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Type 2 diabetes (T2D) accounts for about 90% of all diabetes patients and incurs a heavy global public health burden. Up to 50% of
T2D patients will eventually develop neuropathy as T2D progresses. Diabetic peripheral neuropathy (DPN) is a common diabetic
complication and one of the main causes of increased morbidity and mortality of T2D patients. Obstructive sleep apnea (OSA)
affects over 15% of the general population and is associated with a higher prevalence of T2D. Growing evidence also indicates
that OSA is highly prevalent in T2D patients probably due to diabetic peripheral neuropathy. However, the interrelations
among diabetic peripheral neuropathy, OSA, and T2D hitherto have not been clearly elucidated. Numerous molecular
mechanisms have been documented that underlie diabetic peripheral neuropathy and OSA, including oxidative stress,
inflammation, endothelin-1, vascular endothelial growth factor (VEGF), accumulation of advanced glycation end products,
protein kinase C (PKC) signaling, poly ADP ribose polymerase (PARP), nitrosative stress, plasminogen activator inhibitor-1,
and vitamin D deficiency. In this review, we seek to illuminate the relationships among T2D, diabetic peripheral neuropathy,
and OSA and how they interact with one another. In addition, we summarize and explain the shared molecular mechanisms
involved in diabetic peripheral neuropathy and OSA for further mechanistic investigations and novel therapeutic strategies for
attenuating and preventing the development and progression of diabetic peripheral neuropathy and OSA in T2D.

1. Introduction

Diabetes mellitus is a global disease with major public health
implications and is predicted to affect 642 million persons by
2040 [1, 2]. Type 2 diabetes (T2D) accounts for 90–95% of all
patients with diabetes and involves multiple systems and
organs. Long-standing poorly controlled T2D ultimately
leads to the development of microvascular complications,
including neuropathy, nephropathy, and retinopathy, and
macrovascular disease such as cerebrovascular and coronary
artery diseases [3].

DPN is defined as “symmetrical, length-dependent sen-
sorimotor polyneuropathy attributing to metabolic and
microvessel alterations as a result of chronic hyperglycemia
exposure and cardiovascular risk covariates” [4]. Fifty percent
of T2D patients would eventually develop DPN and 20% of

T2D patients have DPN at presentation [5]. However, DPN
is mostly neglected as a diabetic complication. Furthermore,
the pathophysiologic mechanism of DPN appears to be com-
plex, involving the metabolic and ischemic pathways [3].

Recent evidence has suggested a link between obstructive
sleep apnea (OSA) and DPN. OSA is one treatable type of
sleep-disordered breathing characterized by episodes of com-
plete or partial obstruction of the upper airway during sleep,
resulting in recurrent episodes of apnea or hypopnea [6].
Growing evidence has shown that OSA is very common in
T2D patients and probably associated with DPN [7, 8].
Several longitudinal studies and meta-analyses have indi-
cated that OSA is a risk factor for T2D associated with insulin
resistance and β-cell dysfunction [6] and could be a cause of
ineffective treatment of T2D [9]. Conversely, T2D may also
be a risk factor of OSA or worsen preexisting OSA. There is
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compelling evidence of an association between OSA and
metabolic dysfunction, in particular, changes in glucose
metabolism resulting in metabolic syndrome, glucose intol-
erance, and insulin resistance [10, 11]. Moreover, this
association is independent of obesity, which is a common
occurrence in patients with T2D and/or OSA [12].

As OSA and T2D frequently coexist, knowledge about
the association between DPN and OSA in T2D could shed
light on the pathogenesis of OSA and T2D in these patients.
Recent data has suggested significant underappreciation of
OSA in T2D patients, and the mechanisms underlying the
link between OSA and DPN remain largely unelucidated.
Dissecting the relationship between DPN and OSA is also
clinically relevant as illumination of the connection between
the two conditions may impact on both patient care and
quality of life.

The primary aim of this review is to explore connections
among OSA, DPN, and T2D and assess whether OSA and
DPN could interact with each other in T2D patients. We also
summarize the potential common molecular mechanisms
whereby OSA and DPN could be linked in T2D, including
the role of neuromodulators in DPN and OSA.

2. Complex Connections among OSA, DPN,
and T2D

OSA is diagnosed when the apnea-hypopnea index (AHI)
is ≥5/hr, together with such symptoms or signs as nocturnal
gasping or choking events, witnessed habitual snoring, exces-
sive daytime sleepiness, hypertension, nonrefreshing sleep,
and congestive heart failure or AHI≥ 15/hr without symp-
toms [13]. OSA affects about 14% of men and 5% of women,
is highly prevalent in T2D patients [14, 15], and has also
been linked to the development of incident T2D [12]. The
relationship between OSA and T2D may be bidirectional
given that DPN could influence central control of respira-
tion and upper airway nerve reflex promoting sleep-
disordered breathing. Several previous studies suggested an
association between OSA and diabetic autonomic neuropa-
thy [16, 17]. The development of autonomic neuropathy in
T2D patients may affect upper airway innervation and col-
lapsibility, ventilator drive, and central respiratory center
reaction to hypercapnia stimulus, which contribute to the
pathogenesis of OSA [6].

2.1. Bidirectional Link between OSA and T2D. Although
substantial literature has established a link between OSA
and T2D, there is lack of keen awareness of such an associa-
tion, and clinically, T2D patients are not vigorously screened
for OSA [6]. Furthermore, intermittent hypoxia and sleep
fragmentation in OSA patients could independently induce
intermediate disorders including sympathetic nervous sys-
tem activation, systemic inflammation, oxidative stress,
appetite-regulating hormone alterations, and hypothalamic-
pituitary-adrenal axis activation, which in turn promote the
development of insulin resistance, glucose intolerance, and
ultimately T2D [18, 19]. There is also convincing evidence
for an association between OSA and fasting insulin, glucose,
and HbA1c levels independent of obesity although the exact

pathophysiological mechanism underlying such a link still
remains elusive [3]. Conversely, T2D could increase predis-
position to, or accelerate progression of, OSA, possibly par-
tially through the development of peripheral neuropathy
[20]. It is not surprising, therefore, that there exists a link
between OSA and T2D [21], in particular, considering the
confounding effects of obesity and aging.

2.1.1. OSA Affecting T2D. Longitudinal cohort studies,
including 6 prospective cohort studies from different regions
all over the world with a follow-up duration of 2.7–16 years,
have shown a significant association between OSA and T2D
[12, 22–31]. Some studies also showed that severity of OSA
correlated with the presence of T2D. The prevalence of
T2D in OSA patients was estimated to be 15–30% and may
be even higher in severe OSA patients [24, 32–34]. However,
after adjustment for body mass index (BMI) and other con-
founders, no correlation was found between OSA and T2D
in some studies [24, 33, 34] while several other studies
showed that increased OSA severity was robustly associated
with increased HbA1c levels in T2D patients after adjust-
ment for confounders [34–38]. This suggested that uncon-
trolled OSA may exacerbate the progression of T2D.

2.1.2. T2D Affecting OSA. In spite of notable methodological
limitations, several independent studies revealed a signifi-
cantly higher prevalence (23–86%) of OSA in T2D patients
versus the general population [27, 39], suggesting that T2D
could be a risk factor for OSA. Scantly available data showed
that T2D could worsen the progression of preexisting OSA
[19], especially in patients with autonomic neuropathy [9].
In both clinic-based and community-based cohorts includ-
ing T2D patients with diverse backgrounds, the prevalence
of OSA was alarmingly elevated [7, 35, 36, 40–49] and
insulin resistance could predict OSA development [39].
T2D affecting OSA is postulated to involve the disorders of
the autonomic nervous system leading to sleep-disordered
breathing. However, OSA is usually underdiagnosed in the
majority of T2D patients in the primary care setting [50].

2.1.3. DPN in T2D. DPN is more common in T2D patients,
accounting for 60%–70% of individuals with diabetes [3]
and contributes significantly to morbidity and mortality of
diabetes patients [51]. DPN can be categorized into distal
symmetric peripheral neuropathy and asymmetric (focal
and multifocal) neuropathies (including multiple mono-
neuropathies and thoracic, lumbosacral, and cervical radicu-
loplexus neuropathies) [52]. A recent study evaluated the risk
of neuropathy in 1414 T2D patients and found that diabetic
women with altered sleep patterns had a higher risk of devel-
oping neuropathy [53]. The causes of DPN are multifactorial,
including metabolic factors such as high fat, high glucose,
and low insulin; autoimmune factors producing neurotoxic
inflammation; neurovascular factors resulting in damage to
vessels carrying nutrients and oxygen to the nerves; carpal
tunnel syndrome at the wrists; and ulnar nerve entrapment
at the elbows and lifestyle factors such as alcohol use and
smoking [54]. However, the pathological progression of
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DPN is still unclear and it is essential to explore the potential
molecular mechanism involved in DPN.

2.1.4. Interaction between OSA and DPN in T2D Patients.
OSA in diabetic patients is typically explained by obesity
associated with T2D. Recently, OSA has been shown to be
associated with DPN in T2D patients. The knowledge of such
an association in T2D patients is of clinical implications.
OSA and DPN in T2D could aggravate each other, resulting
in a vicious circle, with even additive or synergistic health
risks in T2D patients. A previous study examining the rela-
tionship between OSA and DPN found a fourfold increase
in the odds of peripheral neuropathy in T2D patients with
OSA compared with those without [7].

2.1.5. DPN Affecting OSA. Diabetic neuropathies are a het-
erogeneous group of disorders affecting different parts of
the nervous systems, including symmetrical polyneuropa-
thies, autonomic neuropathy, and multifocal and focal neu-
ropathies [19, 27]. Earlier data mainly focused on the effect
of diabetic autonomic neuropathy on sleep-disordered
breathing [55]. Diabetic autonomic neuropathy, a form of
DPN [2, 56], could lead to ventilator dysfunction through
impaired central control of breathing, leading to sleep-
disordered breathing [57–60]. Diabetic neuropathy could
increase upper airway collapsibility due to the destruction
of the dilatory muscles of the larynx, which could aggravate
OSA [19]. This mechanism is also observed in a peripheral
neuropathy named Charcot-Marie-Tooth [61]. Another
possiblemechanism is sleep disturbance by painful peripheral
neuropathy. A meta-analysis confirmed the relationship
between OSA and diabetic neuropathy and revealed that
OSA was documented more frequently in T2D patients with
neuropathy [62]. Laboratory investigations have also shown
that T2D patients with diabetic autonomic neuropathy are
more likely to have OSA than those without [63], suggesting
diabetic autonomic neuropathy as another explanation for
the presence of OSA because it is diabetes specific. However,

there are possible mechanisms as to why both diabetic auto-
nomic neuropathy and DPN could lead to the progression of
OSA. Patients with T2D and OSA are at risk of DPN [7].
Diabetes-related nocturia or pain from DPN could worsen
sleep or cause sleep loss [54].

2.1.6. OSA Affecting DPN.A recent study has implicated OSA
as a risk of peripheral neuropathy; autonomic dysfunction
risk could be positively correlated with severity of OSA
[64]. Sleep-disordered breathing such as OSA has been
documented in approximately 50–70% T2D patients and
may contribute to diabetic neuropathy [41, 65]. Shorter or
longer duration of sleep could increase the rate of complica-
tions such as DPN [66–68]. Evidence is scant supporting an
association of OSA with DPN [8]. OSA is associated with
nitrosative and oxidative stress as well as impaired microvas-
cular regulation in T2D patients [7] and could lead to
increase of insulin resistance and T2D, which in turn could
elevate inflammatory markers and contribute to vascular
complications [3]. Therefore, OSA-complicating T2D could
facilitate the development and progression of microvascular
complications including DPN. OSA has been shown to be
independently associated with clinically evident DPN [7].
Robust data is now available supporting OSA as an indepen-
dent risk for DPN development [3].

2.1.7. Common Potential Molecular Mechanisms Involved in
OSA and DPN. One study found that approximately 60% of
patients with OSA and diabetes have peripheral neuropathy
[69]. It has been postulated that advanced glycation end
products (AGEs) and protein kinase C (PKC) could lead to
microvascular complications including DPN [3, 7]. OSA
and DPN in T2D patients may share molecular mechanisms
underlying the development of both conditions as detailed
below (also refer to Table 1 for further references).

2.1.8. Oxidative Stress. Oxidative stress is characterized by
excessive production of reactive oxygen species (ROS)

Table 1: Summary of shared molecular mechanisms in DPN and OSA.

Molecular mechanisms Subcategories Reference for DPN Reference for OSA

Oxidative stress [76–80] [71, 81–84, 93, 94]

Inflammatory markers

TNF-α [101, 103] [108–110, 113, 114]

IL-6 [102] [109–113]

IL-8 [108]

CRP [103] [111–113]

NF-κB [104] [85]

Endothelin-1 (ET-1) [119] [120–122, 126]

Vascular endothelial growth factor (VEGF) [128] [129, 130]

Advanced glycation end products (AGEs) [138–142] [146, 214, 215]

Protein kinase C (PKC) [148] [152]

Poly ADP ribose polymerase (PARP) [153, 154] [7, 8, 155–157]

Nitrosative stress Nitrotyrosine [162, 163] [7]

Plasminogen activator inhibitor-1 (PAI-1) [103] [167–170]

Vitamin D deficiency [176–179, 181–183, 185] [187–192, 194–197]

DPN: diabetic peripheral neuropathy; OSA: obstructive sleep apnea.
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overwhelming the body’s antioxidative defenses [20]. Super-
oxide ion (O2

−), nitric oxide (NO), and hydrogen peroxide
(H2O2) are three radical ROS believed to mediate cellular
degeneration in disease states [70]. ROS excess could inhibit
insulin-induced energy substrate uptake in adipose and
muscle tissues and damage pancreatic β cells [20, 71]. ROS
could also suppress insulin secretion and worsen insulin sen-
sitivity [72, 73]. Actually, cellular studies showed that inter-
mittent hypoxia in OSA negatively affected β-cell death and
proliferation, which could be attributed to excessive cellular
oxidative stress [74].

Excessive oxidative stress is a well-recognized mecha-
nism in the pathogenesis of DPN [75]. Previous studies impli-
cated free lipid peroxidation product accumulation, increase
in GSSG/GSH ratio, GSH depletion, and downregulation of
superoxide dismutase (SOD) activity inDPN[76–79]. Further
studies are needed to unravel the mechanisms of oxidative
stress in the development and progression of DPN. In DPN,
AGEs and PKC signaling directly alter cellular redox capacity
through ROS formation [80].

Recent evidence suggests an association of OSA with
high concentrations of ROS [71]. Upregulated oxidative
stress has been repeatedly demonstrated in OSA patients
[81–84] and could contribute to cerebrovascular, cardiovas-
cular, and other morbidities of OSA. Increased prooxidant/
antioxidant ratio could lead to oxidative stress associated
with OSA, which is primarily attributed to decreased oxy-
gen availability during apneic events and ROS formation
during reoxygenation when breathing resumes [81]. Oxida-
tive stress initiates a vicious circle in which it promotes
inflammation and sympathetic activation, which in turn
potentiates oxidative stress [85]. Accumulating evidence
shows that increase in oxidative stress in OSA patients could
contribute to hyperlipidemia, insulin resistance, T2D, and
subsequent DPN [86].

Increased ROS production associated with hypoxia could
be attributed to dysfunctional mitochondria, NADPH oxi-
dase and xanthine oxidase, and uncoupling of nitric oxide
synthase activation, leading to generation of ROS rather than
nitric oxide (NO) [81, 87], ultimately injuring vital biomole-
cules and altering physiological signaling pathways [85].
Increased ROS levels due to intermittent hypoxia in mouse
mitochondria could contribute to T2D development [88].
Recent studies have indicated that genetic polymorphisms
of NADPH oxidase could affect oxidative stress levels in
OSA patients [85]. The circulating levels of lipid peroxidation
[89–92],DNA[91, 93], andoxidationproductswere increased
in OSA patients and correlated with AHI severity [94, 95],
which partially recovered by continuous positive airway pres-
sure (CPAP) therapy.

2.1.9. Inflammatory Markers.Diabetic patients have high cir-
culating levels of inflammatory markers such as tumor necro-
sis factor-α (TNF-α), C-reactive protein (CRP), interleukin-6
(IL-6), and IL-8 [96, 97]. M1 macrophages in adipose tissues
produce IL-6 andTNF-α [98, 99],which could lead to free fatty
acid (FFA) release, ultimately resulting in impaired insulin sig-
naling consequent of insulin resistance and metabolic dys-
function [11, 100].

T2D patients with DPN have markedly higher TNF-α
levels than those without DPN and healthy persons, and high
TNF-α may be an independent risk of DPN [101]. Further-
more, IL-6 levels are chronically elevated in T2D patients
with DPN [102]. CRP is a sensitive biological marker of
subclinical systemic inflammation related to insulin resis-
tance, hyperglycemia, and overt T2D. T2D patients with
DPN have noticeably higher CRP and TNF-α levels than
those without DPN and normal subjects [103], suggesting
a prominent role of inflammation in the development and
progression of DPN. NF-κB activation, which is involved
in the pathogenesis of diabetic complications, especially
DPN [104], has been identified in the endoneurium, epi-
neurial vessels and perineurium in sural nerve biopsies of
overt diabetic subjects [105].

Cytotoxic T lymphocytes could acquire an inflammatory
phenotype in OSA patients [85]. CD8+ T cells exhibit elevated
TNF-α levels and display enhanced cytotoxicities in an AHI
severity-dependent manner [106, 107]. Cytotoxic γδ T cells
express higher levels of proinflammatory cytokines, including
TNF-α and IL-8, and lower anti-inflammatory IL-10 levels,
suggesting that they could be implicated in atherogenesis
in OSA patients [108]. In addition, several studies have
found elevated levels of TNF-α, IL-6, and CRP in OSA
patients [109–113]. Consistently, a proinflammatory state
has been found in OSA patients [114]. Previous studies have
shown that CPAP decreased the levels of IL-6, TNF-α, and
CRP, leading to a reduction in vascular complications and
inflammation [3, 111, 112]. Inflammatory markers that are
implicated in DPN and OSA including TNF-α, IL-6, IL-8,
and CRP are listed in Table 1.

Blood cells from OSA patients usually show a proinflam-
matory phenotype, which could lead to endothelial dysfunc-
tion, endothelial injury, atherosclerosis, and thrombosis [85].
Short-lived circulating neutrophils from moderate to severe
OSA patients had a prolonged lifespan, which was associated
with increased NF-κB levels, decreased ratios of proapopto-
tic/antiapoptotic proteins, and a higher level of adhesion
molecules [85]. Similar results were revealed in neutrophils
from healthy controls exposed to intermittent hypoxia
in vitro [115–118].

2.1.10. Endothelin-1 (ET-1). ET-1 is a potent vasoconstrictor
and could also stimulate cellular proliferation. ET-1 contrib-
utes to endothelial abnormalities and imbalance of vasodila-
tion and vasoconstriction in favor of the latter in diabetes. In
diabetes patients, endoneurial microangiopathy, particularly
basement membrane thickening, is related to clinical neurop-
athy. Several studies have implicated ET-1 as a novel risk fac-
tor for DPN, and ET-1 levels increased in DPN patients
[119], while improvement of blood glucose did not affect
ET-1 concentrations [120].

OSA patients exhibited augmented vasoconstrictive
capacity due to ET-1 activation. Recurrent episodes of OSA
increased ET-1 levels and blood pressure. Vasoconstrictor
and mitogenic effects of ET-1 may be implicated in increased
cardiovascular risk in OSA patients [120–122]. Other stud-
ies failed to show any ET-1 elevations in OSA patients
compared with controls [123, 124]. In OSA rats mimicking
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intermittent hypoxia, ET-1 constrictor sensitivity rose in a
PKC δ-dependent manner in the mesenteric arteries [125].
ET-1 has also been shown to be involved in ocular complica-
tions of OSA [126].

2.1.11. Vascular Endothelial Growth Factor (VEGF). VEGF
stimulates angiogenesis by promoting vascular endothelial
cell proliferation, migration, and proteolysis. Little is known
regarding VEGF expression in human DPN. In diabetic rats,
immunostaining of the sciatic nerve and dorsal root ganglion
revealed high VEGF levels in cell bodies and nerve fibers
[127]. The role of VEGF generated substantial interest in
the therapy of neuropathy. VEGF administration has been
shown to restore nerve blood flow, nerve conduction velocity,
and nerve vessel number to normal in DPN [128].

VEGF is a hypoxia-sensitive glycoprotein. Plasma VEGF
levels became elevated in severely hypoxic OSA patients and
were correlated to the degree of nocturnal oxygen desatura-
tion [129]. Similar results were found in both young and adult
OSA patients, and plasma VEGF concentration was moder-
ately correlated to OSA severity [130, 131]. Some other stud-
ies showed contrary results and found no correlation between
plasma VEGF levels and severity of hypoxia [131–133].

2.1.12. AGEs. AGEs are a complex group of compounds
formed through nonenzymatic covalent bonding between
reducing sugar and amine residues on lipids, proteins, or
nucleic acids. They could also originate from exogenous
sources including diet and tobacco smoke [134]. AGEs
accumulate in local tissues because AGE-modified proteins
are resistant to enzymatic degradation [135]. The role for
glycation/glycoxidation in diabetic neuropathy has been
extensively reviewed [136–139]. Several clinical studies
implicated glycation in the pathogenesis of DPN secondary
to T2D [140, 141]. Glycated myelin can stimulate macro-
phages to secrete proteases, which could contribute towards
nerve demyelization in DPN [134, 138, 142]. Elevated AGE
levels have been documented in the peripheral nerves of dia-
betic patients [138]. The AGE pathway is a main pathophys-
iologic mechanism in the development of DPN, and
measures to reduce AGE formation could be useful in pre-
serving nerve function in T2D patients [134].

AGEs are also increased in OSA, a condition in which
increased systemic inflammation and oxidative stress are
operationally activated [143, 144]. Intermittent hypoxia in
OSA may induce AGE formation [145]. Plasma AGE levels
were elevated and associated with insulin resistance in nondi-
abetic patients with OSA [146]. AGE accumulation in OSA
may lead to diminution in early endothelial progenitor cells
and endothelial repair capacity over time contributing to vas-
cular pathogenesis [147].

2.1.13. Protein Kinase C (PKC). PKC is a family of enzymes
involved in controlling the function of other proteins
through phosphorylation of the OH groups on threonine
and serine residues and has several isoforms. The role of
PKC in the pathogenesis of DPN has been reviewed in detail
[148]. There has been conflicting reports on PKC isozyme
activity in dorsal root ganglion neurons in diabetic animals

[148]. One report showed decreased PKC α mRNA levels in
dorsal root ganglion neurons of diabetic rats compared with
controls [149]. Another report showed higher aldose reduc-
tase expression in neurons, which reduced PKC α activity
due to translocation from the membrane to cytosol, revealing
a role of PKC α isoform in the hyperglycemic milieu [150].
Vascular tissues in diabetes showed increased PKC activity
leading to increased permeability and dysfunction [151].

Proinflammatory cytokines such as TNF-α and IL-1β
produced in the pulmonary arterial tissue were upregu-
lated under hypoxic conditions in OSA patients, and the
upregulation of these cytokines was dependent on PKC acti-
vation [152]. Intermittent hypoxia mimicking OSA could
augment vasoconstriction mediated by PKC δ in a calcium-
independent manner [125].

2.1.14. Poly ADP Ribose Polymerase (PARP). PARP becomes
activated by oxidative stress-induced DNA damage, which
plays an important role in the pathogenesis of DPN in T2D
patients [153, 154]. A recent study has shown that PARP acti-
vation was independently associated with higher AHI sec-
ondary to oxidative stress in patients with OSA and T2D
[8]. In addition, PARP activation provides another explana-
tion for the longitudinal and cross-sectional associations
between OSA and DPN in T2D patients [7, 155–157]. Inter-
mittent hypoxia has been suggested to induce oxidative stress
and PARP activation in nondiabetic rodents in vitro [158].
PARP inhibition could reverse DPN and neuropathy in dia-
betic rodents through alleviating oxidative stress [159–161].

2.1.15. Nitrosative Stress. Nitrosative stress, which is marked
by enhanced peroxynitrite formation, has been well docu-
mented in both clinical and experimental diabetic neuropa-
thies [162]. A previous study has demonstrated higher
serum nitrotyrosine levels in T2D patients with DPN, which
is consistent with reports on experimental DPN [7], implicat-
ing nitrosative stress in DPN pathogenesis by reducing nerve
perfusion and destroying vascular reactivity of epineurial
arterioles [162, 163]. Nitrosative stress could also affect all
the cell types in the peripheral nervous system, such as
Schwann cells, and endothelial cells of the peripheral nerve,
astrocytes, neurons, and oligodendrocytes of the spinal cord
[159]. Nitrosative stress is related to the development of
thermal hyper- and hypalgesia, tactile allodynia, mechani-
cal hypalgesia, and small sensory nerve fiber degeneration
[163]. Inhibition of nitrosative stress with PARP inhibitor
or baicalein improved experimental neuropathy in diabetic
rodent models [159, 164].

So far, a study has shown an association between OSA
andnitrosative stress inT2Dpatients [7]. Theobvious correla-
tion between nocturnal/sleep-related hypoxemia and serum
nitrotyrosine levels suggested that nitrosative stress was a
potentialmechanistic link betweenDPNandOSA.Aprevious
study has shown greater endothelial expression of nitrotyro-
sine in OSA patients without T2D than OSA-free subjects
regardless of central adiposity [165].

2.1.16. Plasminogen Activator Inhibitor-1 (PAI-1). PAI-1, a
member of the serine protease inhibitor family, controls the
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fibrinolytic system by inhibiting urokinase and tissue-type
plasminogen activators [103]. An earlier study indicated that
diabetic neuropathy did not show any significant relationship
with plasma PAI-1 levels in T2D patients [166]. A recent
study has shown that PAI-1 levels were higher in DPN
patients than normal subjects and T2D patients without
DPN and PAI-1 was associated with DPN development from
the perspective of inflammation, suggesting that PAI-1 and
inflammatory markers such as TNF-α and CRP participated
in the development and progression of DPN [103].

Increased PAI-1 activity was associated with sleep-
disordered breathing, possibly contributing to increased vas-
cular risk [167]. A previous study indicated that PAI-1 levels
were significantly higher in OSA subjects than controls and
PAI-1 positively correlated with AHI index [168]. CPAP
therapy could significantly reduce PAI-1 levels. In OSA chil-
dren, PAI-1 levels were significantly higher along with other
inflammatory markers such as IL-6 and monocyte chemoat-
tractant protein-1 (MCP-1) [169]. A recent study has shown
that OSA patients had a higher median plasma PAI-1 level
than controls and PAI-1 levels increased with OSA severity,
suggesting that OSA could enhance prothrombotic activity
[170]. OSA significantly correlated with PAI-1 concentration
due to prothrombotic effects.

2.1.17. Vitamin D Deficiency. Vitamin D, a steroid hormone
with multifarious and extensive effect, could play a potential
therapeutic role in attenuating the severity and progression
of T2D [171, 172]. Growing evidence shows that low vitamin
D level could contribute to pathogenesis of diabetes and its
underlying diseases [173, 174]. Vitamin D deficiency has
been implicated in the pathophysiology of DPN by impacting
on nerve function [175].

Vitamin D deficiency may correlate with DPN in T2D
patients [173, 176–180], with lower serum levels of 25(OH)D
being independently associated with increased DPN in T2D
patients [177, 181]. Vitamin D deficiency was also associated
with development of neuropathy in T2D patients [182], as
revealed in Caucasians and Asians with T2D by a recent
meta-analysis [183]. Nerve growth factor (NGF), which is
essential for primary nociceptive neuron development, was
found by immunostaining to correlate with skin axon reflex
vasodilation mediated by small sensory fibers in diabetic
neuropathy patients [184]. Vitamin D is likely a modifiable
risk factor for DPN and could modulate inflammatory medi-
ators including IL-17 and IL-13 in DPN development [185].

Vitamin D supplementation relieved symptoms of neuropa-
thy in T2D patients [186].

Nondiabetic pediatric OSA patients had reduced 25(OH)D
levels [187], which may play a role in modulating the degree of
insulin resistance and systemic inflammation [188]. Previous
studies reported that OSA patients had lower vitamin D levels
than healthy individuals [189–192]. Vitamin D can establish
homeostasis between suppressor and regulatory T cell func-
tions to modulate inflammatory process in OSA [193], suggest-
ing that vitamin D deficiency in severe OSA patients is
common, with a negative correlation between IL-17 and serum
vitamin D levels [194]. Recent studies have shown that patients
with OSA have a higher prevalence of vitamin D deficiency
than healthy controls [190, 191, 195], and there are conflicting
reports on the association between vitamin D deficiency and
severity of OSA [191, 195–198]. PARP treatment may have late
beneficial effects on vitamin D levels in selected OSA patients
[199, 200]. Further studies exploring whether vitamin D defi-
ciency may modulate OSA are needed.

2.1.18. Neurotransmitters. Some neuromodulators such as
glutamate, noradrenaline, acetylcholine, dopamine, and GABA
could affect DPN andOSA. The effect on and association of the
neurotransmitters with DPN and OSA are listed in Table 2.

2.1.19. Glutamate. A previous study showed that the excit-
atory neurotransmitter glutamate induced an increased mag-
nitude of mitochondrial depolarization, but no increase in
apoptosis was observed [201]. In DPN, glutamate release is
related with increased oxidative stress and decreased mito-
chondrial function, which is associated with neuropathic
pain and activation of the glutamate recycling pathway that
protects diabetic dorsal root ganglion by activating the
SIRT1-PGC-1α-EFAM axis [202]. In OSA patients, higher
glutamate levels were observed versus healthy subjects
[203]. Similar changes on glutamate levels could lead to com-
mon mechanism in the pathogenesis of DPN and OSA.

2.1.20. Noradrenaline. In OSA patients, nocturnal plasma
noradrenaline content was increased and correlated with
severity of overnight oxygen desaturation; 24 h urinary nor-
adrenaline also increased [204]. In diabetic neuropathy rats,
noradrenaline concentration was increased significantly 20
and 40min after tramadol and clomipramine infusion
[205], suggesting that the descending noradrenergic pathway
could play an important role in analgesia for diabetic

Table 2: Summary of shared molecular mechanisms involved in DPN and OSA.

Common neuromodulators Changes in DPN Changes in OSA

Glutamate Increased release [202] High levels [203]

Noradrenaline Increased levels [205]
Plasma and 24 h urinary

noradrenaline increased [204]

Acetylcholine (Ach) Attenuated Ach synthesis [206, 207] Induce vasodilation [208]

Dopamine
Increased/decreased in different
regions of the nerve system

Not correlated with OSA [209]

γ-Aminobutyric acid (GABA) Decrease in diabetic neuropathy patients [211] Reduced GABA levels in OSA [203]

DPN: diabetic peripheral neuropathy; OSA: obstructive sleep apnea.
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neuropathy. These findings indicate that noradrenaline could
be involved in DPN and OSA.

2.1.21. Acetylcholine. Diabetes was reported to impair
acetylcholine-induced vascular relaxation in epineurial arte-
rioles of the sciatic nerve [206]. A previous report showed
that palmitic acid exposure could cause neuronal loss in dia-
betic neuropathy,whichmaybedue to attenuatedAch synthe-
sis [207]. In an OSA animal model, acetylcholine-induced
vasodilation through theNO-dependent pathway in the skele-
tal muscle was impaired [208].

2.1.22. Dopamine. A recent study showed that dopamine
content was decreased in the midbrain, cerebral cortex, and
brainstem regions, while it increased in the cerebellum and
thalamus/hypothalamus in diabetic rats. No correlation
between OSA and dopamine has been found [209].

2.1.23. γ-Aminobutyric Acid (GABA). In the adult nerve sys-
tem, GABA is the main inhibitory neurotransmitter related
with pain modulation. A previous study showed pronounced
increase of extracellular GABA concentration in the ventro-
medial hypothalamic region in a type 1 diabetic animal
model [210]. In diabetic neuropathy patients, GABA levels
were significantly lower versus healthy controls [211]. The
Toronto Expert Panel on Diabetic Neuropathy (TEPDN)
recommended that GABA should be considered as first-line
diabetic neuropathy treatment [212]. In OSA, low GABA
levels were observed by“2-dimensional” spectroscopy [213]

and reduced GABA levels were detected in the insular cortex
of OSA patients [203]. The decrease in the levels of GABA in
DPN and OSA has potential serious functional consequences
that need to be elucidated.

3. Conclusions and Perspectives

Much of the data available on OSA and its association with
DPN is difficult to interpret. The evidence reviewed in the
current paper on the association between PDN and OSA in
T2D patients suggests an intricate interrelationship among
DPN, OSA, and T2D (Figure 1). OSA can aggravate and
amplify T2D and subsequent complications such as DPN.
Ultimately, OSA could contribute to T2D, resulting in a
vicious circle. It is important to keep in mind that prospective
studies with a larger T2D population are required to delin-
eate the interwoven relationship between OSA and DPN. In
addition, we summarized shared mechanisms in DPN and
OSA, including oxidative stress, inflammation, AGEs, and
PKC signaling. We also speculate that these mechanisms
can operate simultaneously in patients with T2D leading to
DPN and OSA. Recently, histone modifications are also
reported to be involved in DPN and OSA. With the under-
standing of pathophysiology, CPAP is considered as the gold
standard for managing patients with moderate to severe
OSA. Further studies indicated that CPAP could improve
insulin sensitivity in patients with prediabetes and decrease
blood glucose in T2D patients; but till now, there has been
no proof of efficacy of CPAP for DPN in vivo or in vitro.
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Suppressed insulin 

Inflammation

accumulation
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(iii) GSH depletion
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Figure 1: Pleiotropic interactions among type 2 diabetes (T2D), diabetic peripheral neuropathy (DPN), and obstructive sleep apnea (OSA).
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Similarly to CPAP, weight loss, bariatric intervention, or
pharmacotherapy has been proven effective in alleviating
OSA severity and improving glycemic status in obese T2D
patients; future clinical trials will shed more light on the
impact of CPAP therapy, weight loss, bariatric intervention,
or pharmacotherapy on DPN. Prospective studies are
required to determine mechanistic links applicable to DPN
and OSA, which will contribute more to the exploration of
novel therapeutic strategies in retarding the development
and progression of DPN and OSA in T2D.
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