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Abstract

Background

Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obe-
sity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is
unclear. Here we investigated how the presence or absence of TIMP-1 affected the devel-
opment of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null
mice.

Methods

Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or inter-
mediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid
content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as
insulin tolerance. In addition, the histology of liver and adipose tissues was examined and
expression of selected genes involved in lipid metabolism and inflammation in liver and adi-
pose tissues was determined by RT-qPCR.

Results

TKO mice gained less weight and had lower energy efficiency than TWT mice when fed
HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from develop-
ment of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered
expression of genes involved in hepatic lipid metabolism and inflammation.
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Conclusion

Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced
hepatic steatosis and glucose intolerance and may be a potential therapeutic target.

Introduction

Obesity is associated with low-grade inflammation and increases the risk of chronic diseases
such as type 2 diabetes, coronary heart disease, hypertension, dyslipidemia and non-alcoholic
steatohepatitis (NASH) predisposing to premature death. Extracellular matrix remodeling by
the balanced action of metalloproteinases (MMP) and MMP inhibitors is central not only for
tissue structure but also function and metabolism. Recent interest has focused on the role of
the extracellular matrix in adipogenesis and insulin resistance, as genetic ablation of MMP3, 11
and 19 enhances diet-induced obesity in mice [1-4]. In humans, tissue inhibitor of matrix
metalloproteinase-1 (TIMP-1) has been described as a biomarker of obesity [5-7], dyslipide-
mia [8-10], NASH [11-13], cardio-vascular disease [14] and type 2 diabetes [15]. TIMP-1 defi-
ciency has been reported to increase body weight (BW) and fat mass in female mice fed a low
fat chow diet [16]. This was suggested to be caused by hyperphagia elicited via hypothalamic
pathways and reduced thermogenesis, but peripheral actions promoting adipogenesis may also
contribute. However, this may be gender specific, since male TIMP-1 deficient mice fed a high-
fat diet (HFD) were reported to have decreased BW and fat mass [17].

The role of TIMP-1 in liver metabolism, insulin resistance and inflammation remains to be
elucidated. Hepatic Timpl expression is increased by euglycemic hyperinsulinemia in both
insulin-sensitive and insulin resistant rats [18]. Hepatic Timp1 expression is also elevated in a
mouse model that resembles type 2 diabetes, elicited by HFD combined with low doses of
strepzotocin treatment in order to induce beta cell dysfunction. [19]. Furthermore, Meissbur-
ger et al. [20] found that administration of recombinant TIMP-1 to male mice fed a HFD
increased the levels of circulating non-esterified fatty acids, enhanced hepatic triacylglycerol
accumulation, and accelerated insulin resistance. This suggests that TIMP-1 might promote
accumulation of hepatic triglycerides and hepatic insulin resistance. As data still is limited, we
examined diet-induced obesity, hepatic steatosis and insulin resistance in TimpI null mice,
bred on a BALB/c background. As BALB/c mice have an intermediate response to diet-induced
diabetes [21], the mice were fed an intermediate fat and sucrose diet (IFSD), or a HFD for 26~
29 weeks in order to mimic age-induced type 2 diabetes better in this mouse strain than in a
rapidly (6-8 weeks induction) inducible mouse strain like the C57BL/6] mouse.

Materials and Methods
Ethics statement

The animal studies were conducted in accordance to NIH principles of laboratory animal care.
The protocol for the studies was approved by The Danish Animal Experimental Board (permit
number 2008/561-1536).

Animals

Timp1 knockout (TKO) [22] and wild type (TWT) mice were bred at Taconic Europe (Den-
mark) and TKO and TWT mice were backcrossed onto BALB/c background for ten genera-
tions as previously described [23]. Animals were housed in a 12-h light/dark cycle at 22°C. The
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mice used in this study were bred on a BALB/c background, and genotyping was performed as
previously described [23]. Wistar rats used for pancreas islet isolation were obtained from
Taconic Europe (Denmark).

Dietary allocation: Seventeen week-old male TKO or TWT mice were randomized to
either chow (Altromin 1319, Brogaarden, CE Denmark) or HFD (D12492, Research Diets
Inc., New Brunswick, NJ, USA) and fed ad libitum for 26 weeks (n = 11 per group). Fourteen
week-old male TKO and TWT mice were fed IFSD (Ssniff Spezialdidten, Soest Germany) ad
libitum for 29 weeks (n = 10 per group). The compositions of the diets are summarized in S1
Table.

Body weight (BW) and feed intake were recorded weekly. Mice were killed by cervical dislo-
cation. Heart blood was immediately drawn into heparin-coated tubes (Sigma-Aldrich,
Brendby, Denmark) and plasma was collected after centrifugation. White adipose tissues
(WAT), including inguinal WAT (iWAT), epididymal WAT (eWAT), perirenal WAT
(pWAT), in addition to interscapular brown adipose tissue (iBAT) and liver were dissected
out. Half of the biopsies were freeze-clamped in liquid nitrogen and kept at -80°C and the
other half fixed in 4% phosphate buffered paraformaldehyde, dehydrated and embedded in
paraffin. The tibialis anterior muscle was dissected out, freeze-clamped and kept at -80°C.
Whole pancreas was dissected and placed in acid ethanol for insulin extraction.

Indirect calorimetry

Oxygen consumption, CO, production, and heat production were measured for 24 h using
computerized metabolic cages (Labmaster system, TSE Systems, Bad Homburg, Germany).
The mice were acclimatized to the metabolic cage environment one day prior to start of the
monitoring period.

Glucose and insulin tolerance tests

Oral glucose tolerance test (OGTT): The mice were fasted for 16 h (overnight) and gavaged 2 g
glucose/kg BW.

Insulin tolerance test (ITT): The mice were fasted for 6 h and injected intraperitoneally
(i.p.) with 0.75 U/kg BW of human insulin (Humulin R, Eli Lilly, Herlev, Denmark). All ani-
mals had free access to water during the fasting and all experimental tests. In both tests blood
glucose was measured in tail vein blood at indicated time points with a Contour glucometer
(Bayer, Copenhagen, Denmark).

Insulin secretion: The mice were fasted for 4 h and gavaged 2 g glucose/kg BW. Blood sam-
ples were collected from the retro-orbital sinus into EDTA-coated tubes (Sarstedt, Niimbrecht,
Germany). Plasma was obtained by centrifugation and stored at -80°C until analysis. Plasma
insulin was quantified with ELISA at Novo Nordisk (Mélgv, Denmark) using the "Ultrasensi-
tive rat insulin ELISA kit" (Crystal Chem, Downers Grove, IL, USA) with the following modifi-
cations: Sample volume was reduced to 5 pl, and kit standards were replaced with in-house rat
insulin standards prepared using heat treated rat plasma. The lower limit of quantification was
50 pM.

Body composition scanning

Body composition was determined by quantitative magnetic resonance scanning using
EchoMRI 2000 4-in-1 mouse Composition Analyzer (Echo Medical Systems, Houston, TX,
USA).
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Residual fecal energy content

After 19 weeks on the experimental diets, feces were collected over two days and the energy
content was determined in an IKA Calorimeter C 5000 Control (IKA-Werke GmbH & Co.
KG, Staufen, Germany).

Pancreatic insulin quantification

Isolated pancreas was placed at -20°C overnight in ethanol-HCI (70%; 1M) and thereafter
homogenized with fine scissors and extracted for further 4-5 d at -20°C. Insulin concentration
was determined by insulin ELISA [24]. For protein quantification, homogenized tissue was iso-
lated and lysed with cell lysis buffer (Cell Signaling, Glostrup, Denmark) and quantified using
Pierce BCA protein quantification kit (Thermo Scientific, Hvidovre, Denmark).

Real-time gPCR

Tissues: Total RNA was purified from liver, eWAT and iWAT from non-fasted mice at the ter-
mination of the study (n = 8-11) using Trizol (Life Technologies, Neerum, Denmark). RNA
concentrations were measured on a Nanodrop (Thermo Scientific). cDNA was synthesized
with RevertAid (Thermo Scientific) and stored at —80°C until analysis on LightCycler 480
(Roche, Hvidovre, Denmark). cDNA was analyzed in duplicates in 20 ul reactions containing
SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich). Primers (S2 Table) were purchased
from Tag Copenhagen (Frederiksberg, Denmark). Data was analyzed using Roche Lightcycler
software and the AACt method, and normalized to 18sRNA or general transcription factor II B
(gtf2b).

Islets and insulinoma cells: After termination of the experiments, INS-1 cells or islets were
snap-frozen, RNA isolated using RNeasy (Qiagen, Copenhagen, Denmark), cDNA synthesized
with TagMan reverse transcription reagent, and quantitative RT-qPCR performed using the
TaqMan assay on ABI 7900 HT from Applied Biosystems (Life Technologies). TagMan prim-
ers were from Applied Biosystems.

Histology

Liver and adipose tissues were fixed in 4% phosphate buffered paraformaldehyde and paraffin-
embedded. Three pm sections from 5 mice in each experimental group were stained with Hae-
matoxylin and Eosin (H&E). One representative micrograph of each group is shown, and three
sections of adipose tissue depots from each mouse were used for quantification of mean cell
diameter. Picrosirius red staining kit (ab150681) was performed on paraffin sections as
described by the manufacturer (Abcam, Cambridge, UK) (n = 5).

Triglyceride measurements

Total lipids were extracted from liver and muscle using a modified version of the Bligh and
Dyer protocol. Briefly, 25 mg of tissue were homogenized in potassium phosphate buffer, and
lipids extracted with chloroform: methanol (1:2). HCl was added and the chloroform phase
transferred to new tubes and evaporated under nitrogen. The extract was dissolved in LPL
buffer (28.75 mM PIPES, 57.41 mM MgCI2-6H20, 0.569 mg/ml BSA-FFA, 0.1% SDS) and ana-
lyzed with a triglyceride kit (Zen-Bio, Durham, NC, USA).

Liver enzymes

Plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were analyzed
using Biovision kits (AH Diagnostics, Aarhus V, Denmark).
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Plasma measurements

Beta-hydroxybutyrate assay kit (Abcam, Cambridge, UK) and plasma glucose assay kit (BioVi-
sion Incorporated, CA, USA) were used and the analyses performed as described by the
manufacturer.

Islet isolation

Mouse and Wistar rat islets were isolated by collagenase (Sigma-Aldrich) digestion of the pan-
creas. Digested pancreatic tissue was washed in HBSS containing FBS and islets were hand-
picked [25].

Apoptosis measurement

Twenty-five size-matched islets from 12 week-old male TKO or TWT mice in duplicates were
seeded in a 48-well dish, pre-incubated for 2 h to reduce handling stress and exposed to cyto-
kines as described. Apoptosis was determined by Cell Death Detection ELISAPLUS (Roche).

Western blot

Neonatal rat islets were retrieved and lysed with cell lysis buffer (Cell Signaling). Protein was
quantified using the Bradford colorimeter with optical density measured at 595 nm. Recombi-
nant rat TIMP-1 (R&D Systems, Denmark) was used as control. Anti-rat TIMP-1 antibody
was from R&D Systems and antibody against tubulin was from Cell Signaling (Beverly, MA,
USA).

Statistics

All results are shown as mean + SEM. Dixons's Q-test was used to screen for outliers and sta-
tistical analyses of gene expression and physiological data were performed with GraphPad
Prism v6.0 (GraphPad Software, Inc.). One-way ANOVA was used to compare differences
between the experimental groups, followed by Fisher's Least Square Differences test in the first
experiment, and in the second experiment a regular t-test was performed to evaluate differ-
ences between the two experimental groups. Data was considered statistically significant when
p < 0.05 for all tests, and different lowercase letters denote statistically different groups. Statis-
tical tendencies 0.075 > p > 0.05 are shown in the figures.

Results
TIMP-1 deletion reduces weight gain in mice on HFD

To elucidate the role of TIMP-1 in diet-induced development of obesity, glucose intolerance
and insulin resistance we used Timp1I knockout (TKO) mice on a BALB/c background. The
TIMP-1 deletion was verified by measuring TIMP-1 levels in plasma. The plasma levels of
TIMP-1 were 3717 + 853 pg/ml in the wild type (TWT) mice, and as expected not detectable in
TKO mice (data not shown). HFD feeding for 26 weeks increased body weight (BW) in both
TWT and TKO compared to chow fed animals (Fig 1A). The total BW gain at the termination
of the study was significantly lower in TKO than in TWT mice fed HED. In contrast, BW gain
did not differ between the genotypes when mice were fed a chow diet (Fig 1A).

To determine if the lower BW of the TKO mice after 26 weeks on HFD could be explained
by differences in body composition, quantitative magnetic resonance scanning was performed.
The total fat mass tended to be lower in TKO compared to TWT mice fed HFD (p = 0.06) (S1A
Fig). TKO mice had significantly less white adipose tissue (WAT) compared to HFD fed TWT.
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Fig 1. Body weight gain, adipose tissue weight and Timp (1-4) gene expression in wild type (TWT) and
Timp1 knockout (TKO) mice fed chow or a high-fat diet (HFD) for 26 weeks. (A) Total increase in body
weight (n = 9-11). (B) Weight of white adipose tissue depots at the end of the study (n = 9-11), epididymal
white adipose tissue (€WAT), inguinal white adipose tissue (iWAT), and perirenal white adipose tissue
(pWAT). (C-D) Gene expression of Timp1, Timp2, Timp3 and Timp4 in liver and adipose tissue at the end of
the study. Data was normalized to 18S ribosomal RNA or general transcription factor Il B (gtf2b) and
presented relative to the expression in TWT Chow (n = 7—10). All RT-gPCR measurements were performed
in non-fasted mice. Graphs show mean + SEM, and different lowercase letters denote statistically different
groups (p < 0.05).

doi:10.1371/journal.pone.0132910.g001

However, of the different depots only the mass of the perirenal white adipose depot (pWAT)
was significantly reduced. The weights of the other fat depots were comparable independent of
the genotype (Fig 1B). No significant differences in total WAT mass or any specific adipose
depots were observed between the genotypes, when the mice were fed a chow diet (Fig 1B).

Obesity is associated with low-grade inflammation and macrophage infiltration in adipose
tissue [26]. To examine if the lower BW gain and reduced WAT mass observed in TKO-HFD
mice was associated with reduced macrophage infiltration, we measured the expression of adi-
pose tissue Ccl2 (chemokine (C-C motif) ligand 2 also known as monocyte chemotactic pro-
tein-1). Compared with TWT mice fed chow, expression of Ccl2 was increased in eWAT and
iWAT of TWT-HFD fed mice (S1B Fig). TKO mice had a significantly lower Ccl2 expression
in eWAT compared to TWT mice, when both genotype were fed HFD, while this was not
observed in iWAT. Examination and quantification of H&E stained sections of eWAT and
iWAT showed significantly enlarged adipocytes in both depots of HFD-fed mice compared to
chow with no difference between genotypes (S1C Fig).
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TIMP-1 deletion only slightly/marginally affects expression of Timp
family members in liver and WAT

Since deletion of TimpI might lead to a compensatory upregulation in expression of other
Timp family members, we measured mRNA expression levels of Timp1, 2, 3 and 4 in adipose
tissue and liver. A pronounced upregulation of Timpl mRNA expression was observed in liver
of TWT mice fed HFD (Fig 1C). Timp2 mRNA tended to be reduced (p = 0.05) in iWAT from
TKO mice compared to TWT mice, when fed HFD, while Timp3 mRNA expression was
increased in liver of TKO mice when compared to the wild-type littermates irrespective of diet
(Fig 1C). Apart from this, no other significant alterations in expression of Timp family mem-
bers in liver were observed (Fig 1C). Thus, no significant compensatory effect on Timp2 and
Timp4 expression in either liver or WAT in TKO mice were observed, while the increase in
Timp3 expression could reflect a compensatory upregulation. (Fig 1C and 1D). The mRNA
expression levels of Mmp-2 and Mmp-9 were measured in both liver and adipose tissue. The
relative hepatic expression of Mmp-2 and Mmp-9 was low and in iWAT the Mmp-2 expression
level was not affected by either diet or genotype. Mmp-9 expression in iWAT was reduced in
mice fed HFD compared to chow; however, this was only evident in the TWT mice and not in
TKO mice (data not shown). To validate any changes in MMP-2 or MMP-9 activity zymogra-
phy is necessary [27].

Energy efficiency is decreased in TIMP-1 deficient mice

TKO and TWT mice had equal energy intake when fed a chow or a HFD for 26 weeks; how-
ever, a significant increase in energy intake was observed in both genotypes when consuming a
HED (Fig 2A). As TKO-HFD mice had a lower BW gain, energy efficiency (defined as total
body weight gain/total energy intake) was decreased by 46% in TKO-HFD compared to
TWT-HFD mice (Fig 2B).

TIMP-1 deficiency increases fecal energy loss on HFD

To assess if the reduced feed efficiency in TKO-HFD mice was due to reduced energy absorp-
tion, residual fecal caloric content was analyzed. Fecal energy content was similar for mice fed
chow (Fig 2C). However, fecal energy content was significant higher (7.6%) in TKO-HFD mice
compared to the TWT-HFD mice, suggesting lower energy uptake in TKO-HFD compared to
TWT-HFD mice (Fig 2C).

Indirect calorimetry measurements demonstrated that oxygen consumption and heat pro-
duction were lower in HFD than chow fed mice, but not influenced by the genotype in
TKO-HFD and TWT-HFD mice (Fig 2D and 2E). Further, we did not detect any differences in
uncoupling protein-1 (Ucpl) or peroxisome proliferator-activated receptor y co-activator 1o
(Ppargcla) expression in the two genotypes (data not shown).

TIMP-1 deficiency protects against diet-induced glucose intolerance

To investigate if the reduced BW gain in TKO compared with TWT mice fed HFD diet was
accompanied by improved glucose clearance an OGTT was performed. As expected,
TWT-HFD mice had reduced glucose clearance compared to chow-fed mice. Of note,
TKO-HFD mice had an overall glucose clearance comparable with that of chow-fed TKO and
TWT mice, with a significantly lower blood glucose peak level after 15 and 30 min (Fig 3A and
3B), suggesting that lack of TIMP-1 protects against HFD-induced glucose intolerance. The
protective effect against HFD-induced glucose intolerance in TKO mice was accompanied by a
significant reduction in plasma glucose in non-fasted mice at the termination of the study
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Fig 2. Energy uptake and metabolism in wild type (TWT) and Timp1 knockout (TKO) mice fed chow or
a high-fat diet (HFD). (A) Total energy intake (n = 9—11). (B) Energy efficiency at the end of the study
measured as total body weight gain/total feed intake (n = 9—-11). (C) Energy content in feces measured by
calorimetry (n = 8). (D) Oxygen consumption and E heat production measured during a 24 h period with
indirect calorimetry in week 20 (n = 8). Graphs show mean + SEM, and different lowercase letters denote
statistically different groups (p < 0.05).

doi:10.1371/journal.pone.0132910.g002

(Fig 3C). However, no significant difference in plasma beta hydroxybutyrate (BHB) was
observed in the two genotypes fed HFD (Fig 3D). It was anticipated that HFD induced insulin
resistance in the TWT mice. Surprisingly, whole body insulin sensitivity, assessed by an i.p.
insulin tolerance test (0.75 U/kg BW) was similar in all four groups (Fig 3E and 3F).

TIMP-1 deficiency protects against HFD-induced hepatic inflammation
and hepatic steatosis

Hepatic insulin resistance is associated with increased accumulation of lipids and expression of
hepatic inflammatory markers [28]. Hepatic PGClo has the ability to down-regulate several
inflammatory cytokines, including tumor necrosis factor o (TNF-a), and is associated with
hepatic insulin resistance [29,30]. We found a trend towards decreased Tnf expression

(p =0.07) in TKO compared to TWT mice fed HFD (Fig 4A). HED increased hepatic fat accu-
mulation in both TKO and TWT mice, but TKO-HFD mice accumulated significantly less
hepatic fat than TWT-HFD mice (Fig 4B). Hepatic steatosis was confirmed in H&E stained
liver sections showing large lipid droplets in TWT-HFD mice, whereas the appearance of
TKO-HED livers was more similar to that of chow fed animals (Fig 4C). However, although
TWT mice developed signs of hepatic steatosis, staining of the hepatic sections did not stain
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or a high-fat diet (HFD). (A) Blood glucose (mM) levels after 23 weeks feeding before and after gavage of
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AUC values for insulin tolerance test (n = 8). Graphs show mean + SEM, and different lowercase letters
denote statistically different groups (p < 0.05).

doi:10.1371/journal.pone.0132910.g003
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transferase-1a (Cpt1a), 3-hydroxybutyrate dehydrogenase, type 1 (Bdh1) and fibroblast growth factor 21 (Fgf21). (E) Hepatic gene expression of sterol
regulatory element-binding protein-1c (Srebf1), fatty acid synthase (Fasn) and acyl-CoA carboxylase 1 (Acaca). (F) Hepatic gene expression of peroxisome
proliferator-activated receptor y coactivator 1a (Ppargc1a), phosphoenolpyruvate carboxykinase 1 (Pck7) and glucose-6-phosphatase, catalytic (G6pc).
Gene expression was measured by RT-qPCR, normalized to 18S ribosomal RNA or general transcription factor Il B (9tf2b) and presented relative to the
expression in TWT Chow (n = 7-8). All RT-gPCR measurements were performed in non-fasted mice. Graphs show mean + SEM, and different lowercase
letters denote statistically different groups (p < 0.05).

doi:10.1371/journal.pone.0132910.9004
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positive with picrosirius red, indicating no deposition of collagen (52 Fig). In addition, plasma
levels of AST and ALT were normal (data not shown).

TIMP-1 deficiency increases hepatic FFA metabolism in mice fed HFD

To elucidate possible molecular mechanisms by which TIMP-1-deficiency protects against
HFD-induced hepatic lipid accumulation, the expression of genes controlling hepatic B-oxida-
tion, lipogenesis and gluconeogenesis was analyzed. The expression levels of acyl-CoA oxidase
(Acox1) and carnitine palmitoyl-CoA transferase-1la (Cptla) involved in peroxisomal and
mitochondrial B-oxidation, respectively, and 3-hydroxybutyrate dehydrogenase, type 1 (Bdhl)
were significantly higher in TKO-HFD mice compared to TWT-HFD and in TKO-chow com-
pared to TWT-chow (Fig 4D). Expression level of Fgf21 was increased by HFD, but the expres-
sion level was not influenced by TIMP-1 deletion. Unexpectedly, the expression of the
lipogenic transcription factor sterol regulatory element-binding protein-1c (SrebfI) as well as
the expression of fatty acid synthase (Fasn) and acyl-CoA carboxylase 1 (Acaca), the rate-limit-
ing genes in lipogenesis, was higher in TKO-HFD compared to TWT-HFD mice (Fig 4E).
Thus, genes involved in both fatty acid catabolism and anabolism were significantly higher
expressed in livers from TKO-HFD than in TWT-HFD mice. This was accompanied by
increased expression of Ppargcla, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-
6-phosphatase, catalytic (G6pc), genes involved in gluconeogenesis (Fig 4F).

To investigate if TIMP-1 deletion influenced muscle metabolism, we measured triglyceride
accumulation and the expression of genes involved in B-oxidation of fatty acids in the anterior
tibialis muscle. We found no differences in lipid accumulation in the anterior tibialis muscle or
in the expression of carnitine palmitoyl-CoA transferase-1b (Cpt1b) between the diets or geno-
types. However, a significant induction in acyl-Coenzyme A dehydrogenase, medium chain
(Acadm) was observed comparing chow and HED fed TWT mice (S3 Fig).

TIMP-1 deficiency protects against IFSD-induced glucose intolerance

To investigate whether the observed positive effects of TIMP-1 deficiency were linked to fat as
energy source or to increased caloric intake per se, a second experiment was carried out where
TWT and TKO mice were fed IFSD. The IFSD contained 25.1% fat and was supplemented
with 43% sucrose to obtain a nearly isocaloric diet with the HFD (HFD: 5240 kcal/kg vs. IFSD:
4800 kcal/kg) (S1 Table). At termination, BW gain was similar in the two groups (S4A Fig).
Due to higher feed intake the first six weeks of the study (data not shown), TKO-IFSD had a
higher total feed intake than TWT-IFSD (S4B Fig). However, there was no difference in total
energy efficiency (S4C Fig), mirrored by lack of differences in residual fecal calories, oxygen
consumption and heat production (S4D-S4F Fig). Body composition and WAT mass were
similar between genotypes (S4G and S4H Fig). Visual examination of eWAT and iWAT
showed no morphological differences between the two genotypes (S5A Fig). After 23 weeks of
teeding, TKO-IFSD had improved glucose tolerance compared to TWT-IFSD mice (Fig 5A
and 5B). However, insulin sensitivity was not changed between the genotypes (Fig 5C and 5D).
In addition, we found no differences in the hepatic expression of Tnf at the termination of the
study (Fig 5E).

TIMP-1 deficiency does not affect cytokine-induced beta cell apoptosis

To investigate whether the improved glucose clearance in TKO-IFSD compared with
TWT-IFSD mice was due to the improved survival of beta cells in response to intra-islet low-
grade inflammation usually observed in obesity, we exposed isolated TWT and TKO islets
(S5B Fig) to IL-1p or a combination of IL-1f, IFN-y, and TNF-o (cytomix) for 24 h and
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Fig 5. Glucose-, insulin tolerance test and beta cell function in wild type (TWT) and Timp1 knockout
(TKO) mice fed an intermediate fat and sucrose diet (IFSD). (A) Blood glucose (mM) levels after 23 weeks
feeding before and after gavage of glucose (2 g/kg) (n = 8). (B) AUC values for glucose tolerance test (n = 8).
(C) Blood glucose (mM) levels after 22 weeks feeding before and after i.p. injection of insulin (0.75 U/kg)
(n=8). (D) AUC values for insulin tolerance test (n = 8). (E) Hepatic gene expression of Tnf (tumor necrosis
factor a) measured by RT-gPCR in random-fed mice. Data was normalized to 18S ribosomal RNA and
presented relative to the expression in TWT IFSD (n = 7-8). All RT-gPCR measurements were performed in
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non-fasted mice. (F) Apoptosis in cell lysate from pancreatic islets from 12—14 week old male TWT or TKO
mice. Islets were incubated with IL-18 (150 pg/ml) or IL-18, IFN-y (5 ng/ml) and TNF-a (10 ng/ml) for 24 hours
and apoptosis was measured by DNA-histone complexes with Roche Cell Death Detection ELISAP-YS
(n=6-8). (G) Plasma insulin levels after gavage of glucose (2 kg/g) in mice fed IFSD (n = 8). (H) Total
pancreatic insulin after acid-ethanol insulin extraction from whole pancreas from mice fed IFSD (n = 4).
Graphs show mean + SEM, and different lowercase letters denote statistically different groups (p < 0.05).

doi:10.1371/journal.pone.0132910.g005

measured apoptosis (Fig 5F). Both IL-1 and cytomix induced apoptosis in TWT and TKO
islets, but no differences could be observed between genotypes, despite TIMP-1 being expressed
and upregulated in intact neonatal rat islets by cytokines (S5C and S5D Fig), suggesting TIMP-
1 being dispensable in beta cell apoptosis.

TIMP-1 deficiency does not affect glucose-stimulated insulin secretion

Plasma insulin concentrations during OGTT was quantified in order to further elucidate
whether the improved glucose clearance in TKO-IFSD compared with TWT-IFSD was due to
increased glucose-stimulated insulin secretion. However, no difference in glucose-stimulated
insulin secretion was observed between TWT-IFSD and TKO-IFSD (Fig 5G). Furthermore,
total islet insulin content was similar in TWT-IFSD and TKO-IFSD (Fig 5H), strengthening
the notion that the role of TIMP-1 was unrelated to the response of the beta cell mass to low-
grade islet inflammation.

TIMP-1 deficiency protects against hepatic lipid accumulation in IFSD
fed mice

At the termination of the study, hepatic triglyceride accumulation was decreased in TKO-IFSD
mice compared to TWT-IFSD (Fig 6A and 6B). To examine if the observed hepatic lipid accu-
mulation in TWT-IFSD mice was associated with similar molecular changes as those observed
in mice fed HFD, we measured the expression of genes controlling lipogenesis, B-oxidation and
gluconeogenesis. The expression of Fasn and Acaca (involved in lipogenesis), Cptla (involved
in B-oxidation) and Gépc (involved in gluconeogenesis) was reduced in TKO-IFSD mice com-
pared to TWT-IFSD mice, while the expression of Srebfl, Acox1, Ppargcla and Pckl was simi-
lar in the two genotypes (Fig 6C-6E). Taken together this suggests lower gluconeogenesis,
lower lipogenesis and possibly also lower B-oxidation in the liver of TKO-IFSD compared to
TWT-IFSD mice, potentially contributing to increased hepatic insulin sensitivity in TKO-IFSD
mice.

Lipid accumulation in the anterior tibialis muscle and the expression of Cptla and Acadm
was comparable between the two groups (S5E Fig).

Discussion

Our results demonstrate that TIMP-1 deficiency partially protects against weight gain induced
by HFD, but not by IFSD. TIMP-1 deficient mice were protected from HFD- and IFSD-
induced development of hepatic steatosis and glucose intolerance, but TIMP-1 deficiency did
not change peripheral insulin sensitivity or insulin secretion.

The mice used in this study were bred on a BALB/c background. BALB/c mice have an
intermediate response to diet-induced diabetes [21]. The phenotypical changes might have
been more pronounced if we had used an obesity-prone mouse strain, like the C57BL/6]
mouse. However, we hypothesized that we could better mimic age-induced type 2 diabetes in
the BALB/c background than in the obesity prone C57BL/6] background. In comparison with
many other in vivo studies, the mice in our experiments were fed the diets for a relatively long
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Fig 6. Hepatic fat metabolism in wild type (TWT) and Timp1 knockout (TKO) mice fed an intermediate fat and sucrose diet (IFSD). (A) Triglyceride
contentin liver (n = 7-8). (B) Sections with liver tissues stained with haematoxylin and eosin. Micrographs from one representative mouse in each group are
shown, magnification x400, scale bar =200 pm. (C) Hepatic gene expression of sterol regulatory element-binding protein-1c (Srebf1), fatty acid synthase
(Fasn) and acyl-CoA carboxylase 1 (Acaca). (D) Hepatic gene expression of carnitine palmitoyl-CoA transferase-1a (Cpt1a) and acyl-CoA oxidase (AcoxT).
(E) Hepatic gene expression of peroxisome proliferator-activated receptor y coactivator 1a (Ppargc1a), phosphoenolpyruvate carboxykinase 1 (Pck1) and
glucose-6-phosphatase, catalytic (G6pc). Gene expression was measured by RT-gPCR and normalized to 18S ribosomal RNA. Data is presented relative to
the expression in TWT-IFSD (n = 7-8). All RT-gPCR measurements performed in random-fed mice. Graphs show mean + SEM, and different lowercase
letters denote statistically different groups (p < 0.05).

doi:10.1371/journal.pone.0132910.9006

time (26-29 weeks). We therefore believe that sustained exposure to a metabolic challenge, as
done in this study, might more closely mimic the human situation than a short-term study
with a very rapid and significant weight gain.

We confirmed the finding by Lijnen et al. [17] that TKO mice had a lower weight gain than
TWT mice when fed a HFD. We also confirmed that TIMP-1 deficiency had no effect on BW
or fat mass in chow-fed male mice [16,17]. However, we did not find a decreased size of adipo-
cytes in WAT of TKO-HFD fed mice as reported by Lijnen et al. [17]. In contrast, Gerin et al.
[16] found that female TKO mice on chow had increased BW compared to TWT mice, sug-
gesting that the effect of TIMP-1 on BW could be gender-dependent. To our knowledge there
are no studies assessing the effects of TIMP-1 in female mice fed obesogenic diets.

Our result demonstrating that TKO-HFD mice had lower feed efficiency compared to
TWT-HFD mice is in agreement with earlier findings [17,20], but as reported by Meissburger
et al. [20], the reduced feed efficiency was not accompanied by increased oxygen consumption.
However, on HED, but not on IFSD, we found that TIMP-1 deficiency was associated with
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increased energy content in feces, suggesting that TIMP-1 improves dietary fat uptake when
dietary fat is in great excess. To our knowledge, the effects of TIMP-1 on dietary fat uptake
have not previously been examined.

Both the HFD- and IFSD-induced reduction in glucose tolerance seen in TWT were
improved in the TKO mice. However, the insulin tolerance test showed that peripheral insulin
sensitivity was independent of genotype. The difference in glucose tolerance between the two
genotypes could also not be explained by alterations in insulin secretion, i.e. there was no dif-
ference in insulin concentration in plasma after an oral glucose bolus and pancreatic insulin
content analyzed ex vivo was similar in the two genotypes. Our finding that beta cell function
was unrelated to TIMP-1 status is novel. Even though two previous studies [31,32] have shown
that over-expression of human TIMP-1 or treatment with recombinant human TIMP-1 pro-
tects beta cells from inflammatory cell death, these findings are not necessarily in contrast to
ours. Discrepancies might be due to the use of human recombinant TIMP-1 and/or locally
highly increased TIMP-1 concentrations in these studies. Since we did not find improved
peripheral insulin sensitivity or increased insulin secretion as an explanation for the higher glu-
cose tolerance in TKO mice, we hypothesize that it might be due to enhanced hepatic insulin
sensitivity. The i.p. total body insulin tolerance test is insensitive to discrete changes in hepatic
insulin resistance [32]. However, the finding that hepatic expression of Tnfin TWT-HFD mice
was elevated while unaffected in TKO-HFD mice compared to mice on chow is in keeping with
the idea that insulin sensitivity may be reduced in TWT-HFD compared with TKO-HFD mice.
Furthermore, we found that expression of Ppargcla mRNA, recently linked to inhibition/mod-
ulation of obesity induced hepatic inflammation [29], was higher in TKO-HFD mice than in
TWT-HFD mice, suggesting a mechanism for lack of hepatic inflammation in TKO-HFD
mice. Of note, we found that TKO mice were protected or partially protected against the devel-
opment of hepatic steatosis, often observed together with hepatic insulin resistance [33], fur-
ther strengthening our hypothesis.

Another approach to assess the role of TIMP-1 on insulin sensitivity was taken by Meissbur-
ger et al. [20], who found that injections with murine TIMP-1 in mice accelerated insulin resis-
tance and increased hepatic triacylglycerol accumulation, suggesting that TIMP-1 has a causal
role in development of decreased glucose tolerance and hepatic steatosis. Meissburger et al.

[20] suggest that impaired insulin sensitivity in this context was associated with an enlarge-
ment of adipocytes, leading to impaired uptake of glucose in adipose tissues as it is known that
enlarged adipocytes become insulin resistant [34]. We observed no differences in peripheral
insulin sensitivity between the two genotypes, but also, we did not observe differences in adipo-
cyte sizes in the WAT in TWT and TKO mice.

Our findings suggest that TKO mice adapt better to an increased metabolic challenge than
TWT mice. In TKO-HFD mice, increased dietary lipid content was associated with improved
fat oxidation and increased gluconeogenesis as a response to the low sugar content of the diet
compared to TWT-HFD mice. Additionally, TKO mice fed the IFSD with increased dietary
sugar content had decreased expression of genes involved in gluconeogenesis, B-oxidation and
lipogenesis compared to TWT-HFD mice.

Although metabolic studies of the effect of TIMP-1 have primarily focused on the role of
TIMP-1 in obesity and WAT remodeling, the results obtained in this study and by Meissburger
et al. [20], suggest that TIMP-1 plays an important role in hepatic insulin resistance and the
development of steatosis. Binding of TIMP-1 to CD63 can lead to Akt activation [35]. Since
hepatic overexpression of constitutively active Akt is known to induce hepatic steatosis [36],
TIMP-1 may act through binding to CD63 and phosphorylation of Akt, thereby promoting
hepatic steatosis. In a mouse model of hepatic inflammation and NASH, secretion of IL-1f
induces hepatic stellate cell activation and TIMP-1 secretion, changing extracellular matrix
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expression, eventually leading to fibrosis [37]. The increased hepatic levels of Ppargcla in
TKO-HFD mice may counteract the effect of IL-1p through increased anti-inflammatory sig-
naling [31], suggesting that TKO mice may also be protected against hepatic fibrosis. However,
further studies are needed to elucidate the exact mechanisms of TIMP-1 in lipid metabolism
and fibrosis in the liver.

In summary, this study shows that TIMP-1 differentially regulates hepatic metabolism
dependent on fat and sucrose contents in the diet. We found TIMP-1 deficiency to be associ-
ated with altered hepatic metabolism, thereby contributing to improved hepatic function,
decreased hepatic inflammation and decreased hepatic steatosis. TIMP-1 may represent a
novel pharmacological target for improving hepatic insulin sensitivity in patients with the met-
abolic syndrome, NASH and Type 2 diabetes.

Supporting Information

S1 Fig. Body composition, gene expression of Ccl2 and WAT morphology in wild type
(TWT) and Timp1 knockout (TKO) mice fed chow or a high-fat diet (HFD). (A) Body com-
position measured by scanning in week 26 (n = 10). (B) Gene expression of Ccl2 (monocyte
chemotactic protein-1) measured in eWAT and iWAT by RT-qPCR. Data was normalized to
18S ribosomal RNA and presented relative to the expression in TWT Chow (n = 7-8). All RT-
qPCR measurements were performed in non-fasted mice. (C) H&E stained sections of eWAT
and iWAT, scale bar = 100 pm. Average adipocyte diameter quantified in all experimental
groups (n = 5). Graphs show mean + SEM, and different lowercase letters denote statistically
different groups (p < 0.05).

(TTF)

S2 Fig. Picrosirius red stained sections of liver, eWAT and iWAT. One representative micro-
graph of each group is shown, scale bar = 100 um (n = 5).
(TIF)

S3 Fig. Triglyceride content and fat metabolism in anterior tibial muscle in wild type
(TWT) and Timp1 knockout (TKO) mice fed chow or a high-fat diet (HFD). Triglyceride
content in the anterior tibialis muscle, and gene expression of Cpt1b (carnitine palmitoyl-CoA
transferase-1a) and Acadm (medium-chain acyl-coenzyme A dehydrogenase) in anterior tibial
muscle measured by RT-qPCR. Data was normalized to 18S ribosomal RNA and presented rel-
ative to the expression in TWT Chow (n = 7-8). All RT-qPCR measurements were performed
in non-fasted mice. Graphs show mean + SEM, and different lowercase letters denote statisti-
cally different groups (p < 0.05).

(TIF)

S4 Fig. Body weight, feed intake, feed efficiency, indirect calorimetry and body composi-
tion in wild type (TWT) and Timp1 knockout (TKO) mice fed an intermediate fat and
sucrose diet (IFSD) for 29 weeks. (A) Total increase in body weight (n = 10). (B) Total energy
intake (n = 10). (C) Energy efficiency at the end of the study measured as total body weight
gain/total feed intake (n = 8). (D) Energy content in feces measured by calorimetry (n = 8). (E)
Oxygen consumption and (F) heat production, both measured over a 24 h period with indirect
calorimetry in week 20 (n = 8). (G) Body composition measured by scanning (n = 10). (H)
Weight of total WAT, epididymal white adipose tissue (eWAT), inguinal white adipose tissue
(iWAT) and perirenal white adipose tissue (pWAT) at the end of the study (n = 7-8). Graphs
show mean + SEM, and different lowercase letters denote statistically different groups

(p < 0.05).

(TTF)
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S5 Fig. WAT morphology, beta-cell function and fat metabolism in anterior tibial muscle
in wild type (TWT) and Timp1 knockout (TKO) mice fed an intermediate fat and sucrose
diet (IFSD) for 29 weeks. (A) H&E stained sections of eWAT and iWAT, scale bar = 100 pum.
Average adipocyte diameter quantified in both experimental groups (n = 5). (B) TIMP-1 gene
expression in isolated TWT and TKO islets. (C) Representative Western blot and (D) Quantifi-
cation relative to tubulin of TIMP-1 protein expression in neonatal rat islets (n = 2-4). Islets
were exposed to a combination of IL-1B (150 pg/ml) and IFN-y (5 ng/ml) for 18 or 24 hours,
or IL-1B (150 pg/ml), IFN-y (5 ng/ml) and TNF-o. (10 ng/ml) for 24 hours. (E) Triglyceride
content in the anterior tibialis muscle, and gene expression of Cpt1b (carnitine palmitoyl-CoA
transferase-1a) and Acadm (medium-chain acyl-coenzyme A dehydrogenase) in anterior tibial
muscle measured by RT-qPCR. Data was normalized to 18S ribosomal RNA and presented rel-
ative to the expression in TWT Chow (n = 7-8). All RT-qPCR measurements were performed
in randomly selected fed mice. Graphs show mean + SEM, and different lowercase letters
denote statistically different groups (p < 0.05).

(TTF)

S1 Table. Dietary macronutrient composition of the experimental diets.
(TIF)

$2 Table. Primer sequences.
(TTF)

Acknowledgments

The authors thank Annette Bartels, Department of Veterinary Disease Biology, for assistance
with histology, and Allan E. Karlsen, Novo Nordisk A/S, for providing the plasma insulin
ELISA.

Author Contributions

Conceived and designed the experiments: CA JBH TMP NB KK LM MUR. Performed the
experiments: EF CA LSM RKP JBH HST MUR. Analyzed the data: EF CA LSM JBH. Wrote
the paper: EF CA JBH TMP NB KK LM MUR.

References

1. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, et al. Matrix metallopro-
teinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differenti-
ation. J Biol Chem 2003; 278: 11888—11896. PMID: 12529376

2. Magquoi E, Demeulemeester D, Voros G, Collen D, Lijnen HR. Enhanced nutritionally induced adipose
tissue development in mice with stromelysin-1 gene inactivation. Thromb Haemost 2003; 89: 696—704.
PMID: 12669125

3. Pendas AM, Folgueras AR, Llano E, Caterina J, Frerard F, Rodriguez F, et al. Diet-induced obesity and
reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 2004; 24:
5304-5313. PMID: 15169894

4. Lijnen HR, Van HB, Frederix L, Rio MC, Collen D. Adipocyte hypertrophy in stromelysin-3 deficient
mice with nutritionally induced obesity. Thromb Haemost 2002; 87: 530-535. PMID: 11916087

5. Maury E, Brichard SM, Pataky Z, Carpentier A, Golay A, Bobbioni-Harsch E. Effect of obesity on
growth-related oncogene factor-a, thrombopoietin, and tissue inhibitor metalloproteinase-1 serum lev-
els. Obesity 2009; 18: 1503—1509. doi: 10.1038/0oby.2009.464 PMID: 20035279

6. Kralisch S, Bluher M, Tonjes A, Lossner U, Paschke R, Stumvoll M, et al. Tissue inhibitor of metallopro-
teinase-1 predicts adiposity in humans. Eur J Endocrinol 2007; 156: 257—-261. PMID: 17287416

7. Papazoglou D, Papatheodorou K, Papanas N, Papadopoulos T, Gioka T, Kabouromiti G, et al. Matrix
metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 levels in severely obese patients:

PLOS ONE | DOI:10.1371/journal.pone.0132910 July 13,2015 17/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132910.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132910.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132910.s007
http://www.ncbi.nlm.nih.gov/pubmed/12529376
http://www.ncbi.nlm.nih.gov/pubmed/12669125
http://www.ncbi.nlm.nih.gov/pubmed/15169894
http://www.ncbi.nlm.nih.gov/pubmed/11916087
http://dx.doi.org/10.1038/oby.2009.464
http://www.ncbi.nlm.nih.gov/pubmed/20035279
http://www.ncbi.nlm.nih.gov/pubmed/17287416

@’PLOS ‘ ONE

TIMP-1 in Glucose Intolerance and Steatosis

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

What is the effect of weight loss? Exp Clin Endocrinol Diabetes 2010; 118: 730—734. doi: 10.1055/s-
0030-1249671 PMID: 20361393

Derosa G, Maffioli P, D'Angelo A, Salvadeo SA, Ferrari |, Fogari E, et al. Evaluation of metalloprotei-
nase 2 and 9 levels and their inhibitors in combined dyslipidemia. Clin Invest Med 2009; 32: E124—
E132. PMID: 19331801

Beaudeux JL, Giral P, Bruckert E, Bernard M, Foglietti MJ, Chapman MJ. Serum matrix metalloprotei-
nase-3 and tissue inhibitor of metalloproteinases-1 as potential markers of carotid atherosclerosis in
infraclinical hyperlipidemia. Atherosclerosis 2003; 169: 139—146. PMID: 12860260

Malik J, Stulc T, Ceska R. Matrix metalloproteinases in isolated hypercholesterolemia. Int Angiol 2005;
24:300-303. PMID: 16158043

Younossi Z, Page S, Rafiq N, Birerdinc A, Stepanova M, Hossain N, et al. A biomarker panel for non-
alcoholic steatohepatitis (NASH) and NASH-related fibrosis. Obes Surg 2010; 21: 431—439.

Duval C, Thissen U, Keshtkar S, Accart B, Stienstra R, Boekschoten MV, et al. Adipose tissue dysfunc-
tion signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BI/6 mice. Dia-
betes 2010; 59: 3181-3191. doi: 10.2337/db10-0224 PMID: 20858684

Miele L, Forgione A, La Torre G, Vero V, Cefalo C, Racco S, V et al. Serum levels of hyaluronic acid
and tissue metalloproteinase inhibitor-1 combined with age predict the presence of nonalcoholic steato-
hepatitis in a pilot cohort of subjects with nonalcoholic fatty liver disease. Translational Research 2009;
154:194-201. doi: 10.1016/).trs1.2009.06.007 PMID: 19766963

Weiss TW, Seljeflot I, Hjerkinn EM, Arnesen H. Adipose tissue pro-inflammatory gene expression is
associated with cardiovascular disease. Int J Clin Pract 2011; 65: 939-944. doi: 10.1111/j.1742-1241.
2011.02717.x PMID: 21849008

Lee SW, Song KE, Shin DS, Ahn SM, Ha ES, Kim DJ, et al. Alterations in peripheral blood levels of
TIMP-1, MMP-2, and MMP-9 in patients with type-2 diabetes. Diabetes Res Clin Pract 2005; 69: 175—
179. PMID: 16005367

Gerin |, Louis GW, Zhang X, Prestwich TC, Kumar TR, Myers MG, et al. Hyperphagia and obesity in
female mice lacking tissue inhibitor of metalloproteinase-1. Endocrinology 2008; 150: 1697—1704. doi:
10.1210/en.2008-1409 PMID: 19036876

Lijnen HR, Demeulemeester D, Van HB, Collen D, Maquoi E. Deficiency of tissue inhibitor of matrix
metalloproteinase-1 (TIMP-1) impairs nutritionally induced obesity in mice. Thromb Haemost 2003; 89:
249-255. PMID: 12574803

Boden G, Song W, Kresge K, Mozzoli M, Cheung P. Effects of hyperinsulinemia on hepatic metallopro-
teinases and their tissue inhibitors. American Journal of Physiology—Endocrinology And Metabolism
2008; 295: E692—-E697. doi: 10.1152/ajpendo.90370.2008 PMID: 18664596

Lo L, McLennan SV, Williams PF, Bonner J, Chowdhury S, McCaughan GW, et al. Diabetes is a pro-
gression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepati-
tis. J Hepatol 2011; 55: 435—444. doi: 10.1016/j.jhep.2010.10.039 PMID: 21184785

Meissburger B, Stachorski L, Réder E, Rudofsky G, Wolfrum C. Tissue inhibitor of matrix metalloprotei-
nase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 2011; 54: 1468—
1479. doi: 10.1007/s00125-011-2093-9 PMID: 21437772

Fearnside JF, Dumas ME, Rothwell AR, Wilder SP, Cloarec O, Toye A, et al. Phylometabonomic pat-
terns of adaptation to high fat diet feeding in inbred mice. PLoS One 2008; 3: e1668. doi: 10.1371/
journal.pone.0001668 PMID: 18301746

Soloway PD, Alexander CM, Werb Z, Jaenisch R. Targeted mutagenesis of Timp-1 reveals that lung
tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. Oncogene
1996; 13: 2307—-2314. PMID: 8957071

Harslund J, Nielsen OL, Brunner N, Offenberg H. Gender-dependent physiological implications of com-
bined PAI-1 and TIMP-1 gene deficiency characterized in a mouse model. Am J Physiol Regul Integr
Comp Physiol 2007; 293: R1630-R1639. PMID: 17652357

Kekow J, Ulrichs K, Muller-Ruchholtz W, Gross WL. Measurement of rat insulin. Enzyme-linked immu-
nosorbent assay with increased sensitivity, high accuracy, and greater practicability than established
radioimmunoassay. Diabetes 1988; 37: 321-326. PMID: 3286333

Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J, Grunnet LG, et al. Divalent metal
transporter 1 regulates iron-mediated ROS and pancreatic 8 cell fate in response to cytokines. Cell
Metabolism 2012; 16: 449—-461. doi: 10.1016/j.cmet.2012.09.001 PMID: 23000401

Gustafson B. Adipose tissue, inflammation and atherosclerosis. Journal of Atherosclerosis and Throm-
bosis 2010; 17: 332-341. PMID: 20124732

PLOS ONE | DOI:10.1371/journal.pone.0132910 July 13,2015 18/19


http://dx.doi.org/10.1055/s-0030-1249671
http://dx.doi.org/10.1055/s-0030-1249671
http://www.ncbi.nlm.nih.gov/pubmed/20361393
http://www.ncbi.nlm.nih.gov/pubmed/19331801
http://www.ncbi.nlm.nih.gov/pubmed/12860260
http://www.ncbi.nlm.nih.gov/pubmed/16158043
http://dx.doi.org/10.2337/db10-0224
http://www.ncbi.nlm.nih.gov/pubmed/20858684
http://dx.doi.org/10.1016/j.trsl.2009.06.007
http://www.ncbi.nlm.nih.gov/pubmed/19766963
http://dx.doi.org/10.1111/j.1742-1241.2011.02717.x
http://dx.doi.org/10.1111/j.1742-1241.2011.02717.x
http://www.ncbi.nlm.nih.gov/pubmed/21849008
http://www.ncbi.nlm.nih.gov/pubmed/16005367
http://dx.doi.org/10.1210/en.2008-1409
http://www.ncbi.nlm.nih.gov/pubmed/19036876
http://www.ncbi.nlm.nih.gov/pubmed/12574803
http://dx.doi.org/10.1152/ajpendo.90370.2008
http://www.ncbi.nlm.nih.gov/pubmed/18664596
http://dx.doi.org/10.1016/j.jhep.2010.10.039
http://www.ncbi.nlm.nih.gov/pubmed/21184785
http://dx.doi.org/10.1007/s00125-011-2093-9
http://www.ncbi.nlm.nih.gov/pubmed/21437772
http://dx.doi.org/10.1371/journal.pone.0001668
http://dx.doi.org/10.1371/journal.pone.0001668
http://www.ncbi.nlm.nih.gov/pubmed/18301746
http://www.ncbi.nlm.nih.gov/pubmed/8957071
http://www.ncbi.nlm.nih.gov/pubmed/17652357
http://www.ncbi.nlm.nih.gov/pubmed/3286333
http://dx.doi.org/10.1016/j.cmet.2012.09.001
http://www.ncbi.nlm.nih.gov/pubmed/23000401
http://www.ncbi.nlm.nih.gov/pubmed/20124732

@’PLOS ‘ ONE

TIMP-1 in Glucose Intolerance and Steatosis

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Bouloumié A, Sengenes C, Portolan G, Galitzky J, Lafontan M. Adipocyte Produces Matrix Metallopro-
teinases 2 and 9: Involvement in Adipose Differentiation. Diabetes 2001; 50: 2080-2086. PMID:
11522674

Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;
14:222-231. doi: 10.2119/2007-00119.Tilg PMID: 18235842

Buler M, Aatsinki SM, Skoumal R, Komka Z, Téth M, Kerkela R, et al. Energy-sensing factors coactiva-
tor peroxisome proliferator-activated receptor y coactivator 1-a (PGC-1a) and AMP-activated protein
kinase control expression of inflammatory mediators in liver: induction of interleukin 1 receptor antago-
nist. J Biol Chem 2012; 287: 1847—-1860. doi: 10.1074/jbc.M111.302356 PMID: 22117073

Feng F, Wang L, Albanese N, Holmes A, Xia P. Tumor necrosis factor-like weak inducer of apoptosis
attenuates the action of insulin in hepatocytes. Endocrinology 2008; 149: 1505—-1513. doi: 10.1210/en.
2007-1119 PMID: 18174283

Han X, Sun'Y, Scott S, Bleich D. Tissue inhibitor of metalloproteinase-1 prevents cytokine-mediated
dysfunction and cytotoxicity in pancreatic islets and B-cells. Diabetes 2001; 50: 1047—-1055. PMID:
11334407

Jiang HW, Zhu HY, Wang JZ, Fu B, Lu Y, Hong Q, et al. Tissue inhibitor of metalloproteinase-1 counter-
acts glucolipotoxicity in the pancreatic beta-cell line INS-1. Chin Med J (Engl) 2011; 124: 258—261.

Smith BW, Adams LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 2011; 48: 97—113. doi:
10.3109/10408363.2011.596521 PMID: 21875310

Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipo-
cyte size, but not obesity itself, predicts Type Il diabetes independent of insulin resistance. Diabetologia
2000; 43: 1498—-1506. PMID: 11151758

Chirco R, Liu XW, Jung KK, Kim HR. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev
2006; 25: 99—-113. PMID: 16680576

Ono H, Shimano H, Katagiri H, Yahagi N, Sakoda H, Onishi Y, et al. Hepatic akt activation induces
marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding
protein involvement. Diabetes 2003; 52: 2905-2913. PMID: 14633850

Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-like receptor 9 promotes
steatohepatitis by induction of interleukin-1 in mice. Gastroenterology 2010; 139: 323-334. doi: 10.
1053/j.gastro.2010.03.052 PMID: 20347818

PLOS ONE | DOI:10.1371/journal.pone.0132910 July 13,2015 19/19


http://www.ncbi.nlm.nih.gov/pubmed/11522674
http://dx.doi.org/10.2119/2007-00119.Tilg
http://www.ncbi.nlm.nih.gov/pubmed/18235842
http://dx.doi.org/10.1074/jbc.M111.302356
http://www.ncbi.nlm.nih.gov/pubmed/22117073
http://dx.doi.org/10.1210/en.2007-1119
http://dx.doi.org/10.1210/en.2007-1119
http://www.ncbi.nlm.nih.gov/pubmed/18174283
http://www.ncbi.nlm.nih.gov/pubmed/11334407
http://dx.doi.org/10.3109/10408363.2011.596521
http://www.ncbi.nlm.nih.gov/pubmed/21875310
http://www.ncbi.nlm.nih.gov/pubmed/11151758
http://www.ncbi.nlm.nih.gov/pubmed/16680576
http://www.ncbi.nlm.nih.gov/pubmed/14633850
http://dx.doi.org/10.1053/j.gastro.2010.03.052
http://dx.doi.org/10.1053/j.gastro.2010.03.052
http://www.ncbi.nlm.nih.gov/pubmed/20347818

