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Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to
their cognate transfer RNAs. In eukaryotes, a subset of cyto-
solic aaRSs is organized into a multisynthetase complex (MSC),
along with specialized scaffolding proteins referred to as aaRS-
interacting multifunctional proteins (AIMPs). In Plasmodium,
the causative agent of malaria, the tRNA import protein (tRip),
is a membrane protein that participates in tRNA trafficking; we
show that tRip also functions as an AIMP. We identified three
aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA
synthetase (QRS), and methionyl-tRNA synthetase (MRS),
which were specifically coimmunoprecipitated with tRip in
Plasmodium berghei blood stage parasites. All four proteins
contain an N-terminal glutathione-S-transferase (GST)–like
domain that was demonstrated to be involved in MSC assem-
bly. In contrast to previous studies, further dissection of GST-
like interactions identified two exclusive heterotrimeric com-
plexes: the Q-complex (tRip–ERS–QRS) and the M-complex
(tRip–ERS–MRS). Gel filtration and light scattering suggest a
2:2:2 stoichiometry for both complexes but with distinct bio-
physical properties and mutational analysis further revealed
that the GST-like domains of QRS and MRS use different
strategies to bind ERS. Taken together, our results demonstrate
that neither the singular homodimerization of tRip nor its
localization in the parasite plasma membrane prevents the
formation of MSCs in Plasmodium. Besides, the extracellular
localization of the tRNA-binding module of tRip is compen-
sated by the presence of additional tRNA-binding modules
fused to MRS and QRS, providing each MSC with two spatially
distinct functions: aminoacylation of intraparasitic tRNAs and
binding of extracellular tRNAs. This unique host–pathogen
interaction is discussed.

Aminoacyl-tRNA synthetases (aaRSs) are a family of
essential enzymes that perform the first step in protein syn-
thesis by specifically attaching an amino acid to its corre-
sponding tRNA (1). In addition to their canonical role in tRNA
aminoacylation, eukaryotic aaRSs have evolved to participate
in a wide range of alternative functions (2, 3). These functions
* For correspondence: Magali Frugier, m.frugier@ibmc-cnrs.unistra.fr.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
include regulation of gene expression, RNA processing and
trafficking, as well as cell signaling activities (4, 5). In eu-
karyotes, the association of several aaRSs within a multi-aaRS
complex (MSC) partitions the translational activities of aaRSs
while in the MSC, from their alternative functions once
dissociated from the MSC (6–8). In addition to a subset of
cytosolic aaRSs, MSCs contain up to three accessory proteins
referred as aaRS-interacting multifunctional proteins (AIMPs)
(Fig. 1A) (reviewed in (9, 10)). One AIMP is common to all
known MSCs. In unicellular eukaryotes, it is a single poly-
peptide characterized by a specific structural organization: an
N-terminal domain with homology to glutathione transferases
(glutathione-S-transferase [GST]–like domain) fused through
a poly-lysine linker to a C-terminal endothelial monocyte-
activating polypeptide II (EMAPII)–like domain (11, 12)
(Fig. 1A). GST-like domains are known to mediate protein–
protein interactions, while EMAPII-like domains have been
shown to recognize the tRNA 3D structure. This AIMP was
first identified in the yeast Saccharomyces cerevisiae (Arc1p
(13)) and in pathogenic parasites like Toxoplasma gondii (Tg43
(14)) and Trypanosoma brucei (MCP1 (15)). In metazoans, it is
assembled from two separate peptides, either AIMP1 (p43,
EMAPII-like domain) and AIMP2 (p38, GST-like domain) in
vertebrates (16) or the C-terminal domain (EMAPII-like
domain) of the methionyl-tRNA synthetase (MRS) and AIMP2
in nematodes (17). The bifunctional organization of these
AIMPs (tRNA binding and protein–protein interaction do-
mains) is crucial for MSCs to participate in tRNA channeling
(18–20), subcellular location of aaRSs to control their nonca-
nonical functions (21–23), and cellular turnover, by protecting
associated proteins from degradation (24).

The sizes and compositions of MSCs vary among organisms
and usually reflect their biological complexities (25) (Fig. 1B).
However, despite their diversity, MSC assembly follows a
common strategy involvingGST-likemodules found exclusively
in eukaryotic aaRSs, AIMPs, and elongation factors EF1Bγ and
EF1Bβ (10, 26–29). For instance, the yeast MSC is a trimer
where the GST-like domains of MRS, glutamyl-tRNA synthe-
tase (ERS) and Arc1p associate (30). In T. gondii, the MSC is
composed of Tg-p43 and four aaRSs, MRS, ERS, glutaminyl-
tRNA synthetase (QRS), and tyrosyl-tRNA synthetase (YRS) ,
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Figure 1. Structural diversity of eukaryotic MSCs. A, variability in proteins containing N-terminal GST and C-terminal EMAPII-like domains. S. cerevisiae
Arc1p is monomeric (30, 54), T. gondii Tg-p43 is dimeric (14) and nothing is known about the oligomerization of T. brucei MCP1 (15). The interactions
between the two leucine-zippers of human AIMP1 and AIMP2 reconstitute a split protein with the same topology as Tg-p43 since it can homodimerize via
the GST domain of AIMP2 (84). All of them are cytosolic while the plasmodial protein, tRip, is a dimer and is localized to the plasma membrane (43). B, MSC
architectures. In S. cerevisiae, Arc1p binds to ERS and MRS and MSC assembly occurs only via GST-like domains (39). The T. gondii MSC is composed of
Tg-p43 and four aaRSs: ERS, QRS, MRS, and YRS, where only YRS lacks a GST-like domain. T. bruceiMSC contains three AIMPs (MCP1, MCP2, and MCP3) and at
least six aaRSs (QRS, ARS, WRS, PRS, DRS, and MRS). Among these aaRSs, only MRS contains a GST-like domain. How the proteins associate in these two
parasite MSCs is still unknown (indicated by red question mark). In the human MSC, AIMP2 is the component with the largest number of binding partners
and is essential for complex assembly. Human MSC components are organized into two subcomplexes based on their association with AIMP2. Subcomplex I
contains MRS, AIMP3, EPRS, IRS, LRS, KRS, and DRS and subcomplex II is composed of AIMP1, QRS, and RRS. aaRSs without GST-like domain are represented
by pentagons, which are colored in dark gray when the enzyme is homodimeric. C, three types of interfaces can form between GST-like domains. Two
canonical interaction modes are observed in GST-like dimers, which occur via interface 1 (through parallel helices α2 and α3) or interface 2 (through helices
α7). P. vivax tRip dimerizes through an alternative interface 1 (44), where helices α2 and α3 of each monomer are oriented perpendicularly and contacts
between α2–α20 and α3–α30 are observed. As a result, the β strands of the thioredoxin subdomain are oriented on the same side of the dimer. Interfaces 1
and 2 are indicated numerically throughout this figure. aaRS, aminoacyl-tRNA synthetase; AIMP, aaRS-interacting multifunctional protein; ARS, alanyl-tRNA
synthetase; DRS, aspartyl-tRNA synthetase; ERS, glutamyl-tRNA synthetase; EPRS, glutamyl–prolyl-tRNA synthetase; IRS, isoleucyl-tRNA synthetase; KRS, lysyl-
tRNA synthetase; LRS, leucyl-tRNA synthetase; MRS, methionyl-tRNA synthetase; MSC, multi-aaRS complex; PRS, prolyl-tRNA synthetase; RRS, arginyl-tRNA
synthetase; QRS, glutaminyl-tRNA synthetase; tRip, tRNA import protein.
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where YRS is the only protein without a GST-like domain (14).
Among the six aaRSs (MRS, QRS, prolyl-tRNA synthetase
(PRS), aspartyl-tRNA synthetase (DRS), tryptophanyl-tRNA
synthetase (WRS), and alanyl-tRNA synthetase (ARS)) and the
three AIMPs (MCP1, MCP2, and MCP3) that constitute the T.
brucei MSC, MCP1, and MRS contain GST-like domains (15).
In the vertebrate MSC, the largest and most intricate MSC,
crucial interactions involve GST-like domains and other types
of interaction motifs such as leucine-zippers and WHEP do-
mains (9). Two AIMPs (AIMP2 and AIMP3 (p18)) and two
aaRSs (MRS and bifunctional glutamyl–prolyl-tRNA synthetase
(EPRS)) display GST-like domains. Together with AIMP1 and
seven other aaRSs (QRS, DRS, lysyl-tRNA synthetase (KRS),
arginyl-tRNA synthetase (RRS), isoleucyl-tRNA synthetase
(IRS), and leucyl-tRNA synthetase (LRS)), they form a bisym-
metrical complex (31–33).

Several crystal structures of MSC subcomplexes involving
GST-like domains are available. The GST-like fold consists of
two subdomains (34, 35) (Fig. 1C): the N-terminal thioredoxin-
2 J. Biol. Chem. (2022) 298(6) 101987
fold containing four β-strands (β1 to β4) and two helices (α1
and α2) and the C-terminal subdomain, which adopts an
α-helical structure (α3 to α8). The central helix (α5) is mostly
composed of hydrophobic residues and exhibits the N-capping
box (S/T-X-X-D), which is strictly conserved and crucial for
the stability of the fold (36, 37). GST-like modules interact
using two conserved interfaces. The dimerization interface 1
involves mainly polar residues within helices α2 and α3 of each
GST-like monomer in parallel orientation, similar to what was
observed in catalytically active GST enzymes (34, 35).
Dimerization through interface 2 involves the stacking of two
arginines protruding from the α7 helix of each monomer and
residues located in the loop connecting the α4 and α5 helices
(38). Hence, Arc1p interacts with MRS through interface 1
(Protein Data Bank [PDB]: 2HSN) and with ERS through
interface 2 (PDB: 2HRK) in the yeast MSC (38, 39). The same
network of interactions allows the formation of the GST-like
heterotetramer, which builds the core of the human MSC
(40, 41), with AIMP3 and MRS (PDB: 4BVX) or AIMP2 and
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EPRS (PDB: 5A34) dimerizing via interface 1 and AIMP3 and
EPRS via interface 2 (PDB: 5BMU) (42).

In Plasmodium, the protozoan parasite responsible for
malaria, a protein named tRNA import protein (tRip) has been
identified (43); it is a fusion protein between a GST-like
domain and an EMAPII-like domain, like S. cerevisiae Arc1p,
T. gondii Tg-p43, and T. bruceiMCP1 (Fig. 1A). However, tRip
is an integral membrane protein localized to the parasite
plasma membrane. It is implicated in an unprecedented tRNA
trafficking pathway and, when the tRip gene is deleted, the
development of the blood stage parasite is significantly
reduced (43). Recently, the crystal structures of both domains
(N-terminal GST-like and C-terminal EMAPII-like) of Plas-
modium vivax tRip were solved independently (44). The N-
terminal GST-like domain of tRip forms two types of dimers
(PDB: 5ZKF). Two monomers interact either through the ca-
nonical interface 2 or through an alternative interface 1. In this
unusual conformation, α2 and α3 helices of one monomer
pack against α2 and α3 helices of the second monomer, but
they are oriented perpendicularly to each other (and not par-
allel as it is the case in a canonical interface 1) (Fig. 1C). This
situation is unique among structurally characterized GST-like
dimers.

Thus, the combination between both its singular homodi-
meric conformation and its unusual role in tRNA import has
raised questions about the implication of tRip in a Plasmodium
MSC assembly. In this study, the existence of a tRip–bound
MSC in the rodent malaria parasite Plasmodium berghei was
experimentally verified. GST-like domains were used to
determine their interaction patterns and infer the organization
of the proteins in the parasite MSC. This approach led to an
unexpected, novel observation: the interaction network be-
tween the different GST-like modules did not allow
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Figure 2. Identification of the tRip interactome in the P. berghei blood s
spectrometry analysis (LC-MS/MS) of tRip partners were performed in three bio
identified proteins that were detected with more than five spectra were used f
specifically bound to tRip (1) in all three samples with p values < 0.05, all of
ribosome biogenesis (5) was observed in two samples (a) and (c), and a riboso
Complete results are presented in Table S1. B, schematic representation of tRi
(MRS), GST-like domains are shown in green, RNA-binding domains are shown
domain of Plasmodium QRS. aaRS, aminoacyl-tRNA synthetase; coIP, coimmu
thetase; QRS, glutaminyl-tRNA synthetase; tRip, tRNA import protein.
incorporation of all individual domains into a single MSC but
rather led to the formation of two independent MSCs with
specific biophysical properties in vitro.

Results

Identification of tRip partners in P. berghei blood stages

tRip and its partners were extracted from P. berghei blood-
stage parasites using a purified and specific antibody raised
against the C-terminal EMAPII-like domain of Plasmodium
falciparum tRip (43). The strong lysis conditions resulting
from saponin treatment significantly reduced the number of
spectra in the b samples leading to its exclusion from the
bioinformatics analysis. An average of 250 P. berghei proteins
were thus identified in samples a, c, and d (three WT and three
KO). As expected, tRip was found only in the WT samples.
After subtraction of background interactions and protein fre-
quency assessment, only four proteins were retained (ERS,
MRS, QRS, and a nuclear ribosomal biogenesis regulatory
protein) and considered statistically significantly increased in
the WT sample, with an adjusted p value < 0.05, a minimum
relevant spectral count of 5 (average), and a min Log fold
change of 2 (Fig. 2A and Table S1). One candidate, ERS, stood
out since its deltaSC and p value parameters were identical to
those of tRip. Because of its nuclear localization and lack of
detection in sample d, the ribosomal biogenesis regulatory
protein was not considered further. Only one protein was
significantly increased in the KO parasite (60S ribosomal
protein L44, putative) compared to the WT.

Structural organization of selected aaRSs

The sequences of P. berghei tRip, ERS, QRS, and MRS were
analyzed using Blast and multisequence alignments (MSAs)
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(Fig. 2B). ERS, QRS, and MRS are all class I aaRSs character-
ized by HIGH and KMSKS motifs in their catalytic domains.
Compared to their prokaryotic homologs, they contain addi-
tional sequences appended to their N- and C-terminal ends
and several Plasmodium-specific insertions referred as low-
complexity regions (LCRs). The length and composition of
LCRs are generally variable between Plasmodium species and
strains, but their localization is conserved within homologous
proteins (45, 46). The longest LCRs are mainly observed in
P. falciparum proteins and are characterized by long aspara-
gine (N) repeats (47).

P. berghei tRip, ERS, QRS, and MRS sequences were then
submitted to the Raptor X web server (http://raptorx.uchicago.
edu/) (48) for 3D structure prediction. The Raptor X models
were consistent with the Blast and the MSA analysis, and the
top templates used to model each domain are shown in
Table S2. All three aaRSs contained an N-terminal GST-like
domain; MRS contained an EMAPII-like domain appended
to its C terminus, while QRS had a C-terminal extension that
was too short to be considered as an independent domain by
Raptor X. Nevertheless, this extension contains many posi-
tively charged residues and has the potential to form one or
more helices, suggesting RNA-binding properties (49–51)
(Fig. S1, A–F). The prediction of C-terminal domains with
potential tRNA-binding abilities in MRS and QRS led us to test
whether these domains could bind tRNAs in vitro. Indeed, the
presence of these C-terminal domains increased the interac-
tion of the MRS and QRS anticodon-binding domains toward
total human tRNA (Fig. S1, G and H), indicating that their
binding were sequence nonspecific. These extensions are also
conserved in MRS and QRS from other Apicomplexan para-
sites such as T. gondii (14).
GST-like domains mediate Plasmodium MSC assembly

Production of full-length ERS, QRS, and MRS led to low
expression, limited solubility, or proteolysis of the recombi-
nant enzymes, and mass spectrometry (MS) analyses revealed
that recombinant ERS and QRS lacked their N-terminal GST-
like domains. Moreover, none of these purified recombinant
proteins interacted with tRip (Fig. S2). We therefore chose to
focus specifically on the GST-like domains from each aaRS to
investigate their interactions with each other and tRip. From
here on, these domains are referred to as ERS-N (ERS1-228),
QRS-N (QRS1-208), and MRS-N (MRS1-228). Several constructs
with and without a C-terminal 6His (-6H) or SUMO-6His (S-
6H) tag were designed (Table S3). The SUMO domain not only
slightly improved the solubility of MRS-N and QRS-N, but it
also provided proteins of different sizes that could be distin-
guished one from each other on SDS-PAGE. Each partner was
alternatively used as bait or prey in pull-down assays. In these
assays, mixture of bacteria expressing (i) the 6His-tagged bait
protein and (ii) one or more prey proteins was lysed and the
protein extract was incubated with nickel-nitrilotriacetic acid
(Ni-NTA) resin. This resin binds the bait protein and indi-
rectly captures any prey protein through noncovalent in-
teractions with the bait. After incubation, the resin was washed
4 J. Biol. Chem. (2022) 298(6) 101987
thoroughly, and the bound proteins were eluted and analyzed
by SDS-PAGE. If an interaction occurred, bait and prey pro-
teins appear together in the elution fraction.

Pairwise interactions showed that ERS-N associates with the
other three domains (Figs. 3A and S3A); that MRS-N interacts
with QRS-N and that MRS-N and ERS-N homo-oligomerize.
As expected, the C-terminal domain of tRip was dispensable
for its interaction with ERS-N, indicating that its GST-like
domain is sufficient for complex assembly. However, the
presence of the 6His tag directly attached at the ERS-N C
terminus reduces its ability to interact with QRS-N. Similarly,
a 6His tag directly linked to the C terminus of MRS-N abol-
ishes any pairwise interaction. Thus, subsequent pull-down
assays were performed with SUMO-tagged baits.

Pull-down assays with all four partners were performed, us-
ing alternative baits (6H-tRip, ERS-N-S-6H, QRS-N-S-6H, and
MRS-N-S-6H). Individually, 6H-tRip and ERS-N-S-6H allowed
the pull down of the other three proteins showing that each of
these proteins interacts with all MSC components (Fig. S3B). In
contrast, QRS-N-S-6H and MRS-N-S-6H led to the efficient
capture of tRip and ERS-N but also to the apparent loss of the
fourth partner (Fig. 3B). MS analysis corroborated the profile
observed on the analytical gels. While MRS-N and QRS-N are
present in comparable amounts with ERS-N-S-6 as the bait, this
equilibrium is disrupted when the bait is either MRS-N-S-6H or
QRS-N-S-6H (bar charts in Fig. S3B and data in Table S1).
Because it is difficult to control the amount of each recombi-
nant protein in the samples, we performed competition ex-
periments betweenQRS-N andMRS-N for binding to the tRip–
ERS-N subcomplex. In these assays, tRip–ERS-N–MRS-N-S-6H
and tRip–ERS-N–QRS-N-S-6H ternary complex were chal-
lenged with increasing concentrations of competitors, QRS-N
or MRS-N, respectively (Fig. 3C). In both cases, we observe
not only that the competitor does not integrate a quaternary
complex but also that tRip–ERS-N gradually vanishes in the
presence of the highest competitor concentrations (Fig. S3C),
suggesting the formation of the alternative ternary complex
lacking a 6His tag and thus eliminated during washes. Addi-
tional controls were performed with two other GST-like do-
mains (Fig. 3D). On the one hand, the N-terminal GST-like
domain of human EPRS fused to the SUMO-6H tag (HsEPRS-
N-S-6H) was used in place of ERS-N-S-6H as a bait. On the other
hand, the N-terminal GST-like domain of P. berghei EF1Bγ was
tested as a prey for its ability to substitute for MRS-N, QRS-N,
or tRip in pull-down experiments. None of these control do-
mains could be incorporated into the complexes, indicating that
the SUMO module does not promote the integration of
nonspecific GST-like domains and that the interactions that
drive complex formation are highly specific.

Finally, triplicates of large-scale pull-down experiments
were performed using ERS-N-S-6H, QRS-N-S-6H, or MRS-N-S-
6H as baits to further purify the different complexes by size-
exclusion chromatography (SEC) and analyze them by MS
(Fig. 4). In all cases, the captured proteins eluted as a main
peak with comparable elution volumes on SEC, indicating the
formation of soluble complexes with apparent molecular
weights (MWs) of 300 to 400 kDa (Fig. 4A). Pull down with
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either QRS-N-S-6H or MRS-N-S-6H led to the purification of
heterotrimeric complexes that excluded MRS-N or QRS-N,
respectively (Fig. 4, B and C). Although a heterotetrameric
complex cannot be ruled out, these observations are consistent
and strongly suggest the existence of two mutually exclusive
heterotrimeric complexes in vitro: tRip–ERS-N–QRS-N and
tRip–ERS-N–MRS-N. For convenience, these heterotrimers
are referred as Q-complex and M-complex, respectively.
Oligomeric state of Q- and M-complexes in solution

Q- and M-complexes were purified with QRS-N-S-6H and
MRS-N-S-6H baits, respectively. SUMO fusions were pro-
teolytically removed before the final purification step on a
calibrated SEC column (Fig. 5A). As expected, the main peaks
contained heterotrimeric complexes consisting of equivalent
amounts of each partner, as assessed by SDS-PAGE (Fig. 5B)
and further confirmed that the SUMO-tag is not involved in
the complex association. The apparent MWs of the Q- and
M-complexes derived from the SEC profiles (about 250 and
275 kDa, respectively), indicated that both complexes (with
theoretical MWs of 97 kDa and 101.5 kDa, respectively) were
elongated or oligomerized. Thus, their size and homogeneity
were further investigated by batch light-scattering measure-
ments. On the one hand, dynamic light scattering (DLS)
indicated homogeneous samples (Fig. 5C) and measured
MW-R (MW based on hydrodynamic radius) of 295 and
393 kDa assuming spherical particles for the Q- and M-
complexes, respectively. On the other hand, static light
scattering (SLS) yielded MW-S (absolute MW) of 204 and
247 kDa for the two complexes, respectively. These mea-
surements indicate not only that the complexes contained at
least two copies of each partner but also that they had an
elongated conformation (MW-R/MW-S > 1). Only SEC–
multiangle light scattering (MALS) could establish more
precisely the oligomeric state of the complexes (Fig. 5D).
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Figure 4. Composition of complexes. Bacteria expressing the tRip and other GST-like partners were lysed together and protein extracts were subjected to
Ni-affinity and size-exclusion chromatographies (SECs). Different baits (ERS-N-S-6H, QRS-N-S-6H, or MRS-N-S-6H) were used to capture the different preys (tRip,
ERS-N, QRS-N, and MRS-N). A, SEC chromatograms. Complexes eluted as a main peak on a SepFast 6 to 5000 kDa (n > 3) column. Graphs show the elution
profile (left axis) and calibration curve (right axis, R2 = 0.98) based on the elution of the following size markers: thyroglobulin (669 kDa), γ-globulin (158 kDa),
ovalbumin (44 kDa), myoglobin (17 kDa), and vitamin B12 (1.35 kDa). B, SDS-PAGE analysis. Fractions of the main SEC peak were analyzed by SDS-PAGE. C,
mass spectrometry. Fractions marked with arrows (in panel B) were pooled and analyzed by mass spectrometry. Three independent experiments were
performed, and the relative abundance of each partner (based on the number of spectra) was plotted. Colors were maintained: gray for tRip, black for ERS-N,
blue for QRS-N, and orange for MRS-N. Error bars represent SD across the triplicate measurements. Purification of complexes on SEC led to more homo-
geneous samples for mass spectrometry analysis. ERS, glutamyl-tRNA synthetase; MRS, methionyl-tRNA synthetase; QRS, glutaminyl-tRNA synthetase; tRip,
tRNA import protein.

Two multisynthetase complexes in the malaria parasite
While the Q-complex yielded a MW of 187.3 kDa, close to
the expected value for a dimeric heterotrimer (193.6 kDa), the
M-complex showed overlapping oligomeric species. The
major peak indicated a value of about 217 kDa, corresponding
to the theoretical MW of a dimeric heterotrimeric M-com-
plex (203 kDa), yet an additional population was not
completely separated by the column and was characterized by
a larger size around 500 kDa. This size estimation corre-
sponds to two to three copies of the dimeric ternary complex,
suggesting that the M-complex might oligomerize further in
solution. This observation was supported by light-scattering
experiments on MRS-N, which showed that at a concentra-
tion suitable for measurements (i.e., 1.8 mg/ml), most MRS-
N-S-6H molecules appear as elongated dimers; yet, pop-
ulations with higher apparent sizes were visualized by SEC
and DLS/SLS analysis (Fig. S4A).
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Two types of ternary GST-like complexes with different tRNA-
binding profiles

EMSAs with individual Q- and M-complexes (purified with
QRS-N-S-6H or MRS-N-S-6H) in the presence of yeast total
tRNA revealed specific migration profiles (Fig. S5). Control
experiments using complexes lacking the EMAPII-like domain
(tRip-N) confirmed that tRNA binding was specific to the C-
terminal domain of tRip. Furthermore, all three proteins were
present in the tRNA-bound fraction (Fig. S5), indicating that
the complexes did not dissociate upon tRNA binding.

Alternatively, in EMSA performed with the complexes pu-
rified with ERS-N-S-6H bait in the presence of tRip, QRS-N and
MRS-N also shifted the tRNAs but showed three populations
(Fig. 3E). The corresponding bands were cut out and analyzed
by SDS-PAGE to determine their protein content. The upper
band (*) contained only the Q-complex while the bottom band
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Two multisynthetase complexes in the malaria parasite
(***) contained only the M-complex. This segregation upon
tRNA binding supported our hypothesis that the proteins
copurified with ERS-N-S-6H form two independent hetero-
trimeric complexes. Yet, all four proteins were observed in the
middle band (**), probably because of an overlap of the two
ternary complexes.
Mapping interaction interfaces in Q- and M-complexes

In the presence of two exclusive heterotrimeric complexes
organized around the tRip–ERS-N heterodimer and contain-
ing either QRS-N or MRS-N, we chose to test the effect of
point mutations in pull-down experiments with ERS-N-S-6H as
the bait and all three preys (tRip, QRS-N, and MRS-N)
together. This approach allowed us to assess whether the
mutations had a global impact on both complexes or had a
specific effect on the formation of a given one (Q or M). The
list of mutations and their effect on pull-down assays are
summarized in Figure 6A (list of mutations), Figure 6B (results
summary), and Figs. S6 (sequence alignments) and S7
(experimental data).
tRip is a homodimer in solution, as shown by light-
scattering analysis (MW-S = 114 kDa, only slightly larger
than the calculated 92.4 kDa). In addition, the shape factor
deduced from these measures (MW-R/MW-S > 1) suggests
that tRip is an elongated dimer (Fig. S4B), which associates via
a unique interaction as seen in the crystal structure of tRip-N
(44) (Fig. 1C). This alternative interface 1 mainly involves
phenylalanine residues: F58 in helix α2 and F90 in helix α3
(Fig. S6A). Independent mutation F58A and F90A did not
impair tRip–ERS-N heterodimerization or the formation of the
Q-complex but specifically hindered the association of MRS-N
into the M-complex.

Among the four GST-like partners, only tRip and ERS-N
contain a strictly conserved arginine in their respective α7
helices (Fig. S6B), suggesting that they might interact via a
canonical interface 2 (Fig. S6A). As expected, tRip R154A and
ERS-N-S-6H R198A completely abolished interactions between
the two partners. Yet, the R198A mutation in ERS-N-S-6H also
specifically inhibited the binding of MRS-N in the complex,
indicating that ERS-N needs to bind tRip to bring MRS-N into
the M-complex. In contrast, the dissociation between tRip and
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ERS-N did not affect binding between QRS-N and ERS-N-S-6H
in the Q-complex.

To initiate the investigation of interfaces connecting ERS-N
and QRS-N or MRS-N, we used the same approach as (38, 41,
42). Small uncharged amino acids (alanine (A), valine (V),
isoleucine (I), or leucine (L)), when present on the surface of
helices α2 and α3, were replaced with the large and charged
arginine (R) to disrupt any proximity contacts between
potentially interacting surfaces. In ERS-N, only A124R (α3)
interfered with both Q- and M-complexes, whereas I89R (α2)
specifically disrupted the Q-complex, and L97R (α2) and
V120R (α3) specifically disrupted the M-complex, suggesting
that QRS-N and MRS-N recognized ERS-N interface 1 but do
not share interaction patterns. Since the GST-like canonical
interface 1 is globally polar, as shown by the crystal structure
of the human MRS–AIMP3 and EPRS–AIMP2 heterodimers
and, to a lesser degree, that of the yeast MRS–Arc1p hetero-
dimer (Fig. S6A), we looked for conserved polar residues in
helices α2 and α3 in ERS-N. Mutations of D87A or D95A in α2
destabilized ERS-N, while R134A (α3) did not have any effect
on Q- or M-complex formation. E128A and D131A mutations
in α3 disrupted only the Q-complex.
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In the mirror experiment R replacements of V66 (α2) or
V99 (α3) as well as mutations of N62A (α2), K105A (α3), and
K109A (α3) in QRS-N, disrupted QRS-N uptake into the Q-
complex (Fig. 6A). The participation of so many polar residues
in the ERS-N–QRS-N interaction is reminiscent of what has
been shown in human heterodimers, especially between EPRS
and AIMP2 (42).

Association between ERS-N and MRS-N was less obvious.
Indeed, only an A65R mutation in MRS-N α2 disrupted its
interaction with theM-complex, and themutation ofmost of the
polar amino acids present in α3 (D98A, E101A, and K102A) had
no effect, except for E95A. Helices α2 and α3 contain several
aromatic residues (Fig. S6B), as it is the case in tRipα2 andα3 (44).
Onlymutations of F68A (α2),H71A (α2), orY90A (α3) inMRS-N
and of F90A (α2) in ERS-N-S-6H led to the specific disruption of
the M-complex, suggesting that MRS-N might interact with
ERS-N via an alternative interface 1 (Figs. 6 and S6A).
Discussion

In this study, we immunoprecipitated, under stringent se-
lection conditions, proteins interacting with the endogenous
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P. berghei tRip. The identified interactome only contained
aaRSs. These aaRSs catalyzed the specific aminoacylation of
tRNAs with glutamate (ERS), methionine (MRS), and gluta-
mine (QRS) (Fig. 2A). As in tRip, all three Plasmodium aaRSs
contain GST-like domains at their N termini (Fig. 2B). Only six
Plasmodium proteins containing a GST-like domain were
identified in the conserved domain database (CDD) (52). They
corresponded to tRip, ERS, MRS, the elongation factor 1β
(EF1β, PBANKA_081420), the GST-1 (PBANKA_10239), and
the thioredoxin-GST-EF1Bγ (PBANKA_135200). The N-ter-
minal GST-like domain of QRS was not considered as such in
the CDD, probably due to the low sequence conservation and
the presence of an LCR in the middle of the structural fold.
However, further investigations, including its modeling with
Raptor X, allowed its detection (Fig. 2 and Table S2).

Based on aaRSs composition, the closest MSCs to the
Plasmodium MSC were those from S. cerevisiae (53) or
T. gondii (14), both of which have been characterized as
cytosolic. The purification of T. gondii MSC led to significantly
heterogeneous samples in size and composition (14). In
contrast, the S. cerevisiae MSC is well defined and interactions
between the three GST-like domains have been identified by
crystallography (30, 38). The present study indicates that
P. berghei harbors two MSCs, the Q- and M-complexe, each
containing two copies of tRip, ERS-N and QRS-N or of tRip,
ERS-N, and MRS-N, respectively. ERS-N has a central posi-
tion, since it binds simultaneously to tRip, QRS-N, or MRS-N.
Nevertheless, QRS-N and MRS-N diverge in their interaction
pattern with ERS-N. While the association of MRS-N in the
M-complex requires the presence of a dimeric tRip associated
to ERS-N, QRS binds directly to ERS-N even in the absence of
tRip (Fig. 6A). Moreover, mutational experiments confirmed
that QRS-N and MRS-N bind to the same interface on ERS-N,
but with two different strategies (Fig. 6A). Our favorite hy-
pothesis is that interactions between QRS-N and ERS-N would
mainly involve polar residues as in a GST–GST canonical
interface 1 and that binding of MRS-N to ERS-N–tRip would
use a different pattern closer to an alternative interface 1, with
an aromatic environment (Fig. 6).

In yeast, the isolated EMAPII-like domain of Arc1p binds
with high affinity and specificity to tRNAMet and tRNAGlu and
strongly increases the affinity of MSC-associated MRS and
ERS for their cognate tRNAs (19, 54). In contrast, the EMAPII-
like domain of tRip is located on the parasite surface and thus
theoretically cannot participate in tRNA aminoacylation
within the parasite. The absence of this domain in the vicinity
of the aaRSs could be balanced by the presence of the C-ter-
minal extensions of Plasmodium QRS and MRS (Figs. 2 and
S1). Indeed, these extensions had nonspecific RNA-binding
capacities, although characterized by low affinities (Fig. S1H).
The tRNA-binding capacity is generally low for such isolated
domains, whether it is the human AIMP1 domain (55), the
Oryza sativa C-terminal MRS domain (56), or the WHEP
domain of the human EPRS (57). Yet, when fused to the core
of aaRSs, these domains significantly increase the affinity of the
enzymes for their cognate tRNAs. By analogy, the C-terminal
domains of Plasmodium MRS and QRS could act
synergistically and confer the ability to bind their cognate
tRNAs with higher affinities to these enzymes to compensate
for the membrane localization of tRip.

The EMAPII-like domain of P. falciparum tRip exhibits a
unique specificity pattern. It discriminates tRNAs based on
their posttranscriptional modification profiles, and tRip’s
preferred binders are isoacceptors of human host tRNAAla,
tRNASer, tRNALeu, and tRNAAsn (58), suggesting that import
of exogenous tRNAs is not related to aminoacylation by MSCs’
aaRSs. It is worth noticing that the single human tRNAAsn

isoacceptor is not only one of the best ligands for tRip but also
that asparagine is the predominant amino acid in the
P. falciparum proteome. Most asparagine residues are found in
LCRs and form long homopolymeric regions (46) suggesting
that tRNA import may facilitate their synthesis. Although
asparagine-rich insertions are present in virtually all Plasmo-
dium proteins, their role is not yet established; these repeats
are suspected to be involved in protein–protein interactions
and/or aggregation, protein localization, immune response, or
parasite virulence (59).

The two Plasmodium MSCs could differ in their ability to
organize in the parasite membrane and might thus behave
differently in tRNA aminoacylation, tRNA import, or any other
alternative function of the associated aaRSs. Indeed, biophys-
ical experiments showed that the M-complex is characterized
by larger apparent sizes than those determined for the Q-
complex (Fig. 5). Interestingly, pairwise pull-down assays and
DLS/SLS experiments indicated that MRS-N had the ability to
oligomerize (Figs. S3A and S4A), suggesting that it induces the
oligomerization of the M-complex and thus its potential to
open a portal in the parasite plasma membrane. Alternatively,
binding of exogenous tRNAs to the outer EMAPII-like domain
of tRip could be a signal to dissociate and relocalize complex-
bound aaRSs to parasite organelles and thus trigger their
involvement in alternative functions. Our in vitro experiments
do not support the dissociation of the complex upon tRNA
binding (Fig. S5), but the outcome may be different in vivo.
Also, unlike yeast or human MRSs, which exhibit nuclear
localization (23, 60), P. falciparum MRS was not observed in
the nucleus at any of the blood stages, even in the presence of
growth factors (61). Interestingly, these microscopy data also
show that MRS is not homogeneously diffused in the schiz-
onts’ cytosol, a situation consistent with a membrane-bound
enzyme. Similarly, the indirect aminoacylation pathway of
the apicoplast tRNAGln has been demonstrated (62), suggest-
ing that the nuclear-encoded QRS has no aminoacylation
function in this organelle.

tRip is an integral membrane protein that has been localized
exclusively at the parasite surface at both the sporozoite stage
(the infectious stage injected by mosquitoes into the vertebrate
hosts) and the blood stage (43). To date, no other AIMP has
been described with such localization, and, with the publica-
tion of the structure of the P. vivax tRip N-terminal domain, it
appears that the transmembrane helix (α5) as we predicted
(43) is deeply buried in the GST-like structure (44). Neither
the crystal structure, nor the present study, have allowed
identification of the transmembrane domain that anchors tRip
J. Biol. Chem. (2022) 298(6) 101987 9
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in the parasite plasma membrane; however, the unique sym-
metry identified in the crystal structure of the P. vivax tRip-N
dimer positions the C-terminal extremities of each monomer
in the same direction, which is critical to orient both EMAPII-
like domains toward the outside of the cell, while the rest of
the complex is located inside the cell to allow the formation of
the two MSCs. Interestingly, there are scattered elements in
the literature that suggest the possibility for GST-like domains
to traverse/interact/bind cellular membranes. Amongst them,
chloride intracellular channels are a unique class of ion
channels, which exist as both soluble and membrane bound
oligomers (63, 64). The ion channel hypothesis remains
speculative. However, it has been demonstrated that chloride
intracellular channels proteins have roles in diverse biological
processes associated with membrane trafficking. They are
often found associated with the actin cytoskeleton and to
intracellular membranes (65, 66).

tRip is not the only RNA-binding protein found on the
surface of Plasmodium sporozoites: polyA-binding protein-1
(PABP-1) of Plasmodium yoelii, homologous to cytosolic
PABPs, is localized on the surface of sporozoites (67). Simi-
larly, several studies have discovered that the glycolytic
GAPDH is surface localized at several stages of the
P. falciparum life cycle; especially, it plays an important role in
liver infection by sporozoites (68, 69). Interestingly, among a
variety of cellular processes, GAPDH has been implicated in
the nuclear export of tRNAs, the stability and translation of
mRNAs, and the replication and expression of several single-
stranded RNA viruses (reviewed in (70)). Understanding why
the parasite, particularly at the sporozoite stage, uses RNA-
binding proteins on its surface may provide additional clues
as to how it interacts with the host and/or other parasites.

Experimental procedures

Identification of tRip partners

Sample preparation

Four samples (biological replicates) of WT (GFPCON)
blood stage of P. berghei parasites were assayed. Four negative
control experiments were performed with the tRip-KO para-
site (43) to define the background. Parasites were isolated from
the blood of infected mice presenting parasitemia between 5
and 10%. The blood was centrifuged at room temperature for
10 min at 450 g to remove leukocytes. Pelleted erythrocytes
were specifically lysed with different protocols: (a) by addition
of erythrocyte lysis buffer (150 mM NH4Cl, 100 mM KHCO3,
10 mM EDTA, and 0.5% bovine serum albumin (w/v)) for
5 min on ice, (b) with saponin 0.1% (w/v) for 5 min on ice, and
(c and d) by addition of activated streptolysin O (6000 U,
100 mM DTT) for 15 min at 37 �C. Samples were centrifuged
for 8 min at 2000g and the supernatants were discarded. Pellets
were resuspended in 1 ml PBS, and free parasites were sepa-
rated from cellular debris by centrifugations (2 min at 100g)
and transfer of the clean supernatant to a fresh tube. This
operation was repeated four times until all contaminating
cellular debris (especially intact red blood cells) were removed.
Parasites were harvested by centrifugation for 8 min at 2000g
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and lysed in 1 ml cold extraction buffer (50 mM Tris–HCl pH
8.0, 150 mM NaCl, 1% Triton X-100, 10 mM DTT, and 1/50
protease inhibitor [cOmplete Tablets EDTA-free, Roche]) for
1 h on ice. Samples were mixed every 10 min, and the final cell
lysate was centrifuged for 15 min at 10,000g to remove any
insoluble material.

Coimmunoprecipitation

The coimmunoprecipitation (coIP) protocol was established
by combining the kit protocol (MultiMACS Protein A/G
MicroBeads kit; Miltenyi Biotec) with protocols described in
(71, 72). Briefly, parasite extracts (500 μg) were incubated with
protein A-coated magnetic beads (50 μl/ml) for 30 min at 4 �C
under gentle agitation. The cleared sample (1 ml) was then
incubated with 6 μg of purified anti-tRip214-402 antibody and
50 μl of beads for 1 h under gentle agitation at 4 �C and loaded
on a microcolumn applying a magnetic field. Successive washes
(200 μl) were performed: twice with salt-free buffer (50 mM
Tris–HCl pH 8.0, 1% NP-40), once with intermediate salt buffer
(50 mM Tris–HCl pH 8.0, 150 mMNaCl, 1% NP-40), once with
high salt buffer (50 mM Tris–HCl pH 8.0, 500 mM NaCl, 1%
NP-40), and twice with salt-free buffer. Proteins bound to anti-
tRip214-402 antibodies were eluted in 150 μl denaturing buffer
(50 mM Tris–HCl pH 6.8, 50 mM DTT, 1% SDS, 0.025%
bromophenol blue, and 10% glycerol) at 95 �C.

MS and data analyses

Eluted proteins were precipitated, reduced, and alkylated as
described in (73). Proteins were digested overnight with
sequence-grade porcine trypsin (1:25, w/w; Promega), and
generated peptides were analyzed on a NanoLC-2DPlus sys-
tem (nanoFlexChiP module, Eksigent, AB Sciex) coupled to a
TripleTOF 5600 mass spectrometer (AB Sciex) operating in
positive mode. Peptides were loaded on a trap-and-eluate
setup of C18 reverse-phase columns (ChiP C-18 precolumn
300 μm ID × 5 mm ChromXP and ChiP C-18 analytical col-
umn 75 μm ID × 15 cm ChromXP, Eksigent) in solvent A
(0.1% formic acid in water) and separated with a 120 min
gradient (5% to 40%) of solvent B (0.1% formic acid in aceto-
nitrile) at a 300 nl/min flow rate. The mass spectrometer was
operated in high-sensitivity data-dependent acquisition mode
with Analyst software (v1.6, ABS ciex) on a 400 to 1250 m/z
range. An external calibration was performed before each
sample by monitoring 10 peptides of a β-galactosidase tryptic
digest. A discovery “Top 20” method was used to select the
most intense multiple-charged ions (2+ to 5+) for collision-
induced dissociation fragmentation, with a cycle time of 3.3 s.

MS data were searched simultaneously against the Mus
musculus Swissprot database (release 2018_01, 33,744 entries)
and P. berghei Uniprot database (release 2016_07, 32,170 en-
tries) with Mascot algorithm (version 2.5, Matrix Science),
using the software’s decoy strategy. Carbamidomethylation of
cysteine was set as fixed modification; N-terminal protein
acetylation, phosphorylation of serine/threonine/tyrosine, and
oxidation of methionine were set as variable modifications;
tryptic specificity with up to three miscleavages was used. The
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mass tolerances in MS and MS/MS were set to 30 ppm and
0.5 Da respectively. The resulting .dat files were imported into
Proline 2.0 software (https://www.profiproteomics.fr/proline/)
(74) where they were validated with Mascot pretty rank equal
to 1, 1% false discovery rate on both peptide spectrum
matches, and protein sets (based on score). The total number
of MS/MS fragmentation spectra was used to quantify each
protein.

Sample (b) displayed only 143 (WT) and 170 (KO) proteins
due to the strong lysis conditions caused by the presence of
saponin and was thus discarded for bioinformatics analysis.
For the statistical analysis of the data, we compared the
spectral count data collected for tRip samples against the KO
control with a negative-binomial test and calculated the fold
change, a p value, and an adjusted p value for each identified
protein. Exploratory data analysis revealed the presence of
batch effects in our experiments, and the edgeR negative
binomial general linear model regression was run with the
following design: null model; y�batch and alternative model;
y�treatment + batch. For this study, considered protein
partners are statistically enriched in the tRip samples with an
adjusted p value < 0.05 and a minimum log fold change of 2.
The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE (75) partner repository
with the dataset identifier PXD033057 and 10.6019/
PXD033057.

MS analysis of ERS-N, QRS-N, MRS-N, and tRip

As for coIP analysis, proteins were digested with trypsin
before LC-MS/MS analysis. Generated peptides were sepa-
rated either with a 250 min gradient on the NanoLC-2DPlus-
TripleTOF 5600 system using the same column setup as for
coIP or with a 60 min gradient on the Easy-nanoLC-1000
system equipped with a C18 analytical column (75 μm
ID × 25 cm nanoViper, 3 μm Acclaim PepMap, Thermo Fisher
Scientific) and coupled to the Q-Exactive Plus mass spec-
trometer (Thermo Fisher Scientific) operating in data-
dependent acquisition mode with Xcalibur software (Thermo
Fisher) using a “Top10” strategy.

Data were searched with Mascot algorithm (version 2.6,
Matrix Science) on a combination of Escherichia coli se-
quences (Swissprot, E. coli K12, release 2022_01, 6507 entries)
with contaminant proteins (release 2021_03, 111 entries) and
the four sequences of interest. The mass tolerances in MS and
MS/MS were set to 10 ppm and 0.02 Da, respectively. The
resulting .dat files were imported into Proline 2.0 software
where they were validated.

Bioinformatics

Protein sequences for tRip and cytosolic ERS, QRS, and
MRS from all Plasmodium strains were retrieved from Plas-
moDB (76). Related proteins from other organisms were
searched using NCBI BLAST and relevant sequences were
fetched from Uniprot (77). All MSAs were performed using
T-coffee (https://tcoffee.crg.eu/) (78). LCRs in Plasmodium
proteins were detected by aligning the sequences of different
strains. Delimitation of additional sequences appended to
Plasmodium aaRSs was achieved by alignment against pro-
karyotic homologs. HHpred (79) and Batch CDD search (80)
were used to identify conserved domains in Plasmodium
proteins by submitting either full-length sequences or specific
segments. Secondary structure predictions were carried out
with Quick 2D (81). Template-based 3D models of P. berghei
proteins were generated using the Raptor X web server (48).

Plasmid constructions and production of recombinant
proteins

Synthetic genes (GenScript) encoding P. berghei tRip and
the GST-like domains of ERS, QRS, and MRS were cloned into
pET15b. tRip was fused to an N-terminal 6His tag. The N-
terminal domains of ERS, QRS, and MRS were fused either to a
removable C-terminal 6His tag (removed by thrombin cleav-
age) or a removable SUMO-6His tag (removed by TEV
cleavage). Besides improving solubility, addition of the SUMO
peptide resulted in proteins of different sizes that could be
distinguished by SDS-PAGE. Proteins with no tag were ob-
tained by introducing a stop codon (TAA) before the thrombin
site and mutations at specific amino acid positions were
generated using the QuickChange site-directed mutagenesis
kit (Agilent). Since the AT content of most Plasmodium
protein genes is above 70% (82), sequences were optimized to
increase expression of tRip and the three aaRSs. Sequences
were adapted to human codon usage, even though the proteins
were expressed in E. coli. In this way, the AT content was
decreased, while some rare codons were retained to slow down
translation of the recombinant protein in E. coli. All cultures
were started from freshly transformed E. coli BL21(DE3) cells
in LB medium supplemented with 100 μg/ml ampicillin.
Cultures were inoculated to a starting A600nm of 0.015 and
incubated at 30 �C and 180 rpm until an A600nm of 0.8 was
reached. Protein expression was induced overnight at 16 �C
with 0.5 mM isopropyl-β-D-thiogalactopyranoside. Induction
of protein expression at low temperature (16 �C) was crucial to
obtain soluble proteins. Expression and solubility of recom-
binant proteins were checked by SDS-PAGE.

In vitro pull-down assays

Interactions between tRip and the three other GST-like do-
mains were investigated by in vitro pull-down assays. Bacteria
expressing a 6His-tagged protein (bait) as well as one or more
bacteria expressing untagged proteins (prey) were suspended in
1.2 ml binding buffer (50 mM Hepes–NaOH pH 8.0, 300 mM
NaCl, 10% (v/v) glycerol, 20 mM imidazole, and 5 mM 2-
mercaptoethanol [β-Me]) supplemented with 0.005% (w/v) n-
dodecyl β-D-maltoside (DDM). Cells were disrupted by soni-
cating twice for 10 s at amplitude 40 (Vibracell 75022 UltraSonic
Processor), and the crude extract was centrifuged at 15,000g for
15 min at 4 �C. The protein extract was incubated with 75 μl Ni-
iminodiacetic acid agarose (Bio-Rad) for 30 min at room tem-
perature on a tube rotator, and the mixture was transferred to an
empty chromatography column (Sigma–Aldrich). The resin was
washed twice with 2.5 ml of binding buffer with DDM and once
J. Biol. Chem. (2022) 298(6) 101987 11
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with 2.5 ml of binding buffer without DDM. Proteins specifically
bound to the resin were eluted with 100 μl of binding buffer
containing 250 mM imidazole. The protein contents of both the
centrifuged extract and the eluate were analyzed by SDS-PAGE.
To estimate the abundance of proteins in the eluate, the density of
each band was quantified using Image J (https://imagej.nih.gov/
ij/) (83). The value was divided by the number of arginine,
lysine, and histidine residues to account for differences in Coo-
massie staining. Error bars were calculated from at least three
replicates. Because the solubilities of WT and mutated proteins
varied, the volumes of bacterial cultures were adapted to have
similar amounts of each protein in the initial mixture.

Purification of complexes

Bacteria expressing individual recombinant proteins (one
bait and several preys) were lysed together in lysis buffer
(50 mM Hepes–NaOH pH 8.0, 300 mM NaCl, 10% (v/v)
glycerol, 5 mM β-Me, and 0.005% (w/v) DDM). The volume
was adapted so that 500 ml of culture was resuspended in
25 ml of lysis buffer. Each 25 ml sample was sonicated in ice
for 7 min at 120 V (Annemasse Ultrasons apparatus) and
ultracentrifuged at 45,000g for 45 min at 4 �C (Optima XE-90,
Beckman-Coulter). The clarified extract was loaded onto a
1 ml Ni-NTA (His-Select HF, Sigma–Aldrich) column equil-
ibrated with lysis buffer (BioLogic DuoFlow chromatography
system). The column was washed with 15 ml of lysis buffer
supplemented with 20 mM imidazole, 6 ml of a linear gradient
(0.3–1.0 M NaCl) in the same buffer, 6 ml of the inverted
gradient back to 0.3 M, and 33 ml of lysis buffer containing
20 mM imidazole. Retained proteins were eluted with 25 ml of
lysis buffer containing 250 mM imidazole and the collected
fractions for analysis by SDS-PAGE. Fractions were pooled and
concentrated (Amicon ultrafiltration devices, Merck Millipore)
and further analyzed on a SepFast 10/300 6 to 5000 kDa SEC
column (BioToolomics) at 0.2 ml/min in SEC buffer (25 mM
Hepes–NaOH pH 7.0, 300 mM NaCl, 5% (v/v) glycerol,
0.005% (w/v) DDM, and 5 mM β-Me). Fractions were analyzed
on SDS-PAGE, and the abundance of each protein partner was
estimated as described previously. Protein concentration was
determined with a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific) and the A260/A280 ratio was used to
assess nucleic acid contamination (A260/A280 ≈ 0.5 for pure
protein samples). SEC column was calibrated using either the
MWGF1000 kit (Sigma–Aldrich) or the gel filtration standard
(Bio-Rad). If removal of SUMO tags was required, proteins
eluted from the Ni-NTA were dialyzed overnight at 4 �C
against lysis buffer in the presence of TEV protease (6His-
tagged, 1 μg of TEV per 25 μg of protein; homemade). The
SUMO tag, 6His-TEV, and noncleaved complexes were elim-
inated by running the sample onto a second Ni-NTA column.

Light-scattering measurements

DLS and SLS measurements were performed with a Wyatt
Technology DynaPro Nanostar instrument (100 mW He-Ne
laser, λ = 658 nm, DLS θ = 90�, SLS θ = 90�, 500 channel
correlator) using a 1 μl quartz cuvette (serial number JC-164)
calibrated with toluene at 25 �C. Ten measurements, each one
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composed of 10 acquisitions of 5 s, were recorded at 20 �C and
processed with DYNAMICS, version 7.8.1.3. (Wyatt Technol-
ogy) Solvent refractive index and absolute viscosity were esti-
mated using Malvern Panalytical DLS software, version 8, and
the particle increment of refractive index (dn/dc) was assumed
to be 0.185 ml/g. The intensity of the solvent alone (filtered
through a membrane with a pore diameter of 0.1 μm) was
measured and subtracted from the sample in SLS calculations.
Several dilutions of freshly purified protein samples in SEC
buffer were ultracentrifuged for 1 h at 100,000g at 4 �C (S45A
rotor in Sorvall Hitachi DiscoveryM150Emicroultracentrifuge)
before light-scattering measurements. Sample concentrations
were verified using a NanoDrop ND-1000 spectrophotometer.

SEC-MALS experiments

SEC-MALS was performed at 25 �C using a Superose 6 10/
300 GL column (GE Healthcare) attached to a light-scattering
detector (miniDAWN TREOS, Wyatt Technology) and a dif-
ferential refractive index detector (Optilab T-rEX, Wyatt
Technology). The column was equilibrated with SEC buffer
and detector normalization was achieved with bovine serum
albumin (Sigma–Aldrich). Samples were ultracentrifuged 1 h
at 100,000g at 4 �C before injection of Q-complex (30 μl at
6.8 mg/ml) or M-complex (50 μl at 8.6 mg/ml). Data were
analyzed using ASTRA (Wyatt Technology), version 6.1.7.17.

EMSAs

Agarose gels

Protein complexes (3.3 μM) were incubated with increasing
concentrations of total yeast tRNA (0.55–6.6 μM) in binding
buffer (25 mM Hepes–NaOH pH 7.0, 150 mM NaCl, 10% (v/v)
glycerol, 5mMMgCl2, 0.005% (w/v)DDM, and 5mMβ-Me), and
6.7 μM of dodeca-dT (competitor) for 20 min on ice. tRNA
bindingwas analyzedby electrophoresis (75V, 1 h 30 at 4 �C)on a
1% (w/v) low-melting agarose gel (Quantum Biotechnologies) in
Tris–borate–EDTA buffer. Gels were first stained with ethidium
bromide and then with InstantBlue Coomasie protein stain
(Expedeon Ltd). Bands containing protein–RNAcomplexeswere
excised, melted at 95 �C, and mixed with one volume of 2X SDS-
PAGE loading buffer. The pH was adjusted by adding a few mi-
croliters of concentrated NaOH, and samples were analyzed on
1.5 mm thick 12% SDS-PAGE.

Polyacrylamide affinity coelectrophoresis

Increasing concentrations of peptides (62.5 nM to 1 μM)
were embedded in a 1.5 × 80 × 100 mm3 6% (19/1) poly-
acrylamide gel. Samples (5 μl, 5 nM [30-32P] RNA in 25 mM
Hepes–NaOH pH 7.0, 5 mM MgCl2, 10% glycerol, and bro-
mophenol blue) of radiolabeled total yeast tRNA were elec-
trophoresed for 90 min 70 V at 4 �C. Gels were dried and
analyzed on a Phosphor-Imager (Typhoon FLA 7000).

Data availability

All data files are available in the article and supplementary
data. The mass spectrometry proteomics data are included in
Table S1 and have been deposited to the ProteomeXchange
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Consortium via the PRIDE partner repository with the dataset
identifier PXD033057 and 10.6019/PXD033057.
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