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Abstract

We compared, by transmission electron microscopy (TEM), the ultrastructure of interstitial Cajal-like cells (ICLC) in normal mammalian
myocardium versus caveolin-1 null mice. TEM showed that myocardial ICLCs of caveolin-1-deficient mice retain their main ultrastruc-
tural characteristics, for example, location among cardiomyocytes, close vicinity to nerves and/or blood capillaries, specialized cell-to-
cell junctions, presence of 2–3 typical processes, which are very long (several tens of micrometres), but are very thin (0.1–0.2 �m) and
moniliform. However, the most striking modification of myocardial ICLC in caveolin-1 KO mice was the absence of caveolae. Beyond this
main observation, three other findings could be reported: (1) the absence of caveolae in capillary endothelium, (2) persistence of (some)
caveolae at the level of cardiomyocte sarcolemma or vascular smooth muscle cell sarcolemma and (3) (un)expected ultrastructural mod-
ifications such as increased thickness of capillary basement membrane and increased autophagy of several cardiomyocytes.
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Caveolae are found in many cell types and are involved in a variety
of cellular processes (reviewed in [1–10]). Caveolin-1 is the prin-
cipal protein of caveolae, and therefore, caveolin-1 knockout mice
were extensively used to identify the presumptive functions of
caveolae in health and disease (reviewed in [11–13]). Moreover,
cardiovascular dysfunctions were targeted in caveolin-1 null mice,
and indeed, the ablation of caveolin-1 resulted in severe disorders,
including an evident cardiomyopathy [14–24].

Interstitial Cajal-like cells (ICLC) were described in human and
mammalian myocardium since 2005 [26–31] as a novel cell type,
different from fibroblasts. ICLCs have specific ultrastructural char-
acteristics and immunophenotypical features that enable their
unequivocal identification (‘platinum standard’ [27–29]). To our
knowledge, the ultrastructure of ICLC was not yet examined in
caveolin-1 null mice.

Hearts from two Cav-1�/� (B6129PF2/J) and two Cav-1–/– (Cav-1
KO; Cav1 tm1Mls/J) 10-week-old mice purchased from Jackson
Laboratories (Bar Harbor, ME, USA) were examined by transmission
electron microscopy (TEM). The institutional ethical committee
approved the study. Small fragments from atrial and ventricular
myocardium were processed according to routine  procedures, as
previously described [27]. Ultrathin sections were examined using a
Morgagni TEM (FEI Company, Eindhoven, Nederland), and images
were recorded with a MegaView III CCD using iTEM-SIS software
(Olympus, Soft Imaging System GmbH, Münster, Germany). To

make ICLCs more evident, the TEM images (Figs. 1–3) have been
digitally coloured using Adobe Photoshop (Adobe Systems Inc., San
Jose, CA, USA). The colour codes are ICLCs-blue, endothelial cells –
brown and nerve endings – light green.

Figure 1 shows the presence of typical caveolae along a long
process of an ICLC in the myocardium of control mice. Note the
moniliform aspect due to dilated portions, containing caveolae,
endo(sarco)plasmic reticulum and/or mitochondria, the so-called
‘Ca2�-handling units’ [5, 32–37].

Figures 2–5 show that ICLCs of caveolin-1 KO mice retain their
ultrastructural organization, except the lack of caveolae. This could
impair the Ca2� signalling capability of ICLC, because, as it is men-
tioned above, caveolae are a key player in Ca2� handling. We confirm
here that endothelial cells of caveolin-1 KO mice lose their caveolae
(Figs. 2, 3 and 5A). However, vascular smooth muscle cells and car-
diomyocytes display (some) caveolae (Figs. 2, 3B and 4), because
caveolin-1 is present in normal cardiomyocyte plasma membrane
[38]. Noteworthy, we found capillaries with thickened laminated
basement membranes (Fig. 5A). In addition, we observed numerous
large autophagosomes in several cardiomyocytes (Fig. 5B and C)
and a high number of macrophages in the interstitium. Autophagy
may cause limited survival of cardiomyocytes [39], but the entire set
of ultrastructural modifications found in the myocardium of caveolin-
1 KO mice could explain the heart failure [21, 24, 40].

Acknowledgements
We thank Mr. G. Savi, ‘Victor Babes’ Institute, and Mr. C. Coman, ‘I.
Cantacuzino’ Institute, for constant help. For technical assistance, we also
thank Dr. Catalin Manole.

Images in Cellular/Molecular Medicine

*Correspondence to: L.M. POPESCU, M.D., Ph.D.
Department of Cellular and Molecular Medicine,
“Carol Davila” University of Medicine and Pharmacy,
P.O. Box 35-29, Bucharest 5, Romania.
E-mail: LMP@jcmm.org



J. Cell. Mol. Med. Vol 13, No 1, 2009

203© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Fig. 1 Digitally coloured TEM image of Cav-1�/� mouse myocardium. The
ICLC (blue) in the neighbourhood of the ‘trio’: myocardial cell, capillary
(brown) and nerve (green). TEM image shows caveolae (arrowheads) in
endothelial cell (E), interstitial Cajal-like cell processes (ICLCp) and myocar-
dial cell (M). Scale bar � 1 �m.

Fig. 2 Digitally coloured TEM image of the myocardium in Cav-1–/– (Cav-1 KO) mouse. In Cav-1 KO mice, no caveolae could be seen in the endothe-
lium (E, brown) or in the ICLC processes (ICLCp, blue). The ICLCp are located in between the blood capillary and myocytes. However, several caveolae
could be seen on the myocyte membrane (arrowheads). Note close contacts (arrows) between ICLCp and myocyte (M). Scale bar � 1 �m.
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Fig. 3
Computer-
coloured TEM
images of ICLC in
Cav-1 KO mice show-
ing typical ultrastructural
features. (A) Long, moniliform
processes (ICLCp, blue) have close
contacts with other ICLC (arrowheads)
and run along capillary (brown) and nerve
endings (green). (B) Note an ICLC (blue) with
two thin processes (arrows) in between capillaries
(brown) and cardiac myocytes (M). The third process
of ICLC, presumably, is out of the plane of the ultrathin
section. Arrowheads indicate caveolae in cardiac myocyte. P,
pericyte. Scale bar � 2 �m.
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Fig. 4 TEM image of the Cav-1 KO mice heart
shows that ICLCs form a network. Note close
contacts between ICLC processes (ICLCp) and
the cellular body of another ICLC (arrows).
Caveolae (arrowheads) could be seen in vascular
smooth muscle cells (VSMC), between the dense
areas on the inner side of the sarcolemma (aster-
isk). Scale bar � 1 �m.

Fig. 5 TEM images of the Cav-1
KO mice heart. (A) Note the
thickened and laminated base-
ment membrane (arrows) of the
blood capillary. M, myocyte; E,
endothelial cell; Fb, fibroblast;
ICLCp, ICLC process. Scale bar
� 2 �m. (B) Extensive cytoplas-
mic assembly of autophago-
somes in two cardiac myocytes
(arrows). Scale bar � 10 �m.
(C) High magnification of an
autophagic myocyte (AM)
exhibiting autophagosomes,
loss of contractile elements and
loose connection with adjacent
myocyte (*). Arrowheads indi-
cate the characteristic double
membranes of the autophago-
somes. Scale bar � 1 �m.
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