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There have been increasing studies demonstrating that emotion processing in humans

is realized by the interaction within or among the large-scale intrinsic functional

brain networks. Identifying those meaningful intrinsic functional networks based on

task-based functional magnetic resonance imaging (task fMRI) with specific emotional

stimuli and responses, and exploring the underlying functional working mechanisms of

interregional neural communication within the intrinsic functional networks are thus of

great importance to understand the neural basis of emotion processing. In this paper,

we propose a novel cortical folding pattern-guided model of intrinsic networks in emotion

processing: gyri serve as global functional connection centers that perform interregional

neural communication among distinct regions via long distance dense axonal fibers,

and sulci serve as local functional units that directly communicate with neighboring gyri

via short distance fibers and indirectly communicate with other distinct regions via the

neighboring gyri. We test the proposed model by adopting a computational framework of

dictionary learning and sparse representation of emotion task fMRI data of 68 subjects in

the publicly released Human Connectome Project. The proposed model provides novel

insights of functional mechanisms in emotion processing.

Keywords: emotion, task fMRI, intrinsic functional network, cortical gyri and sulci, functional model

INTRODUCTION

Understanding the neurobiological basis of emotions (e.g., fear, anger, sadness, etc.) in humans
has received extensive interests in the affective neuroscience field (Lindquist and Barrett, 2012;
Lindquist et al., 2012). With the advancement of in-vivo functional neuroimaging techniques such
as functional magnetic resonance imaging (fMRI) (Logothetis, 2008; Friston, 2009) as well as the
development of advanced image analysis and computational modeling methodologies, researchers
are able to examine the neural circuitry of emotion processing for a better understanding of the
functional architecture of brain emotion. Specifically, based on task fMRI with specific emotional
stimuli and responses, specific brain regions or brain networks involved in such emotion processing
can be identified; in other words, it is assumed that different kinds of emotion processing
can be localized to specific brain regions/networks (Vytal and Hamann, 2010; Panksepp, 2011;
Lindquist et al., 2012; Murphy et al., 2012). Recently, mounting evidence has shown that human
brain is intrinsically organized into multiple functional networks such as default mode, visual,
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FIGURE 1 | An example intrinsic network composed of two distinct regions of

interest (ROI 1 and 2 in left and right hemisphere, respectively) viewed in

volume space (A) and on cortical surface (C). (B) The unknown functional

working mechanisms of interregional neural communication within one

network. (D) Illustration of the proposed model. The red/green color

represents the gyral/sulcal regions within the ROI of intrinsic network.

motor, auditory, cognitive control, etc., each of which is spatially
distributed across specific neuroanatomical areas (Fox et al.,
2005; Bullmore and Sporns, 2009; Duncan, 2010; Pessoa, 2012;
Fedorenko et al., 2013); the emotion processing is realized by
the interaction within or among those intrinsic functional brain
networks (Bressler and Menon, 2010; Lindquist and Barrett,
2012; Barrett and Satpute, 2013). As a consequence, identifying
meaningful intrinsic functional brain networks based on task
fMRI data, as well as exploring its underlying functional working
mechanisms of interregional neural communication, is of great
importance to understand the neural basis of emotion processing.

A variety of fMRI time series analysis methodologies have
been successfully applied in the brain mapping field for intrinsic
functional network identification based on either task fMRI data
or resting state fMRI data such as principal component analysis
(PCA) (Andersen et al., 1999), independent component analysis
(ICA) (McKeown et al., 1998), and dictionary learning/sparse
representation (Abolghasemi et al., 2015; Lv et al., 2015a,b). The
premise is that the activity patterns in fMRI blood-oxygen level-
dependent (BOLD) signals among spatially distinct brain regions
within an intrinsic network are temporally coupled. Figure 1A
shows an example intrinsic network which is composed of
two spatially distinct brain regions (regions of interest (ROI) 1
and 2 in left and right hemisphere, respectively). Although the
distinct regions within one network are argued to be functionally
linked and interacting with each other, the underlying functional
working mechanisms of interregional neural communication
among those regions within one network are still largely
unknown (Figure 1B).

In the literature of brain network analysis, however, there
has been little effort devoted to adding the factor of cortical
folding patterns into consideration. Actually, the cortical folding
pattern, which is composed of highly convoluted convex gyri
and concave sulci, is one of the most prominent features of
human brain (Barron, 1950; Welker, 1990). A variety of studies
have demonstrated that there are both structural and functional
differences between cortical gyral and sulcal regions (Nie et al.,
2012; Chen et al., 2013; Deng et al., 2014; Zhang et al., 2014;

Jiang et al., 2015, 2018). For example, it is reported that gyral
regions are connected by much denser diffusion tensor imaging
(DTI) or high angular resolution diffusion imaging (HARDI)
derived axonal fiber bundles than sulcal regions in the whole
cortex, indicating that gyri are structural connection center of
the cortex (Nie et al., 2012; Chen et al., 2013; Zhang et al.,
2014). Another studies report that gyral regions have stronger
functional connectivity and more spatial overlap patterns of
global functional networks than sulcal regions, indicating that
gyri are global functional center of the cortex (Deng et al., 2014;
Jiang et al., 2015, 2018).

As an attempt to modeling the interregional neural
communication of intrinsic networks in emotion processing,
and inspired by the abovementioned structural/functional
differences between gyral and sulcal regions as well as the
previous finding that distinct regions within one intrinsic
network are interconnected by DTI-derived fiber bundles
(Greicius et al., 2009; Van den Heuvel et al., 2009), in this paper,
we propose a novel cortical folding pattern-guided model of
the intrinsic network (Figure 1C) in emotion processing: gyri
serve as global functional connection centers that perform
interregional neural communication among distinct regions via
long distance dense fibers, and sulci serve as local functional
units that directly communicate with neighboring gyri via
short distance fibers (inter-column cortico-cortical fibers) and
indirectly communicate with other distinct regions via the
neighboring gyri with the dense fibers (Figure 1D). We test the
proposed model by assessing the task fMRI signal representation
accuracy via a computational framework of dictionary learning
and sparse representation of whole-brain emotion task fMRI
signals. We hypothesize that the sparse representation accuracy
value of task fMRI signals, which indicates the degree of
interregional neural communication among distinct regions,
is significantly larger on gyri than on sulci within the intrinsic
network in emotion processing.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
We adopt the emotion task fMRI data of 68 subjects in the
publicly released Human Connectome Project (HCP, Q1 release)
(Barch et al., 2013) as a testbed in this paper. This emotion task
is similar with the one in Hariri et al. (2002). Participants were
presented and asked to match either two different shapes or faces
(with angry or fearful expressions) at the bottom of the screen
with the one at the top of the screen. There were six blocks (of
face or shape alternatively), each of which was preceded by a 3 s
task cue (shape or face) and 6 trials of the same match task (face
or shape, 3 s for each trial). There were 3 face blocks and 3 shape
blocks for each of the two runs. More details of the task design
are referred to Barch et al. (2013).

The acquisition parameters of the task fMRI data are as follows
(Barch et al., 2013): 220mm FOV, 90 × 104 matrix, 72 slices,
TR = 0.72 s, 176 volumes (time points), TE = 33.1ms, flip
angle = 52, in-plane FOV = 208 × 180mm, 2.0mm isotropic
voxels. The pre-processing steps using FSL FEAT are referred to
Barch et al. (2013) which mainly include skull removal, motion
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correction, slice time correction, spatial smoothing, and global
drift removal (high-pass filtering).

Sparse Representation of Whole-Brain
Task fMRI Signals
We adopt a computational framework of dictionary learning
and sparse representation of whole-brain task fMRI signals to
test the proposed model. The rationales are 2-fold. First, the
dictionary learning and sparse representation framework has
been demonstrated as an efficient and effective data-driven
approach in identifying concurrent intrinsic networks based
on task fMRI signals (Abolghasemi et al., 2015; Lv et al.,
2015a,b) (detailed in Section Intrinsic network identification and
representation on cortical surface). This is also the premise to
model the working mechanisms of intrinsic networks. Second,
the dictionary learning and sparse representation framework
can learn meaningful functional activity basis patterns from
hundreds of thousands of whole-brain task fMRI signals
effectively and represent the task fMRI signals based on the
learned basis efficiently and compactly (Abolghasemi et al., 2015;
Lv et al., 2015a,b). Assessing the task fMRI signals representation
accuracy based on the learned basis in gyral/sulcal regions within
one intrinsic network is reasonable to validate the proposed
cortical folding pattern-guided model of intrinsic network in
emotion processing as detailed in Section Signal representation
accuracy assessment on gyri/sulci within one intrinsic network.

As illustrated in Figure 2, for each subject, first, the fMRI
signals of whole-brain voxels are extracted, and normalized
to zero mean and standard deviation of 1 (Mairal et al.,
2010). Second, all n normalized signals, each of which has
t time points, are aggregated into a 2D matrix X = [x1,
x2,. . . ,xn]ǫR

t×n (Figure 2A). Third, by applying the widely
adopted online dictionary learning method (Mairal et al., 2010),
X is decomposed into an over-complete dictionary matrix
D = [d1, d2,. . . ,dm]ǫR

t×m (m is the dictionary size, m>t
and m<<n) and a sparse coefficient matrix α=[α1, α 2,. . . ,
α n]ǫR

m×n (Figure 2B). In this way, each fMRI signal is
represented as a linear combination of all learned dictionary
atoms in D, i.e., xi=D×αi+ε (ε is error term). Specifically, an
empirical cost function fn (D) ofX is defined to assess the average
loss of regression of all n signals based onD:

fn (D) ,
1

n

n
∑

i=1

l(xi,D) (1)

where l(xi,D) , min
αiǫRm

1
2 ||xi −Dαi||

2
2 + λ||αi||1 . Note that the

l1 regularization is adopted for a sparse solution of αi. λ is used
to regularize regression loss and sparsity level. We also defined a
constraint forD to make the coefficients in α comparable:

C ,

{

DǫRt×m s.t. i = 1, . . .m, (di)
Tdi ≤ 1

}

(2)

In this way, Equation (1) can be rewritten as a matrix
factorization problem:

min
DǫC,αǫRm×n

1

2
||X−Dα||2F + λ||α||1,1 (3)

We learn D in Equation (3) using the effective online dictionary
learning method (Mairal et al., 2010). α is then solved based on
D as an l1 regularized linear least-squares problem (Mairal et al.,
2010). We use the parameter setting of the same HCP data in
Lv et al. (2015b) as m = 400 and λ = 1.5. From brain science
perspective, the learned dictionary atoms in D represent a set
of signal basis (Figure 2B) derived from whole-brain task fMRI
signals. Each original fMRI signal can be represented by these
relevant signal basis patterns via linear combination.

Intrinsic Network Identification and
Representation on Cortical Surface
As demonstrated in Section Sparse representation of whole-
brain task fMRI signals, each column of α stores the sparse
coefficients of representing each original fMRI signal based onD.
Moreover, each row ofα can bemapped back to the original brain
volume space to represent the spatial volumetric pattern that
has reference to each dictionary atom (Figure 2C). To identify
the meaningful intrinsic networks from all spatial patterns, we
adopt the publicly available intrinsic network template (Smith
et al., 2009) as references. This template provides nine stable
and meaningful intrinsic networks on cortical area including
three visual, default mode, motor, auditory, executive control,
and bilateral frontal/parietal networks (Smith et al., 2009).
Specifically, the spatial pattern similarity is defined as the overlap
rate R:

R (S,T) = |S ∩ T| / |T| (4)

where S is a set of cortical vertices involving in a spatial pattern
that has reference to a dictionary atom, T is a set of cortical
vertices involving in the spatial pattern of a specific intrinsic
network template (Smith et al., 2009). The spatial pattern with
the highest R with the intrinsic network template is identified as
the corresponding intrinsic network in this individual subject as
previous studies (Lv et al., 2015b). Note that the task-induced
network can also be effectively identified and separated with
intrinsic networks by means of considering both temporal and
spatial patterns of dictionary atoms in the dictionary learning and
sparse representation framework as detailed in Jiang et al. (2015,
2018) and Lv et al. (2015a,b).We thenmap the identified intrinsic
networks in task fMRI volume space (Figure 2C) to T1 cortical
surface (Figure 2D) in order to utilize the cortical folding pattern
information. Specifically, the network is firstly converted into T1
volume space and then mapped onto the cortical surface using an
in-house tool by localizing each voxel involved in the network to
its nearest cortical mesh vertex.

Signal Representation Accuracy
Assessment on Gyri/Sulci Within One
Intrinsic Network
As demonstrated in Section Sparse representation of whole-brain
task fMRI signals, the learned over-complete D represents a set
of all basis components of neural activities from whole-brain
task fMRI signals. Each original fMRI signal xi is approximately
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FIGURE 2 | The illustration of sparse representation of whole-brain rsfMRI signals. (A) The whole-brain rsfMRI signals of an example subject which are aggregated

into a 2D matrix X. (B) The decomposed dictionary matrix D and sparse coefficient matrix α based on X. (C) The identified intrinsic networks in task fMRI volume

space. (D) The corresponding intrinsic networks on cortical surface.

represented as x̄i = D × αi. Here we assess the task fMRI signal
representation accuracy P as:

Pxi = corr(xi, xi) (5)

where corr(.) is the Pearson’s correlation coefficient between
xi and xi and ranges from 0 to 1. The larger the P is, the
better the signal representation is for xi, i.e., xi can be well
represented by the basis components of neural activities in D. In
other words, xi well participates in or follow the neural activities
in emotion processing. Since the distinct regions within one
intrinsic network theoretically have similar neural activities and
are functionally linked, the assessment of the task fMRI signal
representation accuracy (Equation 5) in these distinct regions
within the intrinsic network is thus indicative of the degree
of interregional neural communication among distinct regions
within the intrinsic network.

Specifically, for each distinct region V = ∀vi (vi is the cortical
vertex in the region) within one intrinsic network on cortical
surface, we first calculate the signal representation accuracy value
Pvi (Equation 5) for the task fMRI signals of all vi. Second, based
on the principal curvature value of vi to delineate gyral/sulcal

regions as pcurvvi

{

≥ 0, viǫgyri
< 0, viǫsulci

provided in the HCP data

(Barch et al., 2013), we separate V into gyral and sulcal regions
as Vgyri = ∀vi s.t. pcurvvi ≥ 0 and Vsulci = ∀vi s.t. pcurvvi < 0,
respectively. Note that V = Vgyri + Vsulci. Finally, the set of all
signal representation accuracy values in gyral and sulcal regions
is represented as PVgyri = ∀Pvi s.t. vi ∈ Vgyri and PVsulci

=

∀Pvi s.t. vi ∈ Vsulci, respectively. By evaluating the possible mean
accuracy value difference between gyral and sulcal regions in each
of the distinct regions within one intrinsic network, the proposed
cortical folding pattern-guided model of the intrinsic network in
emotion processing is validated.

RESULTS

Signal Representation Accuracy Difference
on Gyri/Sulci in Default Mode Network
We adopted the proposed framework to examine the signal
representation accuracy difference on gyri/sulci in default mode
network (DMN), which is one of the most recognized intrinsic
network (Smith et al., 2009). As illustrated in Figure 3, there
are four spatially distinct regions of interest (ROIs) in DMN
including left inferior parietal lobule (ROI 1), right inferior

parietal lobule (ROI 2), bilateral medial prefrontal gyrus/anterior
cingulate cortex (ROI 3), and bilateral posterior cingulate cortex
(ROI 4) (Smith et al., 2009). For each of the four ROIs, we can see
that both gyral and sulcal regions have reasonably high accuracy
value (the mean accuracy value is 0.82 for gyri and 0.76 for
sulci) since the sparse representation approach (Section Sparse
representation of whole-brain task fMRI signals) can relatively
effectively represent whole-brain rsfMRI signals. However, there
is still accuracy difference between gyral and sulcal regions. A
two-sample one-tailed t-test between the set of accuracy values
of gyri and sulci (p < 0.05, Bonferroni corrected) shows that the
signal representation accuracy value on gyri is significantly larger
than that on sulci for each of the four ROIs (Figure 3).

Signal Representation Accuracy Difference
on Gyri/Sulci in Other Intrinsic Networks
We assessed the signal representation accuracy on gyri/sulci in
the other eight intrinsic networks to examine the generality of
the proposed working model of intrinsic networks in emotion
processing. As shown in Figure 4, the eight intrinsic networks
(Smith et al., 2009) include three visual networks (Network 1–3),
motor (Network 4), auditory (Network 5), executive control
(Network 6), and bilateral frontal/parietal networks (Network
7–8). The mean accuracy value across all ROIs in all eight
intrinsic networks is 0.75 for gyri and 0.71 for sulci. A two-
sample one-tailed t-test between the set of accuracy values of gyri
and sulci (p < 0.05, Bonferroni corrected) shows that the signal
representation accuracy value on gyri is significantly larger than
that on sulci in each of the intrinsic network.

Reproducibility and Structural Substrates
of the Intrinsic Functional Network Model
We assessed the signal representation accuracy on gyri/sulci
in all nine intrinsic networks in emotion processing in all 68
subjects. Table 1 indicates that the signal representation accuracy
on gyri is consistently larger than sulci in each of the nine
intrinsic networks across a majority of subjects. Moreover, we
performed the permutation test for each intrinsic network to
separate all signal representation accuracy values within the
intrinsic network into gyri and sulci groups and to calculate the
mean difference between the two groups for 1000 times. The
p-value based on the 1,000-time permutation t-test is p < 0.05
for all intrinsic networks and subjects, indicating the signal
representation accuracy of gyri is truly larger than sulci within
all intrinsic networks in emotion processing.
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FIGURE 3 | Emotion task fMRI signal representation accuracy difference between gyral and sulcal regions in default mode network (DMN) of one subject. The detailed

assessment of each of the four distinct regions (ROI 1–4) within DMN is in zoomed-in view. G, gyri; S, sulci. P-value: two-sample one-tailed t-test (gyri > sulci,

p = 0.05, Bonferroni corrected).

FIGURE 4 | Emotion task fMRI signal representation accuracy difference between gyral and sulcal regions in the other eight intrinsic networks.

We further adopted the DTI data of the same 68 subjects in
the HCP data set to examine the correlation between DTI FA
value and the signal representation accuracy in gyri/sulci. The
experimental results show that across all intrinsic networks and
subjects, the FA values are positively correlated with the emotion
task signal representation accuracy in gyri/sulci (r-value ranges
from 0.3 to 0.6 across different intrinsic networks and subjects,
p-value < 0.01), indicating that gyri has both more structural
fiber connections and higher task fMRI signal representation
accuracy than sulci.

DISCUSSION

We proposed a novel cortical folding pattern-guided model of
intrinsic functional brain networks in emotion processing. This

model is evaluated and validated via the proposed computational
framework of dictionary learning and sparse representation
of emotion task fMRI signals, and the task fMRI signal

representation accuracy assessment on gyral and sulcal regions
within the intrinsic network. Experimental results based on the
HCP emotion task fMRI data demonstrated that the fMRI signal
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TABLE 1 | Proportion of number of subjects with significant gyral/sulcal signal

representation accuracy difference (two-sample t-test, p < 0.05, Bonferroni

corrected) in the intrinsic networks in emotion processing.

Network 1 2 3 4 5 6 7 8 9

Proportion 0.67 0.82 0.76 0.78 0.75 0.99 0.82 0.82 0.97

Network 1–3, three visual networks; Network 4, motor; Network 5, auditory; Network

6, executive control; Network 7–8, bilateral frontal/parietal networks; Network 9, default

mode.

representation accuracy value in gyri is significantly larger than
that on sulci across all nine major cortical intrinsic networks.
Our results provide novel insights of functional mechanisms in
emotion processing.

We identified nine meaningful intrinsic functional networks
which mainly locate on cortical regions based on the emotion
task fMRI data. Note that we focus on the intrinsic networks
on cortical regions in this work in order to take advantage
of the cortical folding pattern information. There are also
meaningful and important intrinsic networks in subcortical
area (e.g., amygdala, etc.) in emotion processing for future
studies. Our finding is consistent with previous studies showing
that there are “domain-general, distributed” intrinsic functional
networks in human brain, and emotion processing arises from
the interaction within or among these intrinsic functional brain
networks (Lindquist and Barrett, 2012; Barrett and Satpute,
2013).

We found that the emotion task fMRI signal representation
accuracy value is significantly larger on gyral regions than
sulcal regions within the intrinsic network, indicating that
gyri might directly participate more than sulci in functional
activities/interactions among distinct regions within the intrinsic
networks in emotion processing. As demonstrated in Section
Signal representation accuracy assessment on gyri/sulci within
one intrinsic network, the learned dictionary matrix represents
a set of all basis neural activities of emotion task fMRI
signals in the whole-brain. The gyral regions with higher signal
representation accuracy based on all basis neural activities are
thus of more neural communication among distinct regions
within the intrinsic network, i.e., gyral regions serve as global
neural communication centers among distinct regions within
the intrinsic network in emotion processing. The sulcal regions
with lower signal representation accuracy are thus of less neural
communication among distinct regions within the intrinsic
network and serve as local centers within the single regions of the
intrinsic network in emotion processing. This finding, to some
extent, is in agreement with the previous studies arguing that
gyral regions have stronger interregional functional connectivity
than sulcal regions (Deng et al., 2014). It is also in agreement with
other studies demonstrating that gyral regions have more spatial
overlap patterns of functional networks than sulcal regions in
both temporally stationary and dynamic states (Jiang et al., 2015,
2018). Moreover, we found that the DTI FA values are positively

correlated with the emotion task signal representation accuracy
in gyri/sulci. Given the fact that brain structure predicts its
function (Passingham et al., 2002; Zhang et al., 2011), this finding
as well as other mounting evidences that gyral regions have
more interregional axonal fiber connections than sulcal regions
(Nie et al., 2012; Chen et al., 2013; Zhang et al., 2014) provide
the structural substrates for the abovementioned functional
observations. In conclusion, based on both structural and
functional evidences, we argue that the emotion task fMRI signal
representation accuracy difference between gyri and sulci within
the intrinsic network reasonably supports our proposed cortical
folding pattern-guidedmodel; that is, within an intrinsic network
in emotion processing, gyri are the global functional connection
centers which perform interregional neural communication
among distinct regions, and sulci are the local functional units
which directly communicate with neighboring gyri and indirectly
communicate with other distinct regions via the neighboring
gyri.

In this work, we adopted the emotion task fMRI data in
the HCP datasets as a testbed. The proposed model showed
reproducibility and generality across different subjects under
the same emotion task design. In the future, we plan to test
our model on other task fMRI data sets with different emotion
processing paradigms to examine if there is any common finding
among different emotion processing paradigms. It would be
also interesting to explore the potential general principle of our
proposed cortical folding pattern-guided model using different
task data sets.
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