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Abstract

Extracorporeal photopheresis (ECP) and the purine analog pentostatin exert potent 

immunomodulatory effects. We evaluated the use of these treatment modalities to prevent GVHD 

in a canine model of unrelated dog leukocyte antigen mismatched hematopoietic cell 

transplantation (HCT), after conditioning with 920 cGy total body irradiation (TBI). We have 

shown previously in this model that 36/40 dogs given methotrexate (MTX) alone as postgrafting 

immunosuppression engrafted and that 25 of 40 dogs had severe GVHD and median survival of 21 

days. In the current study, 9 dogs received conditioning with 920 cGy TBI and postgrafting MTX 

either with ECP on days −2 to −1 alone (n=5) or ECP on days −6 and −5 combined with 2 doses 

of pentostatin (days −4 to −3) (n=4). Seven of 9 dogs achieved engraftment. Six dogs developed 

severe acute GVHD (4 in the group with ECP alone and 2 with Pentostatin and ECP). We failed to 

demonstrate a positive impact of ECP and pentostatin for the prevention of GVHD compared to 

historical control dogs.
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INTRODUCTION

The degree of major and minor histocompatibility antigen mismatch between donor and 

recipient in hematopoietic cell transplantation (HCT) is the most important risk factor for 

graft-versus-host-disease (GVHD).1 Immunocompetent donor T-cells play an essential role 

in the pathogenesis of GVHD. GVHD can be prevented by graft T-cell depletion but at the 

expense of a higher risk of graft rejection and relapse.2 Despite the development of effective 

immunosuppressive drugs and their successful use in HLA-matched related and unrelated 

HCT, GVHD remains the major cause for morbidity and mortality in allogeneic HCT.1 

Clinical trials of HLA-mismatched allogeneic HCT are still complicated by an unacceptable 

high risk of GVHD and rejection,3,4 particularly if a nonmyeloablative conditioning is 

used.5 New strategies for conditioning and postgrafting immunosuppression to reduce the 

intensity and severity of GVHD are therefore warranted.

Extracorporeal photopheresis (ECP) was initially used to successfully treat patients with 

cutaneous T-cell lymphoma 6. The immunosuppressive effects of ECP have also been used 

in patients with autoimmune disorders, solid organ rejection and GVHD.7–12 Pentostatin is a 

purine analog which induces T-cell apoptosis through adenosine deaminase inhibition. Used 

as part of the conditioning regimen in HCT pentostatin can produce prolonged host T-cell 

depletion preventing graft rejection and GVHD.13–15,15

Miller et al. developed a conditioning regimen combining ECP, pentostatin and 600 cGy 

total body irradiation (TBI) for human leukocyte antigen (HLA)-identical and non-identical 

(5/6 HLA match) allogeneic HCT. Using cyclosporine (CSP) and methotrexate (MTX) as 

postgrafting immunosuppression they report a low incidence of acute (grade II to IV of 9%) 

and chronic GVHD (43%). These rates seem low compared to the reported incidence to be 

expected with a similar regimen without ECP and pentostatin.16,17 Both pentostatin and 

ECP result in T-cell and host DC depletion and a shift of the remaining DC and T-cell 

population to a tolerogenic DC2 and T-regulatory population which may lead to the 

observed low incidence of GVHD.

In order to elucidate the potential role of ECP or pentostatin either individually or in 

combination on reducing the incidence of GVHD we report on our results using a well-

established dog model of dog leukocyte antigen (DLA)-nonidentical marrow grafts.

MATERIALS AND METHODS

Dogs and DLA typing

Litters of beagles, harriers, Walker hounds, and crossbred dogs were used in this study as 

described previously.18 Dogs weighed from 13.5 to 23 (median, 14.4) kg and were 18 to 31 

(median, 27) months old. The experimental protocol was approved by the Institutional 

Animal Care and Use Committee of the Fred Hutchinson Cancer Research Center. The 
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study was performed in accordance with the principles outlined in the Guide for Laboratory 

Animal of Sciences, National Research Council. The kennels were certified by the American 

Association for Accreditation of Laboratory Animal Care. In group A, donors and recipients 

were unrelated and were obtained from different breeding colonies or were of different 

pedigrees for at least five generations. DLA-nonidentical littermates were selected on the 

basis of identity for highly polymorphic MHC class I and class II microsatellite markers and 

identity for DLA-DRB1 alleles as determined by direct sequencing.19–21

Marrow transplantation, and supportive care

DLA-nonidentical marrow grafts—All recipient dogs were conditioned for 

transplantation by 920 cGy TBI at 7 cGy/minute using a linear accelerator (Varian CLINAC 

4, Palo Alto, CA).22 Dogs in group A1 received ECP administered on days −2 and −1 with 

TBI on day 0 and dogs in group A2 received ECP on days −6 and −5, intravenous (IV) 

infusion of pentostatin at a dose of 4mg/m2 on days −4 and −3, and TBI on day 0 (Table 1). 

Donor marrow cells from DLA-nonidentical donors were aspirated under general anesthesia 

through needles inserted into humeri and femora and stored in heparinized tissue culture 

medium at 4°C for no more than 6 hours.22 Within 4 hours of TBI, harvested marrow cells 

were infused IV into recipients at a median dose of 2.9 (range, 1.9 to 6.1) ×108 total 

nucleated cells (TNC)/kg. The day of marrow grafting was designated as day 0. In addition 

to marrow graft, recipients were given IV infusions of peripheral blood buffy coat cells 

obtained by leukapheresis from the marrow donor on days 1 and 2, at a median dose of 2.3 

(range, 1.2 to 6.9) ×108 TNC/kg to ensure consistent hematopoietic engraftment. MTX, at a 

dose of 0.4 mg/kg intravenously was used as postgrafting immunosuppression and 

administered on days +1, +3, +6 and +11, then weekly thereafter until day 102.

All dogs received standard supportive care and clinical monitoring as described before.18

Hematopoietic engraftment was assessed by sustained increases in granulocyte and platelet 

counts after the post irradiation nadir, by documentation of donor originated cells with 

microsatellite marker studies in specimens from peripheral blood and marrow, by 

histological features of the marrow from biopsy or autopsy specimens, and by clinical and 

histopathologic findings of GVHD.

Clinical signs of GVHD included severe diarrhea due to gut involvement (G), conjunctival 

or skin erythema (S), and elevations of liver enzymes and bilirubin (L). Acute GVHD was 

defined as disease manifested before day 100, and chronic GVHD was defined as disease 

present after day 100. Dogs either died of or were euthanized because of complications of 

the study, or they were euthanized after completion of the study and complete autopsies, 

including histological examinations, were performed to assess marrow engraftment, GVHD, 

hematopoietic recovery, and possible toxic effects.

Extracorporeal photopheresis (ECP)

ECP of the animals was performed using the XTS® Photopheresis System (Therakos, 

Exton, PA, USA) according to standard procedures in the manufacturer’s guidelines and as 

described previously.18
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Mixed leukocyte cultures (MLC) and natural killer (NK) cell cytotoxicity assay23,24

Mixed leukocyte cultures were used to assess the dogs’ cellular immune function before and 

after ECP as described previously.18 To evaluate NK cell activity before and after ECP, 

chromium release assays were performed as described previously.18

Chimerism analysis25

Donor and host cell chimerism were evaluated using a polymerase chain reaction (PCR) 

based assay of polymorphic (CA)n dinucleotide repeats with primers specific for informative 

microsatellite markers. Genomic DNA of the cells of interest was extracted, and PCR was 

performed under conditions described previously.26(Ref. Bethge et al., BMT 2011) The 

technique used enables to detect between 2.5% to 97.5% donor cell chimerism.27

Flow cytometry and monoclonal antibodies (mAbs)

Flow cytometry using a FACScan Flow Cytometer (Becton Dickinson, San Jose, CA) was 

used to quantify the leukocyte subsets. MAbs against canine CD3 (CA17.6B3, IgG2b), CD4 

(CA13.1.E4, IgG1), CD8 (CA9.JD3, IgG2a),28 and TCRαβ (CA15.9D5, IgG1) were used. 

The anti-CD3, CD4, and CD8 mAbs were kindly provided by Dr. Peter Moore (School of 

Veterinary Medicine, University of California, Davis). Additionally we used antibodies 

against canine CD44 (S5, IgG1)29 and canine myeloid cells (DM5, IgG1).30 As isotype 

control, we used mAb 31A (IgG1) directed at the mouse Thy-1 receptor which does not 

cross-react with canine cells.31 All mAbs were produced and purified at the Biologics 

Production Facilities of the Fred Hutchinson Cancer Research Center (Seattle, WA). In 

addition, the commercially available antibodies Goat F(ab′)2 anti-Mouse Ig’s Fluorescein 

conjugate (Biosource Camarillo, CA) and anti-human CD14 (DAKO Corporation, 

Carpenteria, CA) crossreacting with canine CD1432 were used. The mAbs were fluorescein 

conjugated according to standard protocols.

Detection of apoptosis by Annexin V (Ax)/PI staining—Apoptosis of cells exposed 

to ECP was assessed by flow cytometry with the use of Annexin V binding, which allows 

detection of phosphatidylserine on the cell surface of apoptotic cells.33 Briefly, after 

overnight incubation at 37 °C in 5% humidified atmosphere, cells were harvested, lysed, 

washed with PBS and incubated with Annexin V-FITC (Pharmingen, San Diego, CA) and 

propidium iodide (PI) according to the manufacturer’s manual. Cells were analyzed by flow 

cytometry by means of CellQuest Analysis software (Becton Dickinson, Mountain View, 

CA). A minimum of 10 000 events were counted per sample. Cells positive for Annexin V 

but negative for PI are in early apoptosis, cells double positive for Annexin V and PI are in 

late apoptosis. Results are reported as a percentage of annexin V-FITC positive cells.

Statistical methods

The observed rates of GVHD and graft rejection among all dogs treated were compared in a 

descriptive manner to historical rates. Apoptosis parameters were assessed using the one-

sample t-test, where post-ECP values were compared to pre-ECP values in order to test the 

null hypothesis that the mean difference (post-ECP minus pre-ECP) is equal to zero.
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RESULTS

ECP products

In 9 dogs a total of 18 ECP procedures were performed. A median of 243 ml (range 223–

309) of ECP product was collected on each day with a median white blood count of 

13970/μl (range 6600 – 20,800), representing a median of 3.5 ×109 (range 1.4 ×109 – 5.1 

×109)total nucleated cells. Data on PBMCs treated which each cycle of ECP was available 

in 13/18 ECP procedures performed in the dogs. The percentage of PBMCs treated with 

each cycle of ECP was a median of 18% (range 11–34%). The percentages of different cell 

populations in the dogs’ peripheral blood and ECP products were similar. There was no 

difference between percentages of CD4+, CD8+, CD3+, TCRαβ, granulocytes and CD14+ 

cells populations in the dogs’ peripheral blood and ECP. All dogs tolerated the 

extracorporeal volume automatically determined by ECP machine. No immediate toxic 

effects were observed during either ECP procedure.

DLA-nonidentical marrow grafts

Nine dogs were studied. Five in group A1 (ECP alone) and four in group A2 (ECP + 

pentostatin). Table 1 summarizes the results of allogeneic marrow transplants in groups A1 

and A2.

Group A1 (ECP alone) (n=5)—All dogs developed neutropenia (<500 granulocytes/μL) 

with nadirs of 7 to 16 granulocytes/μL between days 4 to 7 after HCT. Thrombocytopenia 

with <20,000/μL platelets occurred from day 6 onward with nadirs of 3000 to 5000 

platelets/μL. No platelet transfusions were required apart from a single platelet transfusion in 

dog E981. Subsequent platelet recovery occurred slowly and recovery to a completely 

normal platelet counts had not occurred until the end of study. Four dogs had complete 

granulocyte and lymphocyte recoveries and one dog (G 170) had a partial recovery (Figure 

1). Three dogs achieved full donor hematopoietic chimerism starting 7 days after HCT. Dog 

G113 rejected his graft on day 21 with subsequent complete autologous hematopoietic 

recovery and was released for adoption (Figure 3). All dogs (n=4) with sustained 

engraftment developed severe acute GVHD and were euthanized due to poor clinical 

condition after a median of 19 (range 16–20) days after HCT (Table 1).

Group A2 (ECP+Pentostatin) (n=4)—All dogs developed granulocytopenia with <500 

granulocytes/μL from day 4. Thrombocytopenia (<20,000/μL platelets) occurred from day 7 

after HCT with nadirs of 3000 to 14000 platelets/μL. Two dogs received single and one dog 

received three platelet transfusions. Lymphocyte nadirs of 10 lymphocytes/μL occurred 

between days 3 and 8. One dog showed complete granulocyte and lymphocyte recovery, one 

dog showed a partial recovery and two dogs had no recovery. Platelet recovery occurred 

slowly and no dog recovered to normal platelet counts (Figure 2). One dog died on day 9 

after HCT from canine herpes virus before achievement of hematological recovery. The dog 

had 73 % donor PBMC chimerism on day 9. One dog had an initial engraftment of 71 % on 

day 7, rejected the graft on day 18 and was euthanized on day 22 due to poor clinical 

condition. The other 2 dogs achieved 100 % and 91 % donor PBMC chimerism (Figure 3). 
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Both developed severe acute GVHD and were euthanized due to poor clinical condition on 

day 22 and day 10 after HCT (Table 1).

In vitro characteristics of ECP PBMC

For all in vitro studies described below, PBMCs from the recipients were collected and 

analyzed from 4 different time points during ECP treatment: 1) peripheral blood pre ECP 

treatment (Pre ECP blood); 2) peripheral blood immediately after ECP product infusion 

(Post ECP blood); 3) Buffy coat (BC) cells from the ECP product before UVA light 

activation (Pre ECP BC); and 4) BC cells from the ECP product immediately after UVA 

light activation (Post ECP BC).

Alloreactivity—MLCs were performed to study the effects of UVA on PBMC 

alloreactivity. In 7 of dogs tested PBMCs from the ECP product after UVA light activation 

(Post-ECP BC) showed a median decrease of 97% (range 69–99) in alloreactivity against 

DLA-mismatched unrelated stimulator cells when compared to PBMCs from the ECP 

product before UVA light activation (Pre-ECP BC). In contrast there was no decrease in 

alloreactivity against DLA-mismatched unrelated stimulator cells of the Post-ECP blood 

when compared to the Pre-ECP BC. (Figure 4)

NK cell function—In 3 dogs tested PBMC from ECP product after UVA light activation 

(Post-ECP BC) showed a median decrease of 52% (range, 41–79%) in NK-function when 

compared with PBMCs from the ECP product before UVA light activation Pre-ECP BC). In 

contrast, there was no decrease in NK function of the PBMCs from the dog after ECP 

product infusion (Post-ECP blood) when compared to the ECP product before UVA light 

activation (Pre-ECP BC). (Figure 5)

Apoptosis

Levels of apoptosis induction before and after ECP were compared in 9 dogs studied. The 

mean +/− SEM percentage of lymphocytes demonstrating early and late apoptosis and flow 

cytometry data are shown in Figure 6.

At early apoptosis, the difference between percent Annexin-V FITC+/PI− cells in blood 

drawn after ECP (post-ECP blood) and before ECP (pre-ECP blood) ranged from −11.0 to 

9.5, with a mean difference of −0.2 +/− 6.6 (p=0.93). The difference between percent 

Annexin-V FITC+/PI− of BC cells after ECP (post-ECP BC) and before ECP (pre-ECP BC) 

ranged from −3.5 to 21.3, with a mean difference of 7.4 +/− 9.3, p=0.04.

As a measure of late apoptosis, the difference between percent Annexin-V FITC+/PI+ cells 

in post-ECP blood and pre-ECP blood ranged from −12.6 to 10.4, with a mean difference of 

0.1 +/− 7.1 (p=0.96). The difference between percent Annexin-V FITC+/PI+ of post-ECP 

BC and pre-ECP BC ranged from −4.4 to 56.6, with a mean difference of 21.3 +/− 22.1 

(p=0.02).
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DISCUSSION

Both pentostatin and ECP result in T-cell and host DC depletion and a shift of the remaining 

DC and T-cell population to a tolerogenic DC2 and T-regulatory population leading to the 

low rate of GVHD observed by Miller et al with a regimen combining ECP, pentostatin and 

600 cGy TBI for HLA-identical and non-identical (5/6) allogeneic HCT.13

In order to assess the role of ECP and pentostatin as additional immunosuppression for 

prophylaxis of GVHD we used our well established dog model. We have shown previously 

that dogs (n=10) that received allogeneic DLA-nonidentical marrow grafts after 920 cGy 

TBI, in association with donor PBMC infusion and postgrafting immunosuppression with 

MTX and CSP achieved 100% engraftment, and 50% developed acute GVHD with a 

median survival of 112 days.34,35 Compared to these results, in the present study 7 out of 9 

dogs achieved sustained engraftment. All 6 engrafting dogs developed severe acute GVHD 

(4 in the group with ECP alone and 2 in the group with Pentostatin and ECP and one died 

with canine herpes virus infection). This observed rate in the current study is higher than 

results seen historically, and therefore, there was no evidence to suggest that combining 

MTX with the use of ECP alone or in combination with pentostatin is more effective than 

combining MTX with CSP to prevent GVHD in DLA-nonidentical canine transplantation. It 

seems that the high degree of histocompatibility cannot be overcome by combination of ECP 

and pentostatin.

The negative results of our studies on the potential role of ECP and pentostatin for GVHD 

prophylaxis might be explained by the pathophysiologic knowledge about the 

immunosuppressive effect of ECP and pentostatin. ECP has been successfully used to treat 

patients with acute and chronic GVHD in HCT.12,16,36–38 The mechanism of action of ECP 

in GVHD is fundamentally based in DC integrity and T-cell function.8,39 In vitro studies 

have shown that ECP treatment leads to a shift from an activated monocytoid dendritic cell 

(DC)/T-cell state to a tolerogenic state.39 In addition, an inverted CD4-to-CD8 and overall 

increase in the number of CD3−/CD56+ natural killer (NK) cells, and an attenuation of the 

capacity of dendritic cells to stimulate the proliferation of autologous or allogeneic T-cells in 

mixed lymphocyte assays was observed.39,40 ECP treatment was also associated with a shift 

in the cytokine profile of circulating T cells from a predominantly inflammatory or Th1 

(interleukin-2 [IL-2], interferon-γ) profile to a Th2 (IL-4, IL-10) profile. It was subsequently 

demonstrated that ECP induced a population of CD4+ CD25+ T cells, which functioned as 

suppressors in mixed lymphocyte reactions, consistent with regulatory T cells.41 The 

evolving model for the mechanism of action of ECP is that it is the ingestion of apoptotic T 

cells, which initiates the process of activation and cytokine secretion by antigen-presenting 

cells, which subsequently leads to generation of tolerogenic DCs and subsequently a 

regulatory T-cell response.42 Pentostatin might further increase T-cell apoptosis through 

adenosine deaminase inhibition. We, as others, demonstrated that ECP induces apoptosis of 

T lymphocytes.43,44 Since the immunomodulation of DC depends on the presence of these 

apoptotic cells, we indirectly showed that ECP was effective in this animal model. The 

absence of apoptotic cells in peripheral blood of dogs immediately after ECP can be 

explained by reticuloendothelial system uptake or by a possible dilution factor as the 

estimated amount of PBMC collected in our dogs was a median of only 18% of total 
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circulating PBMC.44 Although both NK and lymphocyte functions were decreased in ECP 

product, no difference was shown if PBMCs were collected from the dogs before and after 

ECP procedure. Although a dilution factor could explain these findings, we fail to 

demonstrate a decrease of host lymphocyte alloreactivity on day zero which would be an 

efficient way to prove the effectiveness of this approach. However, we used similar 

treatment protocols, drug doses and treatment volumes as applied in the human system of 

ECP. Although DC function was not assessed in this study, the combination of high dose 

TBI and other immunosuppressive agents such as MTX may have impaired or even 

completely abrogate DC function or number, eliminating or decreasing ECP effects. 

However, patients with GVHD usually require several treatment courses of ECP over 

several weeks to months to achieve clinical response.12,36–38 Our abbreviated schedule of 

ECP on only two consecutive days prior HCT might be too short. It may well be possible 

that many cycles of ECP prior allogeneic HCT would be required to prevent GVHD. 

Perhaps even application of ECP for several treatment cycles prior and post HCT might be 

necessary. This could be especially true in DLA-nonidentical grafts where the high degree 

of histoincompatibility demands a higher degree of immunosuppression.

In conclusion our data demonstrate that the use of ECP alone or in combination with 

pentostatin was not potent enough to prevent GVHD in our protocol of DLA-mismatched 

HCT. Further studies are needed to prove the real contribution of these tools as GVHD 

prophylaxis in HCT settings using more intense or prolonged treatment protocols.
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Figure 1. 
Peripheral blood granulocyte, lymphocyte, and platelet counts of DLA-nonidentical dog 

marrow transplantation given ECP product conditioned with 920 cGy TBI and postgrafting 

MTX
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Figure 2. 
Peripheral blood granulocyte, lymphocyte, and platelet counts of DLA-nonidentical dog 

marrow transplantation given ECP product, pentostatin, conditioned with 920 cGy TBI and 

postgrafting MTX
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Figure 3. 
Percentage donor chimerism among PBMC in dogs given 920 cGy TBI and DLA-

nonidentical marrow grafts. Dogs in group 1 (A1) received ECP on days −2 and −1 before 

transplant and dogs in group 2 (n=5) (A2) received ECP on days −6 and −5 and pentostatin 

(4mg/m2) on days −4 and −3 before transplant (n=4)
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Figure 4. 
Mixed leukocyte culture (MLC) assay of a nonidentical dog marrow transplantation before 

and after infusion of the extracorporeal photopheresis (ECP) product. (A) MLR comparing 

responses of G170 PBMCs (Recipient), G144 PBMCs (Donor), and G020 PBMCs 

(unrelated dog) before ECP. (B) MLR showing response of G170 PBMCs obtained before 

photopheresis to G144 and G020. (C) MLR showing response of G170 ECP product to 

buffy coat cells obtained after UVA light activation to G144 and G020
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Figure 5. NK-cell function
NK assay of various G170 cell populations:

*Pre ECP = PBMCs obtained before photopheresis; **Post ECP = PBMCs obtained after 

infusion of ECP product; ***Pre BC = buffy coat cells obtained before UVA light 

activation; ****Post BC = buffy coat cells obtained after UVA light activation
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Figure 6. Apoptotic effect of extracorporeal photopheresis (ECP) on marrow transplantation
Whole blood and buffy coat cells obtained before and after photopheresis were cultured 

overnight at 37°C, 5% humidified atmosphere, lyzed, washed, stained with Annexin-V-

FITC, and propodium iodide (Pi), and analyzed with FACScan. (A) The mean ± SEM 

percentage of lymphocytes demonstrating early apoptosis (Annexin-V+/PI−). (B) The mean 

± SEM percentage of lymphocytes demonstrating late apoptosis (Annexin-V+/PI+)
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