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Simple Summary: The embryonic development of commercial broiler chickens, which accounts for
about one-third of the whole life span, has attracted increasingly more attention. Egg yolk is the main
nutrient source of broiler embryos, and its metabolites change rapidly during the embryogenesis.
Chicken sexual hormones may play important roles in changing the profile of metabolites in different
tissues. Therefore, we compared the profiles of yolk metabolites and patterns of liver lipid-related
gene expression of male and female chicken embryos. The results showed that the female yolk
metabolites were mainly related to the lipid metabolism and amino acid metabolism in early embry-
onic stage, and vitamin metabolism in late embryonic stage, while the male yolk metabolites were
mainly associated with lipid metabolism and nucleic acid metabolism in early embryonic stage, and
amino acid metabolism in late embryonic stage.

Abstract: The metabolic processes of animals are usually affected by sex. Egg yolk is the major
nutrient utilized for the growth and development of a chicken embryo. In this study, we explored the
differences of yolk metabolites in male and female chicken embryos by LC–MS/MS. Furthermore,
we investigated the mRNA expression of lipoprotein lipase (LPL) and fatty acid synthase (FAS) in
chicken embryo liver with different sexes in different embryonic stages. The results showed that
the nutrient metabolites in the yolk of female chickens were mainly related to lipid metabolism and
amino acid metabolism in the early embryonic stage, and vitamin metabolism in the late embryonic
stage. The male yolk metabolites were mainly associated with lipid metabolism and nucleic acid
metabolism in the early developmental stage, and amino acids metabolism in the late embryonic
stage. There was no significant difference in the expression of LPL or FAS in livers of male and female
chicken embryos at different embryonic stages. Our results may lead to a better understanding of the
sexual effect on yolk nutrient metabolism during chicken embryonic development.

Keywords: yolk; sex; chicken embryo; metabolism

1. Introduction

The main source of nutrients for chicken embryo development is the yolk, which
provides more than 90% of nutrients and is dynamically metabolized to supply essential
elements for the embryonic organ growth and tissue formation [1,2]. About 31–33% of egg
yolk components are lipids, most of which exist in the form of very low density lipoproteins
(VLDL), accounting for about 66% of the yolk dry matter [3]. The yolk nutrients are
primarily absorbed and metabolized into small molecules such as lipoprotein, carbohydrate,
amino acid, or fatty acid through the enzymatic digestion of the yolk sac [4]. The yolk sac
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is atrophied at the late stage of embryonic development (approximately embryonic day
17–21), and the residue yolk contents are digested and absorbed by the embryo intestine
and liver instead [5]. The liver is the key organ for lipid metabolism and the activity
of lipases is an important indicator to reflect the function of the liver in generating and
hydrolyzing the lipids. Lipoprotein lipase (LPL) is a rate-limiting enzyme principally,
which mainly decomposes the triglycerides of VLDL and chylomicrons (CM) into fatty
acids and glycerols in adipose tissues [6,7]. Fatty acid synthase (FAS) is a multifunctional
enzyme that plays a central role in the biosynthesis of lipids and catalyzes the synthesis of
fatty acids from acetyl coenzyme A and NADPH [8].

Animals with different sexes usually have quite distinct nutrient metabolic processes
due to the regulation by sexual hormones [9]. The sexual effect makes a significant con-
tribution on the broiler growth performance, the male birds have higher body weight
and faster growth rate than the females [10]. Additionally, the composition of intestinal
microbiota, which has been widely accepted as a critical factor that influences the health
and growth of broilers, show different patterns in male and female chicken intestine [11].
Male broilers have relatively higher abundance of Bacteroides, Lactobacillus, Megamona,
and Faecalibacterium, which are functionally related to body glycometabolism and muscle
growth. The abundance of Ruminococcaceae and Enterococcus, which are mainly related
to lipid metabolism in the caecum of female broilers, are relatively more abundant than
those in the male birds [12]. The secretory levels of various sex-related hormones in male
and female egg yolk are different and change during embryo development. The metabo-
lites at different embryonic stages are reported to enrich in the pathways involved in the
metabolism of pyrimidine, propanoate, glycerophospholipid, glutathione, and amino acid;
biosynthesis of hormone, vitamin, and unsaturated fatty acids; sulfur relay system; and
ferroptosis [13]. However, the effects of sex on yolk metabolites at different embryonic
stages are not yet clear. In this study, we compared the differences of yolk metabolites
between male and female chicken embryos at different embryonic stages. In addition, the
mRNA expression profiles of LPL and FAS in chicken embryo livers at different embryonic
stages were analyzed.

2. Material and Methods
2.1. Sample Collection

A total of 100 Ross 308 fertilized eggs were purchased and incubated at 37 ± 0.5 ◦C
with 60 ± 5% relative humidity. All the eggs were candled at embryonic day 5 (E05) to
check the fertility and unfertilized eggs were eliminated. At each sampling day (E07, E11,
E15, and E19), 12 eggs were gently opened from the air cell by using clean scissors. The egg
shell membrane was slowly peeled off with a sterilized tweezer to expose the embryo and
yolk sac membrane. Yolk samples (5 mL) were collected by a syringe puncturing the yolk
sac membrane and homogenized before freezing in liquid nitrogen. Embryonic liver and
yolk sac samples were collected on a 4 ◦C sanitized working bench and stored at −80 ◦C
after snap freezing in the liquid nitrogen. Twenty-four yolk sac samples were collected at
E07, E11, E15, and E19 for sex identification, and liver samples were collected at E11, E15,
and E19.

2.2. Sex Determination

The sex of chicken embryo was identified by gel electrophoresis of DNA. DNA was
extracted from yolk sac using TIANamp Genomic DNA Kit (TIANGEN, cat#DP304) fol-
lowing the manufacturer’s instructions. The concentration and quality of isolated DNAs
were assessed by Nano Drop spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). Subsequently, the CHD1 gene was amplified by polymerase chain reaction (PCR)
with 0.1 µg DNA and primer pair SF/SR (SF: 5′-AGTGCATTGCAGAAGCAATATT-3′, SR:
5′-GCCTCCTGTTTATTATAGAATTCAT-3′) [14]. The chromosome of female chicken is ZW
and that of male chicken is ZZ [15]; 500 bp (CHD1-W) and 350 bp (CHD1-Z) CHD1 gene
fragments were amplified from the W-chromosome and Z-chromosome specific CHD1
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gene, respectively. Then, the PCR products were run on 1.5% agarose gel by electrophoresis.
Two bands indicated the female, and one single band stood for the male (Figure 1).
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Figure 1. Gel electrophoresis of chicken embryos for sex identification. Two bands in these samples
indicate female chicken embryos, while one band means male embryos, and the middle shows the
DNA markers.

2.3. Metabolites Extraction

The frozen yolk samples (100 mg) were individually ground with liquid nitrogen, and
the homogenate was resuspended with prechilled 80% methanol and 0.1% formic acid
by well vortex. The remaining yolk samples were preserved for use. The samples were
incubated on ice for 5 min and then centrifuged at 15,000 rpm, 4 ◦C for 5 min. A volume of
50 µL supernatant was diluted to final concentration containing 53% methanol by LC–MS
grade water. The samples were subsequently transferred to a fresh Eppendorf tube and
then centrifuged at 15,000× g, 4 ◦C for 10 min. Finally, the supernatant was injected into
the LC–MS/MS system for further analysis [16].

2.4. UHPLC–MS/MS Analysis

UHPLC–MS/MS analysis was performed at Novogene Co., Ltd. (Beijing, China)
using a Vanquish UHPLC system (Thermo Fisher, Regensburg, Germany) coupled with
an Orbitrap Q ExactiveTM HF mass spectrometer (Thermo Fisher, Regensburg, Germany).
Samples were injected into a Hypesil Gold column (100 × 2.1 mm, 1.9 µm) using a 17 min
linear gradient at a flow rate of 0.2 mL/min. The eluents for the positive polarity mode were
eluent A1 (0.1% FA in water) and eluent B (methanol). The eluents for the negative polarity
mode were eluent A2 (5 mM ammonium acetate, pH 9.0) and eluent B (methanol). The
solvent gradient was set as follows: 2% B, 1.5 min; 2–100% B, 12.0 min; 100% B, 14.0 min; 100–
2% B, 14.1 min; 2% B, 17 min. A model Q ExactiveTM HF mass spectrometer was operated
in positive/negative polarity mode with spray voltage of 3.2 kV, capillary temperature of
320 ◦C, sheath gas flow rate of 40 arb, and auxiliary gas flow rate of 10 arb [17].

2.5. Data Processing and Metabolite Identification

The raw data files generated by UHPLC–MS/MS were processed using the Compound
Discoverer 3.1 (CD3.1, Thermo Fisher) to perform peak alignment, peak picking, and
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quantitation for each metabolite. The main parameters were set as follows: retention
time tolerance, 0.2 min; actual mass tolerance, 5 ppm; signal intensity tolerance, 30%;
signal/noise ratio, 3; and minimum intensity, 100,000. Next, the peak intensities were
normalized to the total spectral intensity. The normalized data were used to predict
the molecular formula based on additive ions, molecular ion peaks and fragment ions.
Peaks were then matched with the mzCloud, https://www.mzcloud.org (accessed on
1 September 2021), mzVault, and MassList database to obtain the accurate qualitative
and relative quantitative results [17]. Statistical analyses were performed by R (R version
R-3.4.3), Python (Python 2.7.6 version), and CentOS (CentOS release 6.6). When the data
were not normally distributed, Log2 normal transformation was attempted.

2.6. RT-qPCR

Total RNA was extracted from the liver tissue using the Tiangen Biotech RNA Easy Fast
Tissue/Cell Kit (DP451) following the manufacturer’s instructions. The cDNA synthesis
was performed using Quantscript RT Kit (Tiangen Biotech, Beijing, China). RT-qPCR was
performed in the Applied Biosystems 7500 Fast Real-time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA) with SYBR green (Applied Biosystems, Waltham, MA,
USA). Based on the chicken genome sequence in NCBI, primers were designed using
Primer Premier 5.0 and synthesized by Sangon Biotech Co., Ltd. (Shanghai, China). The
primer information of LPL, FAS, RPL4, and β-actin are listed in Table 1. The relative gene
expression was normalized by the geometric average of RPL4 and β-actin Ct values. The
2−∆∆Ct method was used to calculate the corresponding gene expression.

Table 1. List of RT-qPCR primers used in this study.

Primer Name Sequence Accession Number Annealing
Temperature/◦C Amplicon Size

LPL-F ATGTTCATTGATTGGATGGAGGAG
NM_205282.2 58 139LPL-R AAAGGTGGGACCAGCAGGAT

FAS-F AAGGCGGAAGTCAACGG
NM_205155.4 55 196FAS-R TTGATGGTGAGGAGTCG

RPL4-F TTATGCCATCTGTTCTGCC
NM_001007479.1 60 235RPL4-R GCGATTCCTCATCTTACCCT

β-actin-F TCTTGGGTATGGAGTCCTG
NM_205518 60 331

β-actin-R TAGAAGCATTTGCGGTGG

3. Results
3.1. Yolk Metabolites of Chicken Embryos with Different Sexes at E7

Different metabolites were screened by their fold changes and t-test was performed to
compare the differences of yolk metabolites between male and female chicken embryos
at E7. The volcano plot was obtained by combining the fold changes and p values of each
metabolite (Figure 2A). According to the volcano plot, there were 78 significantly different
yolk metabolites identified between the male and female chicken embryos. The top 10 dif-
ferential identified metabolites include acetamide, lipids (Glycerophospholipid: PS, OxPE,
and LPE; Glycolipids: MGDG; Sphingolipid: HexCer-NS), tyrosol and glycine anhydride,
carboxylic acid, and imidazol (Table 2). Furthermore, the hierarchical clustering heatmap
of categorized metabolites was plotted according to the database of KEGG metabolism
pathway, https://www.genome.jp/kegg/pathway.html (accessed on 1 September 2021)
(Figure 2B). The results showed that the yolk metabolites downregulated in female chicken
embryos but upregulated in male chicken embryos, and were mainly related to the glyc-
erolipid metabolism pathway; while those upregulated in female chicken embryos but
downregulated in male chickens embryos were mainly related to the porphyrin metabolism
(Glycine, Porphobilinogen), primary bile acid biosynthesis (Glycine, Taurochenodeoxy-
cholate), and arginine biosynthesis (Fumaric acid) pathways.

https://www.mzcloud.org
https://www.genome.jp/kegg/pathway.html
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(B) Heatmap showing the difference profile of yolk metabolites between male and female chicken 
embryos. Each cell in the plot corresponds to a normalized z-score value. Sample names are in col-
umns and compound names are in rows. 

Figure 2. Differential yolk metabolites identified from male and female chicken embryos at E7
(n = 3). (A) The volcano plot shows the combination of the fold changes and the p values of each
metabolite. The red dots represent the metabolites that were significantly upregulated in female
birds, while the blue dots represent the metabolites that were significantly downregulated in female
birds. (B) Heatmap showing the difference profile of yolk metabolites between male and female
chicken embryos. Each cell in the plot corresponds to a normalized z-score value. Sample names are
in columns and compound names are in rows.
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Table 2. Top 10 differential yolk metabolites identified between male and female chicken embryos
at E7.

Items FC log2(FC) Raw. p Value −log10(p)

N-(5-acetamidopentyl)acetamide 0.4489 −1.1556 5.28 × 10−7 6.2771
PS (18:0/20:4) 0.2523 −1.9867 3.21 × 10−6 5.4928

OxPE (16:0-22:5 + 1O (1Cyc)) 0.4755 −1.0725 1.51 × 10−5 4.8201
2-[6-(1H-benzo[d]imidazol-2-yl)-2-pyridyl]-1H-benzo[d]imidazole 2.2982 1.2005 0.00010772 3.9677

MGDG (16:0/18:2) 0.3856 −1.3751 0.00012132 3.9161
5,6-dimethyl-4-oxo-4H-pyran-2-carboxylic acid 0.3020 −1.7276 0.00014683 3.8332

HexCer-NS (d18:1/16:1) 0.3278 −1.6091 0.00014999 3.8239
Tyrosol 0.4280 −1.2245 0.00026848 3.5711

LPE (24:2) 0.32650 −1.6149 0.00036824 3.4339
Glycine anhydride 2.0760 1.0538 0.00045261 3.3443

Note: Comparison analysis was performed by using data for female to male birds.

3.2. Yolk Metabolites of Chicken Embryos with Different Sexes at E11

The same analysis for yolk metabolites of male and female chicken embryos at E11
was performed. The results show that a total of 103 significantly different metabolites were
identified (Figure 3A). The top 10 significantly different metabolites were mainly lipids,
especially glycerophospholipids (PE, PMeOH, and PG) and Sphingolipid (Cer-NS and
SM); Coniferin, L-Dopa, and Cysteine-glutathione-disulfide were also identified (Table 3).
According to the heatmap results at E11 (Figure 3B), the yolk metabolites downregulated in
female chicken embryos but upregulated in male chicken embryos were mainly related to
the pathways of pyrimidine metabolism (PC (18:1/19:2)), fatty acid biosynthesis (Adrenic
acid, Dodecanoic Acid (C12:0)), and purine metabolism (PG (16:0/18:2)). Conversely,
the yolk metabolites that upregulated in female chicken embryos but downregulated in
male chicken embryos were mainly related to pathways of D-glutamine and D-glutamate
metabolism (D-Glutamine), valine, leucine and isoleucine biosynthesis (Isoleucine), and
lysine degradation (L-5-Hydroxylysine).

Table 3. Top 10 differential yolk metabolites identified between male and female chicken embryos
at E11.

Items FC log2(FC) Raw. p Value −log10(p)

PE (18:0e/22:6) 2.0357 1.0255 1.15 × 10−7 6.9409
PG (16:0/18:2) 0.3433 −1.5426 7.70 × 10−7 6.1136

Cer-NS (d18:1/18:1) 4.7743 2.2553 4.53 × 10−6 5.3443
Coniferin 5.2519 2.3928 1.02 × 10−5 4.9932

PMeOH (16:0-22:6) 0.3584 −1.4804 2.48 × 10−5 4.6053
SM (d14:2/22:0) 2.7421 1.4553 6.21 × 10−5 4.2071

Cer-NS (d18:1/18:2) 12.5100 3.6450 6.91 × 10−5 4.1602
L-Cysteine-glutathione disulfide 3.1844 1.6710 0.00028323 3.5479

L-Dopa 6.1579 2.6224 0.00028991 3.5377
PE (18:0e/22:5) 0.3483 −1.5215 0.00030299 3.5186
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Figure 3. Differential yolk metabolites identified from male and female chicken embryos at E11
(n = 3). (A) The volcano plot shows the combination of the fold changes and the p values of each
metabolite. The red dots represent the metabolites that were significantly upregulated in female
birds, while the blue dots represent the metabolites that were significantly downregulated in female
birds. (B) Heatmap showing the difference profile of yolk metabolites between male and female
chicken embryos. Each cell in the plot corresponds to a normalized z-score value. Sample names are
in columns and compound names are in rows.
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3.3. Yolk Metabolites of Chicken Embryos with Different Sexes at E15

According to the results of volcano plot, there were 289 significantly different yolk
metabolites identified between the male and female chicken embryos (Figure 4A), the
number of significantly different metabolites was increased compared to E11. The top 10
differential identified metabolites include alkaloids (Ecgonine, Acetylcholine and Betaine),
Pyridoxic acid, Carboxyindole metabolite, lipids (PC), Acrylate, and Cresol (Table 4).
Furthermore, the hierarchical clustering heatmap was plotted (Figure 4B) and the results
show that the yolk metabolites downregulated in male chicken embryos but upregulated
in female chicken embryos were mainly related to the pathway of glycine, serine, and
threonine metabolism (Betaine, Creatine), vitamin B6 metabolism (Pyridoxic acid), and
retinol metabolism (Estradiol-17-glucuronide). However, the yolk metabolites upregulated
in male chicken embryos but downregulated in female chicken embryos were mainly
related to aminoacyl-tRNA biosynthesis (Threonine, L-Tyrosine), phenylalanine, tyrosine
and tryptophan biosynthesis (L-Tyrosine), valine, leucine and isoleucine biosynthesis,
phenylalanine metabolism (L-Tyrosine), and ubiquinone and other terpenoid-quinone
biosynthesis (L-Tyrosine) pathways.

Table 4. Top 10 differential yolk metabolites identified between male and female chicken embryos at
E15 (n = 3).

Items FC log2(FC) raw. p Value −log10(p)

4-Pyridoxic acid 7.7167 2.9480 1.87 × 10−8 7.7282
PB-22 N-4-Hydroxypentyl-3-carboxyindole metabolite 0.4555 −1.1342 4.54 × 10−7 6.3427

Ecgonine 0.2821 −1.8255 6.58 × 10−7 6.1815
Acetylcholine 0.4199 −1.2518 1.07 × 10−5 4.9708
PC (20:4/22:6) 0.0617 −4.0174 1.18 × 10−5 4.9278

ethyl 2-cyano-3-tetrahydro-3-thiophenylaminoacrylate 2.9046 1.5383 1.26 × 10−5 4.8980
Cresol 0.2696 −1.8907 1.82 × 10−5 4.7388

D-Lanthionine 4.3398 2.1176 1.89 × 10−5 4.7226
Betaine 2.3425 1.2280 2.14 × 10−5 4.6697

Linolenoyl ethanolamide 0.2827 −1.8223 2.14 × 10−5 4.6695
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3.4. Yolk Metabolites of Chicken Embryos with Different Sexes at E19

The results of the volcano plot showed that a total of 98 significantly different metabo-
lites were identified (Figure 5A). The number of different metabolites decreased compared
to E15. The top 10 significantly different metabolites include organic acid (Glucuronide,
D-Lanthionine, N-Acetylneuraminic acid, Cannabidiolic acid), lipid (PC), phenylurea,
senecionine, deoxyadenosine, and acetate (Table 5). According to the heatmap results
at E19 (Figure 5B), the yolk metabolites downregulated in female chicken embryos but
upregulated in male chicken embryos were mainly related to the pentose phosphate (D-
erythrose-4-phosphate) pathway, and the cysteine and methionine metabolism (S-Adenosy-
L-methionine) pathway. Conversely, the yolk metabolites upregulated in female chicken
embryos but downregulated in male chicken embryos were mainly related to arginine
biosynthesis (N-benzyl-N-isopropyl-urea), retinol metabolism (Estradiol-17-glucuronide),
and sphingolipid metabolism (PE) pathways.
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Table 5. Top 10 differential yolk metabolites identified between male and female chicken embryos
at E19.

Items FC log2(FC) Raw. p Value −log10(p)

PC (16:0/16:2) 0.0171 −5.8739 1.82 × 10−7 6.7390
3-3,4-dimethylphenyl-3,4-dihydro-1,2,3-benzotriazin-4-one 4.1939 2.0683 1.14 × 10−6 5.9436

Estradiol-17-glucuronide 15.3240 3.9377 1.56 × 10−6 5.8079
D-Lanthionine 2.9305 1.5511 1.63 × 10−6 5.7883

N-benzyl-N-isopropyl-N’-4-trifluoromethoxyphenylurea 13.6310 3.7688 2.63 × 10−6 5.5796
N-Acetylneuraminic acid 2.2604 1.1766 1.31 × 10−5 4.8825

Cannabidiolic acid 452.4700 8.8217 2.09 × 10−5 4.6801
Senecionine 2.5237 1.3355 2.82 × 10−5 4.5505

2′-Deoxyadenosine 2.0094 1.0068 0.00026631 3.5746
Methyl indole-3-acetate 0.4684 −1.0942 0.00029525 3.5298

3.5. The Developmental Change of Lipid-Related Gene Expression in Embryo Livers with
Different Sexes

In order to understand the sexual effect on the lipid-related gene expression during
the embryogenesis, we analyzed the expression of LPL and FAS in chicken embryo livers
at different embryonic days (Figure 6). However, the results showed that there was no
significant difference in the expression of LPL and FAS in livers between male and female
birds at different embryonic stages.
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4. Discussion

Sex is an important characteristic for animals, which significantly affects the normal
growth and metabolic processes [18]. Egg yolk is the primarily source of energy during the
second half of incubation and early post-hatch period. The metabolism of yolk nutrients
determines the normality of developmental embryogenesis and functional maturation of
newly formed chicken embryo organs [2]. In order to understand the sexual effect on the de-
velopmental profiles of chicken yolk metabolites, we carried out the metabolomic analysis
and gene expression experiment to investigate the potential differences of yolk metabolites
and liver lipid metabolisms between male and female birds during the embryogenesis.

According to our results, we found that the female chicken embryos mainly metab-
olized the yolk nutrients through porphyrin metabolism, primary bile acid biosynthesis,
and arginine biosynthesis in the early stage of embryogenesis. Estrogen was found to be
an important factor in regulating porphyrin metabolism, including supporting the car-
diovascular system to facilitate the function of heme oxygenase [19]. Thus, the intensive
porphyrin metabolism of yolk metabolites in the early embryonic development might be
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associated with the formation of the large-scale blood system of the yolk sac. Additionally,
estrogen has been reported to enhance the synthesis of bile acids via farnesoid X receptor
interactions [20]. It is possible that the female birds had more potential to produce bile acids
and promote the utilization of yolk lipid with the benefit of estrogen. The primary bile acid
synthesis pathway is mainly related to the metabolism and absorption of cholesterol in
yolk [21]. Cholesterol is catalyzed to produce 7-α-hydroxycholesterol by 7-α-hydroxylase,
the rate limiting enzyme of bile acid production [22]. The cholic acid and deoxycholic
acid formed by this process are free primary bile acids, which combine with glycine and
taurine to form binding primary bile acids [23]. Arginine biosynthesis occurs throughout
the development cycle of female chicken embryos. Arginine catalyzes the ornithine cycle,
which promotes the formation of urea by converting ammonia into nontoxic urea [24].
Meanwhile, Arginine is an endogenous substrate for the synthesis of nitric oxide [25],
which acts as an intercellular messenger and neurotransmitter and plays an important role
in cardiovascular system, central nervous system and peripheral transmission [26]. The
early metabolism of arginine probably contributes to the fast vascularization and brain
development during this stage. The yolk metabolites of female birds in early embryonic
stage also include D-glutamine and D-glutamate metabolism, which were found to play an
important role in protein deposition and muscle growth of chicken embryos [27]. In the
late stage of chicken embryogenesis, vitamin and lipid metabolism are the vital processes
occurring in the yolk. Serine metabolism is closely related to fat metabolism and fatty acid
metabolism, and plays an indispensable role in the manufacture and processing of cell
membrane. The synthesis of muscle tissue and sheath surrounding nerve cells are critical
for the healthy development of chicken embryos [28]. Vitamin B6 metabolism and retinol
metabolism are associated with bone growth in the later development stage of female
chicken embryos [29].

Metabolites in the yolk of male chicken embryos differed from those in female chicken
embryos in different developmental stages. The yolk metabolites in male chicken embryos
during the early developmental stage were mainly related to the lipid metabolism and
nucleic acid metabolism, such as glycerolipid metabolism, fatty acid biosynthesis, pyrim-
idine metabolism, and purine metabolism. The yolk lipids are the major component for
chicken embryo nutrition, most of which are glycerolipid [30]. Prostaglandin is a hormone
which maintains the normal development of male reproductive organs. The essential and
polyunsaturated fatty acids were found to be the important progenitor for prostaglandin
synthesis [31]. Therefore, the biosynthesis of fatty acids in the yolk of male chicken in
early embryogenesis stage may be related to the increasing demand of prostaglandins
for the development of male embryo reproductive organs. Pyrimidine and purine are
the basic components of nucleic acid molecules in cells and indispensable components of
energy metabolism [32]. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP), which were produced via the pyrimidine and purine metabolism
pathways, are essential second messenger molecules to modulate the synthesis of growth
hormone, insulin, and other cell membrane receptor hormones [33]. On the other hand, the
yolk metabolites in male chicken embryo at later developmental stage were mainly associ-
ated with amino acid metabolism and glycometabolism, such as phenylalanine and tyrosine
biosynthesis, methionine metabolism, and pentose phosphate metabolism. Phenylalanine
is one of the essential amino acids that is usually oxidized into tyrosine by phenylalanine
hydroxylase. Phenylalanine and tyrosine are necessary for the synthesis of neurotransmit-
ters and hormones, and are involved in glycometabolism and lipid metabolism [34]. The
metabolic process of methionine mainly affects the protein synthesis during the develop-
ment of chicken embryo [35]. Meanwhile, we found that aminoacyl-tRNA biosynthesis was
vigorous during the late embryonic stage of male chicken, suggesting the vast requirements
of protein accumulations during this stage. Pentose phosphate pathway is functionally
connected with the glycolysis in the body, and its activity varies in different tissues. Pentose
phosphate pathway not only provides energy, but also provides a variety of raw materials
for anabolism [36]. Finally, we analyzed the gene expression levels of lipid metabolism
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in livers of male and female birds during the embryonic period. The results showed that
there were no significant differences in lipid-related gene expression between male and
female embryonic livers, which might indicate that the liver’s metabolism of lipids before
hatching were not influenced by sex and thus the birth weight of male and female birds
showed no significantly difference [37].

5. Conclusions

In conclusion, during the development of chicken embryos, the metabolism of nutri-
ents in the yolk differed between male and female birds. The nutrient metabolism in the
yolk of female chicken embryos was mainly related to lipid metabolism and amino acid
metabolism in the early embryonic stage, and vitamin metabolism in the late embryonic
stage. The nutrient metabolism in the yolk of male chicken embryos was mainly related
to lipid metabolism and nucleic acid metabolism in the early embryonic stage and amino
acid metabolism in the late embryonic stage. However, the lipid metabolism of embryo
livers showed no significant difference between different sexes. Our study might provide
a new perspective in understanding the sexual effects on the chicken embryo nutrition,
and further give a potential clue for early identification of sex through the yolk metabolite
analysis.
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