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Simple Summary: PSMA Therapy has recently become an additional therapeutic option in advanced
prostate cancer. In the present study, the predictive and prognostic value of radiomic features from
pretherapeutic PSMA PET-MRI are analyzed. Twenty-one patients with advanced prostate cancer
underwent PSMA-therapy, including pretherapeutic PSMA PET-MRI. Radiomic features from PET-
and MRI-sequences were extracted and processed to select the features differentiating responders
and non-responders. Out of ten independent radiomic features differentiating between these two
groups, the feature interquartile range from the T2 weighted images revealed the highest accuracy.
PSA response and higher T2 interquartile range values might have impact on survival. This proof-of-
concept study applies radiomic analysis to pretherapeutic PSMA PET-MRI before PSMA therapy,
providing new parameters with potential predictive and prognostic value.

Abstract: 177Lutetium PSMA-617 (Lu-PSMA) therapy in patients with metastatic castration resistant
prostate cancer (mCRPC) has gained visibility through the ongoing phase III trial. The data on prediction
of therapy outcome and survival out of pretherapeutic imaging parameters is still sparse. In this study,
the predictive and prognostic value of radiomic features from 68Ga-PSMA-11 PET-MRI are analyzed.
In total, 21 patients with mCRPC underwent 68Ga-PSMA-11 PET-MRI before Lu-PSMA therapy. The
PET-positive tumor volume was defined and transferred to whole-body T2-, T1- and contrast-enhanced
T1-weighted MRI-sequences. The radiomic features from PET and MRI sequences were extracted by
using a freely available software package. For selecting features that allow differentiation of biochemical
response (PSA decrease > 50%), a stepwise dimension reduction was performed. Logistic regression
models were fitted, and selected features were tested for their prognostic value (overall survival) in
all patients. Eight patients achieved biochemical response after Lu-PSMA therapy. Ten independent
radiomic features differentiated well between responders and non-responders. The logistic regression
model, including the feature interquartile range from T2-weighted images, revealed the highest accuracy
(AUC = 0.83) for the prediction of biochemical response after Lu-PSMA therapy. Within the final
model, patients with a biochemical response (p = 0.003) and higher T2 interquartile range values in
pre-therapeutic imaging (p = 0.038) survived significantly longer. This proof-of-concept study provides
first evidence on a potential predictive and prognostic value of radiomic analysis of pretherapeutic
68Ga-PSMA-11 PET-MRI before Lu-PSMA therapy.
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1. Introduction

Metastatic castration resistant prostate cancer (mCRPC) remains a challenge in clinical
oncology despite promising results for new therapeutic agents [1]. Lutetium PSMA-617
(Lu-PSMA) therapy has gained visibility through the ongoing phase III trial in mCRPC
patients. Previous prospective and retrospective analysis have already suggested a clinical
efficacy and favorable tolerability [2,3].

In patients undergoing Lu-PSMA therapy, a PSA decline greater than 50% from
baseline is achieved in 45–66% of them [3–6]. This threshold is used in many studies to
define the response to therapy and is associated with survival [4,7–9]. The identification
of non-responders is of the utmost importance to enable the early application of other
palliative therapies within mCRPC patients. Predictive biomarkers that are associated with
responses to Lu-PSMA therapy are needed.

Single parameters from morphologic or functional PET imaging are predictive and
prognostic factors in prostate cancer patients: A high tumor volume from morphological
imaging is a negative prognostic factor in prospective studies [10,11]. The quantitative
volumetric PET parameter tumor volume (TV) and a total lesion quotient (TLQ) were
excellent prognosticators of overall survival in prostate cancer patients undergoing PSMA
therapy [5]. However, there are contradictory reports as by Ferdinandus et al. reporting no
statistically significant correlation between PSMA-TV and overall survival in 50 patients
treated with Lu-PSMA [12].

The data on radiomics/machine learning approaches for the assessment of predictive
or prognostic value of PSMA-PET are still sparse [13,14]. However, these techniques are
frequently applied to morphological imaging [15,16]. Many studies on MRI-based ra-
diomics focus on the prediction of histopathological properties and prognostic information
from pre-surgical work-up [17]. Radiomic data on post-surgical MRI and in biochemical
recurrence are limited [18].

The first results on the extraction of PET-based textural features beyond standard up-
take values (SUV) showed promising results for the correlation to PSA change during and
after PSMA therapy [19]. First reports on the prediction of response to PSMA-therapy [20]
and prediction of outcome after PSMA-therapy [21] with the help of radiomic features of
pretherapeutic PSMA-PET-CT have shown emerging results.

This study aimed to analyse the role of conventional and radiomic features extracted
from 68Ga-PSMA PET-MRI prior to PSMA therapy for the prediction of biochemical re-
sponse and survival.

2. Materials and Methods
2.1. Patients

All patients that underwent 68Ga-PSMA-11 PET-MRI before radioligand therapy (RLT)
were included in this retrospective study. The eligibility criteria for Lu-PSMA therapy
followed institutional criteria and international guidelines and included the following:
progressive disease in imaging, mCRPC, sustained androgen deprivation therapy, history of
chemotherapy (if no contraindication was present at least one line of taxane chemotherapy),
PSMA avid lesions in 68Ga-PSMA-11 PET-MRI, hematological reserve, as well as normal
liver and renal function parameters [22].

Lu-PSMA therapy was performed on a case-by-case decision basis in the clinical
routine and only after recommendation by the interdisciplinary tumor board. Informed
consent for the therapy was obtained from all patients. All procedures performed in studies
involving human participants were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards. Data analysis was done retrospectively
and was approved by the local ethics committee (No. 2016-585-f-S, Ethikkommission der
Ärztekammer Westfalen-Lippe und der Westfälischen Wilhelms-Universität Münster).
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2.2. 68Ga-PSMA-PET-MRI

All data were acquired on a combined 3-Tesla PET-MRI system (Biograph mMR,
Siemens Healthineers, Erlangen, Germany). Patients were asked to void their bladder right
before the start of the examination. Patients were positioned supine with arms next to the
body. Head/neck and body surface coils were used for MR imaging.

Image acquisition was initiated 60 min after administration of 68Ga-PSMA-11. Before
starting the PET acquisition, a two-point Dixon VIBE sequence for attenuation correc-
tion of PET data was acquired. Standard MR-whole body imaging protocol comprised
a transversal T2 weighted half-Fourier acquisition single-shot turbo spin echo (HASTE)
(TE/TR [ms]: 102/1500; FOV: 380 × 420; matrix: 218 × 320; slice thickness [mm]: 6), a
coronal (TE/TR [ms]: 1.06/3.16; field of view (FOV): 400 × 450; matrix: 195 × 288; slice
thickness [mm]: 3) and transversal 3D T1 volumetric interpolated breath hold examina-
tion (VIBE) sequence with fat suppression (TE/TR [ms]: 1.96/4.47; field of view (FOV):
341 × 420; matrix: 182 × 320; slice thickness [mm]: 3) before and after application of
contrast agent (Gadovist®; Bayer Healthcare, Leverkusen, Germany). PET reconstruction
was done using manufacture standard tools.

2.3. Lu-PSMA Therapy and Outcome

Median time from PET acquisition until Lu-PSMA therapy start was 26 days (range:
10–53 days). Lutetium was provided by ITG Isotopes Technology, Garching, Germany. The
PSMA-617 precursor was provided by ABX (ABX GmbH, Radeberg, Germany). Synthe-
ses of [177Lu]Lu-PSMA-617 (Lu-PSMA) followed previously described procedures [23].
Lu-PSMA was administered in a median 8-week interval (range: 6–9 weeks) with a me-
dian dose of 6.4 GBq. Following guidelines for PSMA-therapy and recently published
data, therapy was discontinued in case of disease progression, severe adverse reactions or
altered therapy regime [22]. During therapy, hematological, liver and renal function param-
eters and tumor marker PSA were regularly checked. Patients had regular blood sample
checkups and imaging if clinically needed. Maximum change of PSA-value compared to
baseline (first cycle) was assessed. A PSA decline of ≥50% was defined as biochemical
response. Date of pretherapeutic PSMA-PET was used as a baseline for the calculation of
survival parameters.

2.4. Image Analysis and Radiomic Feature Extraction

A threshold-based approach, using 3.0 SUV was used to define PSMA-PET-positive
volume on the PET dataset [12,24]. Two experienced PET/MRI readers blinded for clinical
data (one trained nuclear medicine physician and one trained radiologist) each indepen-
dently adjusted lesion volumes manually and removed physiological uptake sites. Output
variables were SUVmean, SUVmax, SUVmedian and total PSMA-PET-positive volume. For
image segmentation, the reader-specific label map volume based on the PSMA-PET positive
volume was then transferred to whole body T2-, T1- and contrast-enhanced T1-weighted
MRI-sequences (Figure 1). Radiomic features from labelled PET and MRI-sequences were
extracted twice, each by the same independent readers for inter-observer analysis, and
included 162 first-order logic features and 216 gray level co-occurrence matrix (GLCM)
features, as described elsewhere [25]. Image analysis and feature extraction was performed
by using a freely available software package (3D slicer, version 4.11.2).
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Figure 1. A heavily pretreated patient with metastatic castration resistant prostate cancer and high PSMA uptake in skel-
etal and lymph node metastases in maximum intensity projection of 68Ga-PSMA-11-PET-MRI (A). During six cycles of 
177Lu-PSMA-617-therapy (red arrows), the tumor marker PSA decreased by 97% (B). PET positive volume was defined by 
application of a threshold and manual adjustment (C). This volume was transferred to MRI-sequences (D,E) to extract the 
radiomic features. 

2.5. Radiomic Feature Selection and Dimension Reduction for Differentiation of PSA Response 
Feature selection and dimension reduction were necessary, as the number of radio-

mic features (n = 378) exceeded the number of patients (n = 21) [26,27]. Inter-observer re-
producibility of the textural features was assessed by calculating the Concordance Corre-
lation Coefficient (CCC) for each of the features as a measure of the intra-class correlation. 
Features with a coefficient ranging from 0.8 to 1 were considered “excellent” and included 
in further analysis [28]. After feature normalization using z-score standardization, the da-
taset was randomly subdivided into a balanced training and test dataset (70/30 ratio). Fur-
ther feature reduction was performed only on the training dataset using a Boruta machine 
learning algorithm. The Boruta algorithm applies a Random Forest algorithm by perform-
ing a top-down search for relevant features. Original attributes’ importance are compared 
with importance achievable at random, and irrelevant features are progressively elimi-
nated to stabilize the model [29]. Subsequently, a correlation matrix was calculated since 
there is no relevant gain in information in closely correlated features, as described else-
where [27,30]. Finally, for selecting features that allow differentiation of biochemical re-
sponse (PSA decrease > 50%) logistic regression models were fitted. Diagnostic accuracy 
of the features was evaluated by receiver operating characteristic (ROC) calculating the 
area-under-the-curve (AUC). An optimal cut-off value was defined using Youden’s Index. 

Figure 1. A heavily pretreated patient with metastatic castration resistant prostate cancer and high PSMA uptake in
skeletal and lymph node metastases in maximum intensity projection of 68Ga-PSMA-11-PET-MRI (A). During six cycles of
177Lu-PSMA-617-therapy (red arrows), the tumor marker PSA decreased by 97% (B). PET positive volume was defined by
application of a threshold and manual adjustment (C). This volume was transferred to MRI-sequences (D,E) to extract the
radiomic features.

2.5. Radiomic Feature Selection and Dimension Reduction for Differentiation of PSA Response

Feature selection and dimension reduction were necessary, as the number of radiomic
features (n = 378) exceeded the number of patients (n = 21) [26,27]. Inter-observer repro-
ducibility of the textural features was assessed by calculating the Concordance Correlation
Coefficient (CCC) for each of the features as a measure of the intra-class correlation. Fea-
tures with a coefficient ranging from 0.8 to 1 were considered “excellent” and included
in further analysis [28]. After feature normalization using z-score standardization, the
dataset was randomly subdivided into a balanced training and test dataset (70/30 ratio).
Further feature reduction was performed only on the training dataset using a Boruta ma-
chine learning algorithm. The Boruta algorithm applies a Random Forest algorithm by
performing a top-down search for relevant features. Original attributes’ importance are
compared with importance achievable at random, and irrelevant features are progressively
eliminated to stabilize the model [29]. Subsequently, a correlation matrix was calculated
since there is no relevant gain in information in closely correlated features, as described
elsewhere [27,30]. Finally, for selecting features that allow differentiation of biochemical
response (PSA decrease >50%) logistic regression models were fitted. Diagnostic accu-
racy of the features was evaluated by receiver operating characteristic (ROC) calculating
the area-under-the-curve (AUC). An optimal cut-off value was defined using Youden’s
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Index. Radiomic feature selection and dimension reduction was performed by using an
open-source software package (R/R studio, version 4.0.5; R Foundation, Vienna, Austria).

2.6. Survival Analysis

Selected features of radiomic analysis were tested for their prognostic value (overall
survival) in all patients with Kaplan–Meier analysis and log-rank test. Features with signif-
icantly different Kaplan–Meier survival curves were included into multivariate analysis.
In addition, clinical parameter Eastern Cooperative Oncology Group (ECOG) status and
Gleason score, blood-based biomarkers hemoglobin (Hb) and alkaline phosphatase (ALP)
were included into multivariate analysis. Based on the review by Manafi-Farid et al., the
Gleason score is confirmed to have positive impact on response prediction or on longer
OS. Performance status (ECOG- score) and ALP plausibly have impact [31]. In a previous
radiomic analysis, Hb had predictive value and was therefore added to this multivariate
analysis [21].

2.7. Statistical Analysis

Demographic and clinical parameters were reported as total number and percentage,
mean and standard deviation or median and range or 95% confidence interval (CI), as
appropriate. p-values < 0.05 were considered to be statistically significant. Descriptive
statistics and survival analysis were performed using the SPSS Statistics version 26 (SPSS
Inc., Chicago, Illinois, USA).

3. Results
3.1. Patient Characteristics

Twenty-one patients (median age 69 years; range: 47–82) with mCRPC that under-
went 68Ga-PSMA-PET-MRI before and after RLT with Lu-PSMA were included in this
retrospective analysis. All patients previously received at least one taxane chemotherapy
treatment (81%) or Abiraterone/Encalutamide (100%). Eight patients achieved biochemical
response (PSA decline >50%) in post-therapy follow-up. The median Hb was 10.5 g/dL
(range: 8.1–15.6), and the median ALP was 187.0 U/I (range: 53.0–638.0). The median
ECOG status was one (range 0–2). Detailed patient characteristics are presented in Table 1.

Table 1. Patient characteristics. Values are presented as median (interquartile range) or frequency
(percentage of all patients).

Patient Characteristics Total Cohort

Age (years) 69 (range: 47–82)
Gleason Score 9 (range: 6–10)

Metastases location
Bone 20 [95.2]

Lymph nodes 18 [85.7]
Liver 8 [38.1]
Lung 3 [14.3]

Previous therapies
Abiraterone 18 [85.7]

Enzalutamide 17 [81.0]
Docetaxel 17 [81.0]

Cabazitaxel 8 [38.1]

PSMA-therapy
Prostate-specific antigen at first cycle (ng/mL) 217.8 [2.6–3294]

Number of cycles 3 (range: 1–8)
Administered activity per cycle (GBq) 6.2 (range: 5.9–7.5)

Cumulated activity (GBq) 17.6 (range: 6.0–49.7)



Cancers 2021, 13, 3849 6 of 11

3.2. Radiomic Features and PSA Response

After the multistep dimension reduction, 10 independent features consisting of 3 PET-
derived (interquartile range PET, mean PET, median PET), one T2-derived (interquartile
range T2) and four T1-post-GD-derived parameters (interquartile range T1GD, Entropy
T1 GD, mean absolute deviation T1GD, cluster tendency T1GD, Imc2 T1GD, SumEntropy
T1GD) differentiated well between responders and non-responders to PSMA-therapy
(Figure 2). Three clusters of radiomic features became apparent in the correlation ma-
trix. However, the features from different modalities and sequences did not correlate
significantly (Figure 3).
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Figure 2. Ten independent features of pre-treatment 68Ga-PSMA-PET-MRI differentiated well be-
tween responders (green) and non-responders (red) to 177Lu-PSMA-617-therapy. Biochemical re-
sponse was defined as any PSA decline above 50% from baseline.
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Figure 3. Correlogram including ten most important independent radiomic features. Three clusters
of textural features became apparent (boxes). These indicate a strong correlation between parameters
of the same imaging method. Blue circles indicate positive correlation, red circles negative correlation.

When assessing the predictive value of these tissue factors, only the ROC analysis for
the discrimination of responders and non-responders to PSMA therapy (PSA decline >50%)
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showed a good accuracy for the T2 interquartile range (AUC = 0.83). A threshold was defined
and applied following Youden’s index resulting in a binary code for T2 interquartile range.

3.3. Survival Analysis

The median overall survival (OS) was 6.0 months. The median OS in patients with
PSA decline greater than 50% (biochemical response definition) was significantly higher
compared to patients with less than 50% decrease or increasing PSA (15.0 vs. 5.0 months;
p = 0.003) (Figure 4). Patients with a positive binary-coded T2 interquartile range showed
significantly longer median OS compared to patients with a negative value (13.0 vs.
2.0 months; p = 0.038) (Figure 4). The multivariate analysis included previously established
clinical parameters (Gleason Score, ECOG status, ALP, Hb), biochemical response and
radiomic features of the T2 interquartile range with impact on survival in the Kaplan–Meier
analysis. Here, the positively binary-coded T2 interquartile range and the biochemical
response were found to be independent parameters with significant influence on survival
(p = 0.023 and p = 0.028).
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Figure 4. Survival analysis for the parameters of biochemical response (PSA decline > 50%) and InterquartileRange_T2.
(A) The median OS in patients with biochemical response was significantly higher compared to patients with different
PSA change (15.0 vs. 5.0 months; p = 0.003). (B) Patients with a positively binary-coded T2 interquartile range showed
significantly longer median OS compared to patients with a negative value (13.0 vs. 2.0 months; p = 0.038).

4. Discussion

MCRPC remains a challenge in clinical oncology, although the number of new ther-
apeutic agents is steadily increasing [1]. Lu-PSMA therapy, as one of these new agents,
has gained visibility through an ongoing phase III trial with positive endpoint results in
these patients. Previously, the prospective and retrospective analysis with different patient
collectives have shown favorable outcomes and low toxicity [2,3].

However, in about 33–55% of Lu-PSMA therapy patients, a biochemical response
cannot be achieved [3,4,6]. Thus, it is of the utmost importance to identify biomarkers that
are associated with response to Lu-PSMA therapy and outcomes. This would optimize
patient selection for Lu-PSMA therapy and enable early changes in patient management.

Prior to therapy, PSMA-PET is the gatekeeper for the evaluation of the uptake and
extent of disease. However, using different quantitative PET uptake parameters, most
studies were not able to predict response to therapy. Thus, the decision for therapy cannot
be based on single uptake parameters, such as SUVmax in certain lesions [31,32]. Computer-
aided diagnostics of radiomic features might overcome these limitations of measuring
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single parameters or subjective visual analysis [33]. Currently, radiomic approaches are
more frequently applied to morphological CT or MRI than to PET datasets [15]. The first
reports on PSMA-PET [13] and PSMA-PET-MRI [34] focus on prostate cancer patients at an
earlier stage of the disease. The data on radiomic analysis of pretherapeutic PSMA-PET in
patients undergoing Lu-PSMA therapy are still sparse.

Out of 378 radiomic features, both from PET and MRI, we determined the most relevant
in a multistep dimension reduction approach for the analysis of PSA response after Lu-PSMA
therapy. Ten independent radiomic features differentiated well between responders and
non-responders. We identified the interquartile range from the T2-weighted images as the
feature with the highest predictive accuracy on PSA response. Moreover, the T2 interquartile
range was found to be an independent parameter with a significant influence on survival. In
line with the findings from other studies, conventional PET parameters, such as SUVmax or
SUVmean, did not have predictive value in this study [8,31,32]. Especially in advanced cancer
stages, tumor heterogeneity might not be reflected by conventional imaging parameters [35].
Radiomic analysis of hybrid imaging, including functional and morphological parameters,
might overcome these limitations.

In a comparable study design, Moazemi et al. performed a radiomic analysis on
PET/CT data for the prediction of treatment response [20] and for the prognostication of
overall survival [21] in patients treated with Lu-PSMA. They analyzed 80 radiomic features
both from PET and CT in a cohort of n = 72 and 73 features in n = 83 patients with advanced
prostate cancer, respectively. In contrast to our study, they performed data augmentation by
using the least absolute shrinkage and selection operator (LASSO) regularization method
to select the most relevant features. However, they were also able to establish a radiomic
signature (e.g., size variation, kurtosis) with predictive and/or prognostic power [20,21].

Although these data confirm the potential of radiomic and textural analysis in the
work-up of patients undergoing Lu-PSMA therapy, novel models should also include
clinical parameters. Moreover, when creating a module for the prediction of response to
therapy or outcome, the underlying pathology should be adequately characterized. The
Gleason score is therefore one of the parameters predicting the response to Lu-PSMA
therapy, as it reflects tumor aggressiveness [31]. However, in the present study, the Gleason
score did not show a prognostic impact, probably because of a very high Gleason score in
the majority of patients (median nine). Similarly, performance status was comparably high
in these patients (median one) not resulting in a prognostic impact.

Combining these imaging-derived textural features with clinical parameters might
allow for more powerful prediction models. Thus, previous studies could show that not
only imaging derived features, but also blood based parameters, such as Hemoglobin, had
predictive and prognostic value in the underlying patient cohort [7,12,21,32]. However,
the predictive and prognostic value of blood-based monoanalyte markers ranges from
plausible to controversial [31]. In line, in this study, blood-based parameters Hb and ALP
did not have prognostic value. In the future, the prediction of therapy responses and
prediction of survival will be supported by multianalyte markers as circulating tumor RNA
or DNA, as well as for radioligand therapies [36,37].

This study is limited by its retrospective study design and low number of patients,
including a potential selection bias. This small number of patients especially limits the
survival analysis. The segmentation of tumoral lesions is always a matter of discussion. In
this study, segmentation was performed based on the PET dataset with a fixed threshold
with the manual elimination of physiological uptake, as previously published [12]. New ar-
tificial intelligence applications already allow for automatic whole body tumor assessment,
including the automatic elimination of physiological uptake not only for FDG-PET [38]
but also for PSMA-PET/CT [39,40]. Although performing a multistep feature dimension
reduction approach was only performed in the training dataset to ensure the generaliz-
ability of the statistical model, the number of patients in the test dataset is relatively small.
Moreover, we only analyzed data from one institution acquired from one PET/MRI scanner.
Since some of the radiomic features were found to be dependent on acquisition parameters
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such as type of PET, CT or MRI system, the reconstruction kernel and the contrast media,
the results of this radiomic analysis might need to be adapted for future use with other
systems [30,41]. Furthermore, the results need to be validated in a prospective study with
a larger number of cases. PET-MRI might offer additional imaging parameter for response
assessment and prediction after Lu-PSMA therapy. Prospective evaluation of sophisticated
algorithms [34] with correlation to histopathology [13] and/or liquid biopsy might pave
the way for clinical use of radiomics and learning applications.

5. Conclusions

A radiomics analysis of pretherapeutic 68Ga-PSMA-11 PET-MRI prior to 177Lu-PSMA-
617 therapy may potentially offer predictive and prognostic parameters. Beyond imaging-
based parameters, blood-based biomarkers and previous treatments should be included in
future studies.
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