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ABSTRACT

The role of viral infections in the etiology of brain cancer remains uncertain. 
Prior studies mostly focused on transcriptome or viral DNA integrated in tumor 
cells. To investigate for the presence of viral particles, we performed metagenomics 
sequencing on viral capsid-protected nucleic acids from 12 primary and 8 metastatic 
human brain tumors. One brain tumor metastasized from a skin melanoma harbored 
two new human anellovirus species, Torque teno mini virus Emory1 (TTMV Emory1) 
and Emory2 (TTMV Emory2), while the remaining 19 samples did not reveal any 
exogenous viral sequences. Their genomes share 63-67% identity with other TTMVs, 
and phylogenetic clustering supports their classification within the Betatorquevirus 
genus. This is the first identification of betatorqueviruses in brain tumors. The viral 
DNA was in its expected non-integrated circular form, and it is unclear if the viruses 
contributed to tumor formation. Whether the viruses originated from blood, or the 
primary skin tumor could not be ascertained. Overall, our results demonstrate the 
usefulness of viral metagenomics to detect previously unknown exogenous virus in 
human brain tumors. They further suggest that active viral infections are rare events 
in brain tumors, but support a follow-up larger scale study to quantify their frequency 
in different brain tumor subtypes.

INTRODUCTION

Cancers largely result from genetic mutations 
that induce cell transformation. While the role of some 
viruses in animal carcinogenesis is well established, virus-
mediated oncogenesis has only been shown for a small 
number of human cancers. These oncoviruses include 
human alpha papillomaviruses (mainly HPV16 and 

18), Kaposi’s sarcoma-associated herpesvirus (HHV8), 
Merkel cell polyomavirus, Epstein–Barr virus, Human 
T-lymphotropic virus type 1, and hepatitis B virus [1–3]. 
Human immunodeficiency virus (HIV) and hepatitis 
C virus (HCV) may cause cancer by more indirect 
mechanisms such as chronic inflammation and immune-
deficiency. Genetically engineered oncolytic viruses are 
also being developed as therapies against brain tumors 
[4–6].
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What triggers the genetic mutations that cause 
primary brain tumors is mostly unknown. In healthy 
individuals, the brain is considered a privileged organ 
where the blood-brain barrier prevents pathogens from 
entry [7], but when pathogens, including viruses, gain 
access by crossing the blood-brain barrier, it can lead 
to diseases such as encephalitis or microcephaly in 
developing fetuses or infants [8, 9]. Currently, the only 
known virus capable of causing a brain tumor in a 
mammalian host is a raccoon polyomavirus [10]. No 
virus has definitively been demonstrated to cause primary 
brain tumors in human, yet a variety of viruses have 
been reported to be associated with primary human brain 
tumors, including polyomaviruses and cytomegaloviruses 
[11, 12].

Due to their location and therapeutic resistance 
[13], brain neoplasms are among the most challenging 
to treat, and biopsies can only be obtained when 
medically necessary. Most knowledge of virus infections 
in the central nervous system comes from the analysis 
of cerebrospinal fluid (CSF) [7]. Analyzing brain 
tumor tissue directly to characterize its virome is an 
approach rendered possible by the recent development 
of next generation sequencing (NGS) methods. For 
example, the NGS approach allowed diagnosis of a 
rare leptospira infection in a case of unexplained acute 
meningoencephalitis in a clinically relevant timeframe 
[14]. A recent whole genome and transcriptome study 
directly sequenced the DNA and RNA from 1,122 adult 
diffuse gliomas, but did not report any viral sequences 
in the glioma and associated stroma cell genomes [15]. 
Whole genome or transcriptome approaches focus on host 
genomes or endogenous/integrated viral sequences, but 
are less sensitive for detecting encapsidated viral genomes 
(Figure 1).

To address this issue, we applied a viral 
metagenomics approach to focus sequencing on nuclease-
resistant (encapsidated) viral nucleic acids after filtration 
of tissue homogenates through a 400nm filter [16, 17] 
(Figure 1), to investigate 20 retrospectively collected 
frozen human brain tumors of various types.

RESULTS AND DISCUSSION

The virome and PCR analyses identified two novel 
anelloviruses in a specimen from a patient with a skin 
melanoma that had metastasized to the brain collected in 
1993 (Sample #5) (Figures 2 and 3). Genome assembly 
from sequenced fragments evidenced circular viral 
genomes and these did not originate from cancer cell 
chromosomal DNA, as no contiguous viral-host genome 
fragments were found (Figure 2A). No viral sequences 
were detected in the other tumors. In-silico investigation of 
the entire in-house viral metagenomic database [18] of the 
laboratory where the NGS was performed did not detect any 
other samples containing sequences of these two viruses, 

ruling against possible lab contamination. Anelloviruses in 
the family Anelloviridae comprise small, non-enveloped 
viruses containing a single-stranded, negative-sense 
circular DNA genome enclosed within an icosahedral 
nucleocapsid. The genome of anelloviruses ranges between 
2.1–3.9 kb in length. Human infections with anelloviruses 
are virtually ubiquitous [19–21], and vertebrate homologs 
have been described in various domestic animal species 
including dogs, cats, pigs, cows, chickens, and sheep, as 
well as wild non-human primates and marine mammals 
[22–27]. There are three known anellovirus genera that 
infect humans (Alphatorquevirus, Betatorquevirus and 
Gammatorquevirus). The Alphatorquevirus genus includes 
29 species (Torque teno virus, TTV 1–29), Betatorquevirus 
includes 12 species (Torque teno mini virus, TTMV 1–12), 
and Gammatorquevirus includes 15 species (Torque teno 
midi virus, TTMDV 1–15) [28]. Human anelloviruses 
are commonly found in human blood, but can also be 
detected in liver, kidney, lungs, spleen, and occasionally 
in cerebrospinal fluid [29–31], brain tissue [30], and 
nerve tissue [31]. The detection of anellovirus in brain 
is rare; the literature mentions brain tissue from a single 
adult who suffered from head trauma tested positive for 
an Alphatorquevirus [30]. Since their discovery, human 
anelloviruses association with various diseases has been 
proposed, including hepatitis and respiratory illnesses, but 
strong and consistent evidence for disease association and 
pathogenesis in humans is lacking [20, 32].

Phylogenetic analysis of the ORF1 gene, the most 
conserved open reading frame (ORF) among anelloviruses, 
showed that the two viruses clustered with other Torque 
teno mini viruses (Figure 2C), supporting their phylogeny 
in the Betatorquevirus genus. They were designated 
Torque teno mini virus Emory1 (TTMV Emory1, 
KX810063) and Torque teno mini virus Emory2 (TTMV 
Emory2, KX810064), and their genomes were deposited 
in GenBank. The genome lengths for TTMV Emory1 and 
Emory2 are 2,830 and 2,938 nucleotides (nt), with a GC 
content of 37% and 36%, respectively. Both viral genomes 
contain the typical anelloviruses genome organization [28] 
(Figure 2A), with three open reading frames where ORF1 
is the longest. Compared to known species of TTMV and 
with each other, both viruses share 33-44% amino acid 
identity and 62-65% nucleotide identity (NI) in ORF1, 
as well as 63-67% NI in the whole genome (Figure 2B). 
Current International Committee on Taxonomy of Viruses 
(ICTV) criteria state that anelloviruses of the same species 
share at least 65% nucleotide identity in ORF1. Given 
their sequence divergence, TTMV Emory1 and Emory2 
likely each represent new human anellovirus species 
within the genus Betatorquevirus.

This pairwise comparison, together with the 
phylogenetic analysis (Figure 2), strongly support that 
TTMV Emory1 and Emory2 are distinct taxa. The 
presence of two distinct anellovirus genomes in a single 
brain tumor supports co-infection with two anelloviruses.
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In an attempt to localize the viruses within a 
specific cell type within the tumors, we performed in situ 
hybridization (ISH) and fluorescence in situ hybridization 
(FISH) on frozen tumor sections post-fixed with formalin 
with probes specific to Emory1 and Emory2. However, 
results for both methods were negative (data not shown). 
As a control, DNA of both viruses was confirmed present 
by PCR in the pre-fixation frozen specimens (Figure 
3). This suggests that the viral nucleic acid in tumor 
tissues was likely beyond the limits of detection of in 
situ hybridization, or that anelloviruses were present as 
viral particles in blood circulating through the tumor, 
which would have been lost during the fixation steps used 
for sample preparation. We also attempted to obtain the 
primary skin melanoma tumor for virome analysis, but the 
original samples were no longer available.

The most common intracranial neoplasms in adults 
originate from systemic tumors that metastasize to the 
brain. The most frequent are lung carcinomas (~20%), 
melanomas (~7%), renal cell carcinomas (~6.5%), 
and breast carcinomas (~5%) [33]. In this study, we 

investigated a variety of brain tumor types (Table 1). 
We only found a single tumor out of 20 to contain 
exogenous viral sequences (rather than human endogenous 
retroviruses). It is, therefore, unlikely that viruses are 
commonly replicating at high levels in these tumors.

Our study did not identify polyomaviruses or 
cytomegalovirus sequences in the filtered and nuclease 
treated tumor homogenates, even though these viruses 
were previously reported in primary human brain tumors 
[11, 12]. This could be due to limited sampling, or because 
these hypothetical oncogenic viruses are integrated into 
the tumor genome after initial infection [34] – thus 
yielding no viral particles. The latter explanation is 
unlikely, as efforts aimed at detecting viral sequences in 
human cancer genomes confirmed human papillomavirus, 
hepatitis B virus and Epstein-Barr virus transcripts in 
carcinomas affecting the cervix, liver, or lymphocytes, but 
failed to identify viral sequences in human brain tumors 
and skin melanomas [35]. Another virome assessment 
using glioblastoma datasets from the Cancer Genome 
Atlas (TCGA) did not find anelloviruses in the tumor by 

Figure 1: Schematic diagram outlines the typical viral metagenomic approach in this study, using filtration, nuclease 
and extraction (FNE) treatments [16, 17] to distinguish rare viral sequences from abundant host cell and free DNA. 
Black wavy lines denote host nucleic acids; blue wavy lines denote bacterial nucleic acids; red wavy lines denote viral nucleic acids. In the 
top panel, host (Left), bacteria (bottom), and viruses (right) are schematically represented. Viral nucleic acids are protected by viral capsids 
from degradation during nuclease (N) treatments, unlike the host and bacterial nucleic acids. Obtaining rare exogenous viral sequence 
through viral metagenomics (bottom panel left) is different from obtaining endogenous viral genomes through transcriptome or whole 
genome sequencing (bottom panel right).
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Figure 2: Comprehensive genomic and phylogenetic analysis of the Torque teno mini virus Emory1 (TTMV Emory1) 
and Torque teno mini virus Emory2 (TTMV Emory2). (A) Schematic depiction of the TTMV Emory1 and Emory2 genome 
organization. Coverage for NGS data is indicated, and a portion of the representative NGS reads is shown. The circular genome is graphically 
linearized for display purpose, and the reads covering across the ends are marked with grey arrows on the extremities. (B) Pairwise whole 
genome nucleotide identities and ORF1 amino acid identities between Torque teno mini viruses. Protein sequences were aligned with 
MUSLE [52], and sequence identities were calculated using the species demarcation tool [53]. (C) ORF1 protein phylogeny of the genus 
Betatorquevirus, including the newly described TTMV Emory1 and Emory2. Maximum likelihood phylogeny was generated with PhyML 
[54], where branch support was calculated using Approximate Likelihood-Ratio Test (aLRT). The scale bar represents evolutionary distance 
in substitutions per site.

Figure 3: PCR analysis of viral DNA. Arrows denote expected amplicon. TTMV Emory 1 PCR was performed with primers Emory1_
AF and Emory1_AR with an amplicon size of 387 bp. TTMV Emory 2 PCR was performed with primers Emory2_AF and Emory2_AR 
with an amplicon size of 332 bp. M, size markers; #1-5, samples 1-5. Bands below the expected amplicon size were due to primers or 
primer dimers.
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nucleotide homology search [36]; however, the search 
database was limited to less than 40 anellovirus genomes.

Our study does not provide any evidence that the 
newly discovered viruses had a role in the pathogenesis 
of the metastatic melanoma in which they were 
identified. Although anelloviruses nearly universally 
infect humans in their lifetime, no human anellovirus 
has yet been shown to be oncogenic [20]. Genomes of 
the Anelloviridae family lack homologs of genes that 
promote cell transformation in other DNA viruses such as 
polyomaviruses or papillomaviruses, which respectively 
contain oncogenic proteins large T antigen and E6 and 
E7 that inactivate the retinoblastoma (Rb) and p53 tumor 
suppressors. Anelloviruses are not known to integrate 
into host cell genomes [37], thereby excluding insertional 
mutagenesis. Some studies have suggested TTMVs 
may have indirect carcinogenic effects by modulating T 
cell immune responses, possibly through expression of 
specific miRNAs that inhibit the interferon response [38, 
39]. If future larger scale studies confirm their presence 

in specific cancers, then further studies on potential 
oncogenic effects will be warranted.

Tumors undergo extensive angiogenesis, increasing 
the number of blood vessels within the neoplastic tissue 
[40]. The disorganized nature of the vasculature can result 
in increased vascular permeability and disruption of the 
blood-brain-barrier [41, 42], rendering the neoplastic 
tissue more susceptible to the extravasation of viruses 
from the blood, such as anelloviruses. Several studies 
have detected anelloviruses in cerebrospinal fluid, which 
directly bathes the brain [29–31]. Immunosuppression 
during organ transplant, HIV/AIDS, and sepsis can also 
cause increases in anellovirus titers circulating in the blood 
[43–46]. Whether anelloviruses can infect some metastatic 
brain tumor cells or their detection here simply reflects 
viremia and blood present in cancer biopsies remains to 
be determined.

In conclusion, our study identified two new species 
of betatorqueviruses and is the first demonstration of 
TTMVs in human brain tumor specimens. Furthermore, 

Table 1: Human brain tumor specimens used for the study 

Sample number Description Age/sex Weight

1 Metastasis, Carcinoma, primary of breast origin 49/F 233 mg

2 Metastasis, Carcinoma, poorly differentiated, primary of unknown origin 67/M 270 mg

3 Metastasis, Carcinoma, poorly differentiated, primary of unknown origin 40/F 351 mg

4 Metastasis, Adenocarcinoma with lung primary 49/F 291 mg

5 Metastasis, Melanoma, malignant, primary from skin 57/M 250 mg

6 Metastasis, Melanoma, malignant, primary from skin 51/M 244 mg

7 Metastasis, Adenocarcinoma, primary of breast origin 38/F 224 mg

8 Metastasis, Carcinoma, poorly differentiated, consistent with breast primary 67/F 244 mg

9 Schwannoma (I) 32/F 264mg

10 Schwannoma (I) 49/M 223mg

11 Medulloblastoma (IV) 7/M 231 mg

12 Medulloblastoma (IV) 34/F 213 mg

13 Pilocytic Astrocytoma (I) 8/F 237 mg

14 Anaplastic Astrocytoma (III), recurrence from pilocytic astrocytoma (I) 76/M 225 mg

15 Glioblastoma (IV), recurrence from oligodendroglioma (II) 44/F 251 mg

16 Glioblastoma (IV) 55/M 257 mg

17 Gliosarcoma (IV) 59/M 222 mg

18 Gliosarcoma (IV) 83/F 210 mg

19 Subependymoma (I) 77/M 263 mg

20 Subependymoma (I) 59/M 243 mg

WHO 2006 classification grade is indicated for primary brain tumors. Weight of frozen sample used for analysis is 
indicated.
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it provides proof-of-principle that metagenomic 
analysis can be used to identify viral genomes that are 
not integrated in human brain tumor genomes, likely 
reflecting their presence as infectious viral particles. 
Finally, it suggests that active virus infections are rare 
in human brain tumors, complementing prior studies that 
focused only on transcriptome or viral DNA integrated in 
tumor cells.

MATERIALS AND METHODS

Sample collection

We investigated 20 frozen human brain tumor 
samples retrospectively collected under institutional IRB 
approval, including primary tumors of Schwannoma, 
Medulloblastoma, Astrocytoma, Glioblastoma, 
Gliosarcoma, and Subependymoma, as well as 
metastases to brain from Carcinoma, Melanoma, and 
Adenocarcinoma (Table 1; WHO 2006 classification). 
The tumor specimens were collected from neurosurgeries 
under IRB approval, and were stored in liquid nitrogen 
vapor at -130 °C. The samples were distributed into four 
pools, each containing five tumor samples (specimens 
#1-5; 6-10; 11-15 and 16-20) for viral metagenomics 
(Figure 1).

Viral metagenomic sequencing

Unbiased viral metagenomics sequencing of 
nuclease-resistant nucleic acids was performed directly 
according to previously described protocols that detect 
both DNA and RNA viruses [16, 17]. Briefly, homogenized 
tumor pools were filtered through 400 nm filters 
(Millipore), followed by depletion of host nucleic acids in 
the filtrate using DNAse and RNAse. Nuclease-resistant 
nucleic acids were extracted using the QIAamp Viral RNA 
Mini Kit (Qiagen; which extracts both DNA and RNA [47]) 
and sequence-independent amplification was performed 
using random priming. Random first strand synthesis of 
both DNA and cDNA was performed using Superscript 
IV (Invitrogen; which has both reverse transcriptase and 
DNA polymerase activities) and primer N1_8N 5’-CC
TTGAAGGCGGACTGTGAGNNNNNNNN-3’. The 
second strand was synthesized using Klenow fragment 
DNA polymerase (New England BioLabs) using the same 
primer. The products from the second strand synthesis 
were then used as input to be randomly amplified by PCR 
using AmpliTaq Gold DNA polymerase and primer N1, 
5’-CCTTGAAGGCGGACTGTGAG-3’. Amplified DNA 
were subjected to Nextera XT DNA Sample Prep kit, and 
sequenced using the MiSeq (Illumina) sequencing system 
with 2 × 250 bp paired-end sequencing reagents [16]. This 
method has been used extensively for both DNA and RNA 
exogenous viruses [16, 17, 47].

Bioinformatics analysis

Sequence data was analyzed using a customized 
NGS pipeline as described previously [48]. First, 
reads identical to human and bacterial genomes were 
computationally subtracted [16, 17]. The remaining reads 
were assembled de novo into contigs using Ensemble 
Assembler [48]. The contigs and the unassembled 
reads were then aligned to an in-house viral proteome 
database using BLASTx with an E-value cutoff of 0.01. 
The significant sequence matches to virus were filtered 
again with an in-house non-virus-non-redundant (NVNR) 
universal proteome database using BLASTx.

Genome analysis was performed according to 
previously described procedures [49], including genome 
organization, ORF annotation, NGS coverage analysis, 
pairwise comparison of the ORF1 gene and whole 
genomes, and phylogenetic analysis. Viral sequences 
identified in the virome analysis were reconfirmed in the 
specific individual samples using PCR (Figure 3).

PCR and in situ hybridization

Specific PCR primers for each new TTMV were 
designed directly from the genomes obtained from the 
NGS data. Tumor DNA was extracted using QIAamp 
Viral RNA Mini kit (Qiagen). PCR was performed 
using primer sets specific for each virus: Emory1_AF, 
5’-CGCCGAAAACCTTACAAAAA-3’; Emory1_AR, 
5’-TTGGTGGTTGTGTGCTGAAT-3’; Emory2_AF, 
5’-CCACCACAACAATTCCAAAA-3’; Emory2_AR, 
5’-CAGTCTCCGCTCATTGGTTT-3’. PCR was carried 
out using the Ex Taq DNA Polymerase (Clontech) for 45 
cycles using a touch down cycling condition as described 
before [50]: 95 °C for 5 min, 45 cycles of [94 °C for 1 
min, 58 °C minus 0.2 °C per cycle for 1 min, 72 °C for 3 
min], followed by 72 °C for 10 min.

In situ hybridization (ISH) and fluorescence in 
situ hybridization (FISH) were performed on frozen 
tumor sections post-fixated with formalin according to 
an established protocol [51]. Digoxigenin-labeled PCR 
probes were generated using primers specific to Emory1 
and Emory2; the primers were Emory1_AF, Emory1_AR, 
Emory2_IF, 5’-CCAACGACCTCGAAAACATT-3’; 
Emory2_IR, 5’-AGTTGTCGGAGCTGCTGTTT-3’. 
Sections of formalin-fixed tissue were rehydrated, 
digested with proteinase K and then the probes were 
applied to glass slides and allowed to hybridize overnight 
in a 37°C humidified oven. After washing, sections were 
blocked with universal blocking buffer (BioGenex). Mouse 
anti-digoxigenin antibody (ROCHE) diluted 1:500 with 
Antibody Diluent (DAKO) was applied to the sections for 60 
minutes and then washed. Detection of bound antibody was 
done by serial application of goat anti-mouse biotinylated 
immunoglobulins (Biogenex), streptavidin alkaline 



Oncotarget105806www.impactjournals.com/oncotarget

phosphatase (Biogenex), and napthol fast red substrate 
(DAKO), followed by mounting with aqueous adhesive. 
For FISH, sections were blocked with normal goat serum 
(Rockland), conjugated with Streptavidin-Alexa Fluor® 532, 
and mounted with ProLong Gold with DAPI (Molecular 
Probes).
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