arginine represents 14% of all amino 
acids in cathepsin G (PDB code 1CGH) as reported (De 
Meutter and Goormaghtigh 2020). Furthermore, asparagine 
also represents 4.5% of Cathepsin G amino acid content, 
which is average, but adds up to arginine contribution in 
the same spectral region. It must be noted that some spe-
cific protein/peptides such as the antibacterial peptide PR-39 

contains almost 30% arginine which dominates the FTIR 
spectrum the amide–I amide II region (Cabiaux et al. 1994). 
In the amide II spectral range, ionized carboxylic acids 
bring a large contribution. Carboxylic acids, i.e., the sum of 
aspartic and glutamic acids, represent 11.3% of cSP92 pro-
teins amino acids but in calmodulin (1PRW) they represent 
22.6% and only 3.94% in endo-1,4-beta-xylanase (2JIC). The 
extreme values reported above for endo-1,4-beta-xylanase 
and calmodulin suggest the shape of amide I and II could be 
significantly affected. Figure 3 reports for both proteins the 
recorded spectra and the corrected spectra, along with the 
different amino acid side chains contributions and their sum.

It can be observed in Fig. 3 that, for endo-1,4-beta-xyla-
nase, arginine side chains bring a very significant contribu-
tion in particular near 1673 cm−1. The shape of its spectrum 
is dramatically changed upon subtraction of side chain con-
tributions. Carboxylic acids that are prominent in calmodu-
lin rather affect the shape of amide II, which is also rich in 
information on protein secondary structure (Goormaghtigh 
et al. 2006). It is, therefore, legitimate to question the effect 
of amino acid side chain contributions on the accuracy of 
secondary structure prediction based on FTIR spectra.
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the sum of the amino acid contributions (blue line). The individual 
contributions of the side chains are shown in color. The contribution 
of glutamic and aspartic acids is identified in a for calmodulin and of 
arginine side chains in b for endo-1,4-beta-xylanase. Absorbance is in 
arbitrary units and spectra have been offset for the clarity of the figure
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Methods used to relate spectral shape to secondary con-
tent are numerous. As they rely on different principles, they 
could be more or less prone to errors related to side chain 
absorption. It is therefore important to test more than one. 
Here, three different approaches will be tested. A simple 
linear regression using a small number of absorbance values, 
usually the absorbance at 2–5 wavenumbers, is the ascending 
stepwise regression (ASLR) which adds, step by step, the 
best absorbance in the linear model (Goormaghtigh et al. 
2006, 2009). Partial least square regression (PLS) is prob-
ably the most popular multivariate approach in chemomet-
rics, including in the field of FTIR spectroscopy of proteins 
(Navea et al. 2005; Wang et al. 2008). It is well designed to 
deal with co-linearity. As non-linear models could shed a 
different light on the predictions, we also included a sup-
port vector machine (SVM) modified for solving regression 

problems (Ghorbani et al. 2016). The error of prediction was 
evaluated by both a leave-one-out (LOO) cross-validation 
and a single protein test set made out of one third of the 
protein spectral database. In the latter case, proteins were 
selected by the Kennard–Stone algorithm (Kennard and 
Stone 1969) (see Methods). For both approaches, proteins 
tested are never part of the training set. Results appear in 
Fig. 4 for all DSSP-defined structures. Details of the data 
presented in Fig. 4 are reported in Table S2.

Considering the cross-validation results (Fig. 4, left 
panel), it immediately appears that the FTIR spectra bring 
little information for the prediction of the content in the 
minor structures such as dG, dT and dB. The bright colors 
refer to the prediction obtained from the raw spectra, the pas-
tel colors to the prediction obtained from spectra corrected 
for amino acid side chain contributions. For the α-helix 
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(dH), there is a slight improvement only for SVM predic-
tion. For the β-sheet (dE), there is a systematic improve-
ment for all three prediction methods. Using SVM, ζcv for dE 
increases from 2.55 to 2.73 while the RMSECV is decreased 
from 5.37 to 5.02% (see Table S2 for detailed figures). Using 
ASLR, the RMSECV for dE decreases from 5.42 to 4.97, 
which is significant. Prediction of the “Others” structure also 
gains in accuracy for all methods when side chain contribu-
tions are removed. The effect is less marked for d −. The 
picture is less clear for the other minor structures which are 
characterized anyway by ζCV values close to 1. When look-
ing at the right panel of Fig. 4, the Kennard–Stone test set 
obtains predictions with higher values for ζKS as compared 
to ζCV. It is important to stress that this effect is not due 
not to a decrease in the error of prediction but to the larger 
standard deviation of the secondary structure content in the 
test set, obviously related to the criterion applied for the 
selection of the test set (see Table S2). Again, subtracting the 
amino acid side chain contributions clearly benefits β-sheet 
content prediction but not the other structures. In particu-
lar, the correction degrades α-helix content prediction. Pro-
teins for which the best improvement of dE prediction was 
observed after side chain subtraction were scrutinized for 
particular amino acid content but no general rule could be 
obtained (data not shown).

The DSSP analysis of high-resolution structure described 
in the PDB is not unique. A series of structure definitions 
has been defined over the years and can result in quite dif-
ferent secondary structure content. The extent of secondary 
structure variation that can result from using different defini-
tions has been described for several methods for cSP92 in 
De Meutter and Goormaghtigh (2021c). It was of interest to 
test another approach that provides a more detailed analy-
sis. XTLSSTR (see Methods), which is significantly differ-
ent from DSSP, has been selected. The same analysis was 
therefore performed after obtaining the secondary structures 
according to XTLSSTR instead of DSSP. Even though the 
secondary structure content may be very significantly dif-
ferent from those obtained by DSSP, the results (Fig. S4) 
are similar: significant improvement for the prediction of 
β-sheet content but not for the other structures. One interest 
of XTLSSTR is that it makes the difference between the core 
of the structure (“H” and “E” for the α-helix and b-strand, 
respectively) and for part of it that are present on the side 
or are not connected, indicated by “h” and “e”, respectively. 
It can be observed on Figure S4 that “H” and “H + h”, i.e., 
the total α-helix content, are better predicted before side 
chain subtraction while “E”, “e” and “E + e” are much bet-
ter predicted after subtraction of the side chain contribu-
tion. Interestingly, prediction for xE (RMSECV = 4.86) is 
significantly better than the prediction of the total (xe + xE) 
β-strand content (RMSECV = 5.97). A more detailed analy-
sis is reported on Figure S5 for the β-sheet structure. The few 

proteins whose prediction has been improved upon subtrac-
tion of the side chain contribution are singled out. Yet, when 
analyzing the amino acid content of these proteins, there is 
no obvious explanation for the improvement (Fig. S5). This 
could be due to the fact the model built is global and the 
proteins that have apparently a bad prediction may not be the 
cause of the loss of prediction capacity but the result of the 
adjustment of the model to account for anomalous behavior 
found in other proteins.

The results presented above confirm that dE prediction 
is improved by subtraction of side chain contributions but 
raise the question of the rationale for this subtraction in gen-
eral. One of the possible reasons why side chain contribution 
might not interfere as much as expected for all structures 
is there exists a degree of correlation between secondary 
structure content and amino acid composition.

Impact of the correlation between amino acid 
composition and secondary structure

There is a well-documented prevalence of certain amino acid 
for specific secondary structures. This has been observed 
since the 1970s in the pioneer work of Chou and Fasman 
(1974) or Garnier (1978), on large survey of PDB pro-
teins (Otaki et al. 2010) as well as among cSP92 protein 
set (De Meutter and Goormaghtigh 2020). In cSP92, cor-
relation coefficients between secondary structure content 
and each amino acid content can reach 0.4–0.5 (Fig. S1). 
This implicates that a fraction of the amino acid side chain 
contribution to the spectrum is intimately linked to second-
ary structure content. In such a case, the effect of subtrac-
tion is expected to be neutral. It is interesting to apply a 
method such as ASLR to determine the secondary struc-
ture content from amino acid content. The “spectrum” to be 
analyzed is now the content in the 20 amino acid. Such an 
attempt appears on Figure S2 for the DSSP-defined struc-
tures. The best prediction is found for the α-helix content 
that can be expressed as 39.1 + 3.3*[Leu] − 4.8*[Pro]—
1.9*[Thr]   −  2.3*[Val] + 1.3*[Ala] (Fig.  S2) with a 
RMSECV of 12.2% from a standard deviation of 18.5%, 
i.e., ζ = 1.50. Though to a less extent for the other secondary 
structures, there is definitively a prediction potential. ASLR 
reveals the best amino acids for this prediction reported in 
the equation above for dH. It is important to note here that 
these amino acids do not contribute much in the amide I—
amide II spectral range. In general, except for Glu, the amino 
acid that contributes most in the amide I–amide II region of 
the spectrum have weak correlation with α-helix, β-sheet 
and “Others” content (Fig. S1). When the computation was 
repeated with only the first 8 amino acids which most con-
tribute to the FTIR spectrum in the amide range (Glu, Asp, 
Arg, Lys, Gln, Asn, Tyr, His), none of the structure could be 
predicted with ζ > 1.08, i.e., a correlation coefficient of 0.33 
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at best (not shown). It can be concluded that co-linearity is 
not an important factor responsible for the relative failure 
of side chain subtraction to improve significantly secondary 
structure prediction.

Overall, we have shown that the β-sheet content pre-
diction is improved upon subtraction of amino acid side 
chain contributions in the amide I–amide II spectral range. 
Improvement is relatively important, for instance RMSECV 
decreases from 5.42 to 4.97% when ASLR is used. In fact, 
all methods, PLS, SVM and ASLR reach the same conclu-
sion. The other structures do not significantly benefit from 
side chain subtraction, in some cases prediction is even 
degraded. We showed that co-linearity between secondary 
structure content and amino acid composition is not a main 
limitation for improving secondary structure prediction. We 
also showed that, even though based on different definitions, 
using secondary structures defined by DSSP and XTLSSTR 
drives to the same conclusion: only the β-sheet content pre-
diction clearly benefits from side chain subtraction. It must 
be concluded that the very rough description of side chain 
absorbance which does not take into account their large vari-
ations related to their environment limits the potential to 
improve all secondary structure predictions.
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