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Possibly the best-characterized cubic membrane transition has been observed

in the mitochondrial inner membranes of free-living giant amoeba (Chaos
carolinense). In this ancient organism, the cells are able to survive in extreme

environments such as lack of food, thermal and osmolarity fluctuations

and high levels of reactive oxygen species. Their mitochondrial inner mem-

branes undergo rapid changes in three-dimensional organization upon food

depletion, providing a valuable model to study this subcellular adaptation.

Our data show that cubic membrane is enriched with unique ether phospholi-

pids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here,

we propose that these phospholipids may not only facilitate cubic membrane

formation but may also provide a protective shelter to RNA. The potential inter-

action of cubic membrane with RNA may reduce the amount of RNA oxidation

and promote more efficient protein translation. Thus, recognizing the role of

cubic membranes in RNA antioxidant systems might help us to understand

the adaptive mechanisms that have evolved over time in eukaryotes.
Biomembranes are traditionally viewed as flat sheets of phospholipid bilayers

dividing the cytoplasm into multiple subcellular compartments with specialized

functions. However, biomembranes may also fold up into three-dimensional per-

iodic arrangements termed ‘cubic membranes’ (figure 1) [1,2]. Cubic membranes

can be observed in virtually any membrane-bound subcellular organelles [3].

Such induced membrane transition changes are frequently accompanied by

alterations in cellular oxidative stress responses, such in neoplasia, inflammation

and viral infection conditions [4,5]. We have suggested on the basis of these obser-

vations that cubic membrane formation may be associated with oxidative stress

[6]. In living organisms, antioxidant enzymes form the first line of defence against

reactive oxygen species (ROS) in the cellular environments [7]. These enzymes

work in tandem to decrease the damaging effects of ROS in the cells.

However, living organisms developed several other defence mechanisms to

cope with oxidative stress. For example, in the unicellular organism Escherichia
coli, levels of fumarase C, which is insensitive to superoxide anions, increase

during oxidative stress, probably to replace fumarases A and B which are suscep-

tible to damage by superoxide anions [8]. In other organisms, ‘sacrificial agents’

are oxidized preferentially in oxidative stress conditions to protect important bio-

molecules [9]. These observations suggest that living organisms may use a wide

range of biomolecules and mechanisms other than antioxidant enzymes to

ameliorate the damaging effects of ROS.

It had been established that starved amoebae (Chaos carolinense) contain

greater levels of free radicals than fed amoebae [6]. Starvation induces cubic mem-

brane formation in amoeba Chaos mitochondria [10]. Similarly, in the higher

plants, ‘light starvation’ (absence of the light) also induces cubic membrane

formation in the photosynthetic thylakoid membranes, prolamellar bodies [11].

The transformed inner mitochondrial membranes into cubic organization in

the starved amoeba Chaos exhibit a high content of very long-chain polyun-

saturated fatty acids (VLC-PUFAs), specifically the C22 : 5n-6 modified
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Figure 1. Cubic membrane architecture. (a) Three-dimensional mathematical model representing the phospholipid bilayer of cubic membrane organization. (b) Two-
dimensional transmission electron micrograph of the same three-dimensional model presented in (a). (c) Scanning electron micrograph and its corresponding
(d ) three-dimensional and (e) two-dimensional computer simulation model of cubic membranes found in the mitochondria of 10-day starved amoeba Chaos
cells. Scale bars, (b) 500 nm and (c) 100 nm.
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Figure 2. Bar graph depicts the difference in the amount of 8-OHdG ( pg) per
100 mg of ODN in a mixture containing cubic mitochondria and that containing
non-cubic mitochondria. The mixture containing non-cubic mitochondria has
approximately four times as much 8-OHdG as that containing cubic mitochon-
dria. In this experiment, mitochondria with cubic membrane organization were
isolated from 7-day starved amoeba Chaos and the mitochondria without cubic
membrane organization were isolated from mouse liver. Same amount of mito-
chondria protein was incubated with the same amount of ODN in separate tubes
before the mixture was exposed to superoxide anions generated by the Fenton
reaction. After exposure to the Fenton reaction, ODNs were isolated and assessed
for oxidative damage. *p-value , 0.05.
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phosphatidylcholine plasmalogen, phosphatidylethanolamine

plasmalogen and phosphatidylinositol species, that appear to

be critical for development and maintaining highly ordered

yet curved interwoven cubic membrane structures [12].

We note that the mitochondria with cubic membrane

organization isolated from starved amoeba Chaos interact

sufficiently with short segments of phosphorothioate oligonu-

cleotides (PS-ODNs, resemble RNA in biological systems). We

also study the ability to provide ODN uptake via cubic

membranes [13]. Specifically, we have observed ODNs

condensed within the convoluted channels (most likely

within the mitochondrial intermembrane space rather than

the matrix) of cubic membranes by an unknown passive target-

ing mechanism [13]. Moreover, the interaction between ODNs

and cubic membranes is sufficient to retard ODN oxidation by

free radicals in vitro (figure 2). Hence, the close similarity

between the ODNs used experimentally and the RNAs.

Cubic membranes, therefore, may act as a ‘protective’ shelter

minimizing or preventing the oxidation of biologically

essential macromolecules such as RNAs.

It is believed that the alterations of gene expression and

faithful translation of RNAs are the key factors of the meta-

bolic changes essential for cell survival and the rapid

organismal adaptation to new environmental stimuli. Oxi-

dative damage to both coding and non-coding RNAs may

therefore affect the regulation of gene expression and, poten-

tially, result in the failure of protein synthesis. This failure
may impair the organismal capacity of flexibly adapting to

a novel or unusual internal or external environmental stimu-

lus [14]. Furthermore, experimental data suggest that
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Figure 3. The proposed mechanism of antioxidant defence system of cubic membranes in oxidative stress conditions. The high content of plasmalogens in cubic
membranes may preferentially interact with superoxide anions protecting the biomolecules in cubic membrane channels. This may provide a safe environment for
RNA and other protein synthesis machinery molecules (e.g. ribosomal RNA) within the internal compartments of the cubic membranes.
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oxidative damage of RNAs may be involved in the cellular

patho-mechanisms of several diseases and cell survivability

[14]. In a eukaryotic cell, nearly all the DNA in the cell is

sequestered within the nucleus. The nuclear envelope deli-

mits the compartment and physically limits the interaction

between the nucleus and the cytoplasm. Thus, RNAs rather

than DNAs are ‘vulnerable’ targets of oxidation because of

their biochemical structure, relatively abundant in the cell

and they are mostly located in the vicinity of ROS producing

organelles such as mitochondria and peroxisomes [15–21].

As a consequence, oxidative damage to RNA rather than

DNA may be the more proximate cause of impairment in cel-

lular performance and adaptability. Specific protective

mechanisms of RNAs and the control of their degradation

would be therefore expected to be present in cells [22].

Plasmalogens are a unique class of ether phospholipids with

a vinyl ether bond at sn-1 position and enriched in PUFAs at sn-2

position of the glycerol backbone [23]. They form the major com-

ponents of cubic membrane phospholipids and play a critical

role in membrane plasticity and transformation into cubic struc-

ture [12]. We are interested whether the unusually high amounts

of VLC-PUFAs and plasmalogens in cubic membranes and their

ability to interact with ODNs play a role in the defence system of

RNAs and, therefore, of the gene expression regulatory system in

living organisms. Although the functions of VLC-PUFAs and

plasmalogens in cubic membranes are still far from being fully

understood, recent studies have shown that VLC-PUFAs may

affect the expression of many genes and that these effects

appear to be independent of any changes in membrane

composition [16,24,25].

A number of studies have shown that plasmalogens are

protective in lipid peroxidation [26,27]. Sindelar et al. [27]

demonstrated that brain phospholipids with and without

plasmalogens in separate liposomal systems were subjected

to oxidative stress. The results revealed that in the presence

of plasmalogens, markers for lipid peroxidation were signifi-

cantly decreased. This implies that plasmalogens protect

PUFAs from damage. Although the mechanism for this
phenomenon has not been elucidated, it may involve vinyl

ether bonds in plasmalogens which are more susceptible to

oxidative attack than via ester bonds in phospholipids [28].

The free radical species formed during the peroxidation of

the vinyl ether bond may either be more stable or be less effi-

cient to abstract hydrogen than the alkyl radicals produced

during the peroxidation of PUFAs [27]. Also, it is likely that

the oxygenated vinyl ether radicals are broken down into

water-soluble radical compounds which are unable to further

propagate the oxidation cascade [27].

In addition to the mitochondrial antioxidant enzymes,

plasmalogens can limit the diffusion of ROS within the differ-

ent compartments of cubic membrane because of their

proneness to be peroxidized. This mechanism would limit

the intercellular transmission of ROS and that the oxidative

cascade might spread to RNAs segregated into the inner com-

partments of cubic membranes. Some support for this

proposition comes from experimental observations where

cubic membranes strikingly correlate with viral infections;

notably, RNA viruses [5]. Viral entry, proliferation and release

are processes closely linked to cubic membrane formation [5].

Generating cubic membrane during viral genome proliferation

may provide a protective membrane environment to protect

the viral RNA from oxidative damage and facilitate faithful

genomic transcription and translation.

Plasmalogen oxidation and VLC-PUFA peroxidation in

phospholipids of cubic membranes have a number of nega-

tive downstream effects on the physical properties and

structure of the membranes, such as the decrease in their

fluidity and increases in lamellar membrane formation

rather than cubic organization. However, an increasing

body of evidence suggests that peroxidized phospholipids

can be repaired by the enzymes phospholipase A2 and

acyl-transferase [29]. While unesterified VLC-PUFAs present

in the cytoplasm can be incorporated into the cellular

membranes to replace the oxidized molecules.

In view of these observations, we propose here an inte-

grative model (figure 3) where natural selection has
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operated in order to optimize a molecular composition to

have a three-dimensional membrane shape that is enriched

in plasmalogens containing VLC-PUFAs. Plasmalogens that

carry VLC-PUFAs would facilitate cellular membrane trans-

formation from the lamellar into the cubic arrangement. In

this model, cubic membranes interact with short segments

of ODNs such as RNAs to segregate RNAs and possibly

other translationary systems into the inner compartments of

cubic membranes. The high susceptibility of VLC-PUFAs

and plasmalogens in cubic membranes to oxidation further

retards RNAs oxidation. Cubic membranes may indirectly

play a role in the defence system of RNAs. Our proposal

implies biochemical pathways and highly ordered three-
dimensional membranes in shape that are functionally inte-

grated, possibly resulting in an evolutionary module such

as cubic membranes for cell survival. The understanding of

the biological relevance of RNA protection by cubic mem-

branes and of its evolutionary underpinnings may explain

fundamental aspects of selective pressures modulating the

awareness of evolution in eukaryotic cells.
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