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A B S T R A C T

Individuals born very preterm (VPT;< 32weeks' gestational age) are at increased risk of impaired mathematics
and word reading performance, as well as widespread white matter microstructural alterations compared with
individuals born full term (FT; ≥37weeks' gestational age). To date, the link between academic performance
and white matter microstructure is not well understood. This study aimed to investigate the associations between
mathematics and reading performance with white matter microstructure in 114 VPT and 36 FT 13-year-old
children. Additionally, we aimed to investigate whether the association of mathematics and reading performance
with white matter microstructure in VPT children varied as a function of impairment. To do this, we used
diffusion tensor imaging and advanced diffusion modelling techniques (Neurite Orientation Dispersion and
Density Imaging and the Spherical Mean Technique), combined with a whole-brain analysis approach (Tract-
Based Spatial Statistics). Mathematics performance across VPT and FT groups was positively associated with
white matter microstructural measurements of fractional anisotropy and neurite density, and negatively asso-
ciated with radial and mean diffusivities in widespread, bilateral regions. Furthermore, VPT children with a
mathematics impairment (> 1 standard deviation below FT mean) had significantly reduced neurite density
compared with VPT children without an impairment. Reading performance was not significantly associated with
any of the white matter microstructure parameters. Additionally, the associations between white matter mi-
crostructure and mathematics and reading performance did not differ significantly between VPT and FT groups.
Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density,
are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is
required to understand the association between reading performance and white matter microstructure in 13-
year-old children.

1. Introduction

Very preterm (VPT) birth (< 32weeks' gestational age) occurs in
approximately 1.5% of all live births in Australia (Australian Institute of
Health and Welfare, 2018). Up to 75% of VPT children exhibit

macrostructural cerebral white matter abnormalities, such as cystic and
punctate lesions, delayed myelination, loss of white matter volume or
thinning of the corpus callosum (Anderson et al., 2015; Inder et al.,
2003; Mangin et al., 2017). Consistent with these findings, diffusion
weighted imaging (DWI) studies have reported that VPT infants also
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exhibit white matter microstructural alterations in various white matter
regions compared with full-term (FT) infants, including reduced fibre
density and fractional anisotropy (FA) and increased radial diffusivity
(RD) and mean diffusivity (MD), likely reflecting delayed brain devel-
opment (Pannek et al., 2018; Thompson et al., 2019; Thompson et al.,
2014). Similar white matter microstructural alterations have been re-
ported in adolescence and young adulthood (Kelly et al., 2016; Murray
et al., 2016; Nosarti et al., 2014; Thompson et al., 2015; Vangberg et al.,
2006).

VPT children are also at increased risk for neurodevelopmental
impairments across a range of domains, including mathematics and
reading, compared with children born FT (Anderson, 2014; Anderson
and Doyle, 2008; Mangin et al., 2017). The rate of academic problems
increases with decreasing gestational age (Aarnoudse-Moens et al.,
2011; Chan and Quigley, 2014; Simms et al., 2013), with the majority
of 11-year-olds born< 25weeks' gestation reported to have a mathe-
matics (70%) or reading (52%) impairment (Johnson et al., 2009).

The variability in academic performance outcomes for VPT children
is significantly related to general cognitive ability (Twilhaar et al.,
2018). In turn, general cognitive ability (IQ) has been associated with
white matter microstructure in several brain regions in preterm in-
dividuals, including the inferior and superior longitudinal fasciculi,
inferior fronto-occipital fasciculi, uncinate fasciculi and corpus cal-
losum (Eikenes et al., 2011; Feldman et al., 2012a; Kelly et al., 2016;
Skranes et al., 2007). Mathematics and reading performance in children
born VPT may also be associated with white matter microstructure,
however few studies have investigated this. In typically developing
children, better mathematics and reading performance has been asso-
ciated with increased FA in several brain regions. Specifically, mathe-
matics has been positively associated with FA in the left anterior su-
perior longitudinal fasciculus (also referred to as the anterior arcuate
fasciculus; Li et al., 2013; Tsang et al., 2009; Van Beek et al., 2014), the
left inferior longitudinal fasciculus (Li et al., 2013; van Eimeren et al.,
2008), the left superior corona radiata (van Eimeren et al., 2008) and
the bilateral inferior fronto-occipital fasciculus (Li et al., 2013) in
children of varying ages from 7 to 15 years. Reading performance has
been positively associated with FA in typical children varying in age
from 6 to 13 years in a small left temporo-parietal region, speculated to
correspond with the superior corona radiata and centrum semiovale
(Niogi and McCandliss, 2006), the posterior limb of the internal capsule
(Beaulieu et al., 2005) and a region at the border between the left
corona radiata and the superior longitudinal fasciculus (Deutsch et al.,
2005). We have previously explored the association between FA and
academic performance in 7-year-old VPT children using a whole-brain
exploratory analysis (Tract-Based Spatial Statistics (TBSS)), and re-
ported positive relationships between FA and mathematics and reading
performance in tracts consistent with other studies (Kelly et al., 2016).

Most DWI studies investigating the relationship between academic
performance and white matter microstructure have focused on FA. FA
reflects the degree of diffusion anisotropy, with low values reflecting
isotropic diffusion and high values reflecting anisotropic diffusion.
Water diffusion in the white matter can be influenced by numerous
factors, including axonal myelination, density, diameter and dispersion,
but FA cannot delineate amongst these (Jones et al., 2013). More ad-
vanced techniques are now available that can assess white matter mi-
crostructure with greater specificity than FA, allowing a deeper un-
derstanding of the neurobiological relationship between white matter
and functional outcomes. One technique is Neurite Orientation Dis-
persion and Density Imaging (NODDI), which assesses neurite orienta-
tion dispersion and neurite density (Zhang et al., 2012). Another
technique is multi-compartment microscopic diffusion imaging based
on the Spherical Mean Technique (SMT), which measures neurite
density and intrinsic diffusivity, with the effects of neurite orientation
dispersion factored out (Kaden et al., 2016). We have previously ap-
plied the NODDI technique to explore the relationships between aca-
demic performance and neurite orientation dispersion and density in

VPT 7-year-olds, but did not find any significant associations (Kelly
et al., 2016). These findings, however, need further investigation in
older children following several years of formal education.

The current study aimed to examine associations between mathe-
matics and single word reading performance and white matter micro-
structure in a sample of VPT and FT 13-year-old children, using a
whole-brain approach and advanced diffusion modelling techniques. A
further aim was to investigate whether the association between
mathematics and reading performance with white matter micro-
structure in VPT children varied as a function of impairment. It was
expected that white matter microstructure in the superior longitudinal
fasciculus, inferior longitudinal fasciculus, superior corona radiata and
inferior fronto-occipital fasciculus would be most strongly associated
with mathematics performance (Li et al., 2013; Tsang et al., 2009; Van
Beek et al., 2014; van Eimeren et al., 2008), while white matter mi-
crostructure in the temporo-parietal region, corona radiata, centrum
semiovale and posterior limb of the internal capsule would be most
strongly associated with word reading performance (Beaulieu et al.,
2005; Deutsch et al., 2005; Niogi and McCandliss, 2006). We expected
these associations to be similar between the VPT and FT groups, based
on previous research in both VPT and FT populations (Beaulieu et al.,
2005; Deutsch et al., 2005; Kelly et al., 2016; van Eimeren et al., 2008).

2. Materials and methods

2.1. Participants

A cohort of 224 VPT infants (born< 30weeks' gestational age
or < 1250 g) and 46 FT infants (born≥37weeks' gestational age) born
between 2001 and 2003 at the Royal Women's Hospital, Melbourne,
were recruited shortly after birth into the prospective longitudinal
Victorian Infant Brain Study (VIBeS). Children have been followed up at
2, 5, 7 and 13 years of age. A further 31 FT participants were recruited
from the community at age 2 and matched to the VPT sample based on
socio-demographic information. This study included the data of 114
VPT and 36 FT children collected at the 13-year follow-up (see section
3.1 for inclusion/exclusion criteria and Table 1 for demographic de-
tails). Ethics approval was granted by the Human Research Ethics
Committee at the Royal Children's Hospital in Melbourne. Parents/
guardians provided written informed consent and children provided
assent to participate in each follow-up.

2.2. Procedure

As part of the VIBeS 13-year follow-up, children completed a neu-
ropsychological assessment and MRI scan (after completing mock MRI
training), usually over two days. Assessments were administered by
trained child psychologists blinded to group membership and previous
assessment results. Parents completed questionnaires to gather socio-
demographic information.

2.3. Measures

2.3.1. Mathematics and word reading
The Wide Range Achievement Test – 4th edition (WRAT-4) was used

to assess mathematics and single word reading performance (Wilkinson
and Robertson, 2006). The Math Computation subtest consisted of 40
written mathematics problems of increasing difficulty, including addi-
tion, subtraction, multiplication, division and algebra. Participants
were instructed to complete as many problems as possible in 15min.
The Single Word Reading subtest required participants to read aloud a
list of words of increasing complexity. The WRAT-4 has US norms
stratified to be representative of the 2001 US census, with all scales
having a mean of 100 and standard deviation of 15 (higher scores re-
flect better performance). The WRAT-4 is appropriate for individuals
aged 5 years and older and has strong reliability and validity (Wilkinson
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and Robertson, 2006). Given the availability of a contemporaneous
sample of FT Australian children, mathematics and reading impairment
were defined as scores that were 1 standard deviation or more below
the FT group's mean score (Johnson et al., 2009), i.e. ≤87 for mathe-
matics and ≤92 for word reading.

2.3.2. General cognitive ability
The Kaufman Brief Intelligence Test, Second Edition (KBIT-2) was

used to estimate general cognitive ability based on a composite score of
three subtests assessing verbal and non-verbal IQ (Kaufman and
Kaufman, 2004). The Composite IQ score has a normative mean of 100
and standard deviation of 15.

2.3.3. Social risk
Social risk information was collected in a parent questionnaire, in-

cluding family structure, primary caregiver education level, employ-
ment status and occupation of the primary income earner, maternal age
at birth and whether English is spoken at home. A score was calculated
for each domain, with 0 representing the lowest risk and 2 the highest
(Roberts et al., 2008). The maximum possible Social Risk Index score
was 12. Children were considered to be from either a lower social risk
background (a Social Risk Index score of 0–1) or higher social risk
background (a Social Risk Index score of 2–12).

2.4. MRI acquisition

MRI was completed at the Royal Children's Hospital, Melbourne,
using a Siemens Trio System 3 T scanner. Two diffusion MRI sequences
were acquired. The first sequence, a CUbe and SPhere (CUSP) sequence
(Scherrer and Warfield, 2012), was acquired with multiple non-zero b-
values between 400 and 3000 s/mm2, 78 diffusion-weighted gradient
directions, 12 b=0 s/mm2 volumes, multi-band factor of 2, repetition
time (TR)=3500ms, echo time (TE)= 73ms, field of view
(FOV)= 230×230mm, matrix= 116×116 and an isotropic voxel
size of 2mm3. The second diffusion sequence was acquired with a b-
value=2800 s/mm2, 60 diffusion-weighted gradient directions, 4
b= 0 s/mm2 images, TR=3200ms, TE =110ms,
FOV=260×260mm, matrix= 110×110 and an isotropic voxel size
of 2.4mm3. Along with each diffusion sequence, a pair of b=0 s/mm2

images were acquired with reversed phase encoding.

2.5. Diffusion pre-processing

Each of the diffusion sequences were separately corrected for sus-
ceptibility-induced distortions using the reversed phase-encoding
images as well as movement and eddy current-induced distortions using
the Functional MRI of the Brain Software Library (FSL), version 5.0.10
(‘topup’ and ‘eddy’ tools; Andersson et al., 2003; Andersson and
Sotiropoulos, 2016; Smith et al., 2004). This included b-vector reor-
ientation (Leemans and Jones, 2009). Image quality was evaluated
based on visual inspection of the diffusion images and final parameter
maps (FA, AD, RD, MD and NODDI orientation dispersion and density
and SMT density and intrinsic diffusivity) by an experienced MRI re-
searcher (C·K). Participants were excluded if their images exhibited
excessive motion artefact. The diffusion tensor imaging (DTI) model
was fitted to the first diffusion sequence using the weighted linear least
squares method. Several additional steps were required prior to NODDI
and SMT model fitting. The second diffusion sequence was registered to
the first diffusion sequence using the FSL Linear Image Registration
Tool (FLIRT; Jenkinson et al., 2002; Jenkinson and Smith, 2001). Next,
each sequence was normalised separately by its b=0 images to attempt
to account for the difference in TE and TR between the two sequences.
Finally, the two sequences were merged together. The NODDI model
was fitted to the combined sequences using the NODDI Matlab toolbox,
version 0.9 (Zhang et al., 2012). The SMT model was fitted to the
combined sequences using the developer's software package (available
at https://github.com/ekaden/smt; Kaden et al., 2016).

2.6. Tract-based spatial statistics (TBSS)

The diffusion images were analysed using FSL's TBSS (Smith et al.,
2006). The FA images were eroded slightly to remove likely outliers.
Each participant's FA image was non-linearly aligned to every other
participant's FA image (Andersson et al., 2007a; Andersson et al.,
2007b), enabling the most representative ‘target’ image to be selected,
which was the FA image with the minimum mean displacement re-
quired to align it to all the other FA images. The target image was affine
aligned to MNI152 space and all the other FA images were brought into
MNI152 space by combining the non-linear registration to the target
with the affine registration to the MNI template. A mean FA image was
created, along with a mean FA skeleton, with a threshold of 0.2. Each
FA image was projected onto the mean FA skeleton. The original non-

Table 1
Characteristics of the VPT and FT groups.

VPT, n=114 FT, n=36 Unadjusted mean difference (95% CI) p-Value

Male, n (%) 63 (55.2) 17 (47.2) χ2= 0.71 0.39
Age (years) at assessment, M (SD) 13.22 (0.36) 13.24 (0.47) −0.04 (−0.21, 0.13) 0.64
Gestational age (weeks), M (SD) 27.4 (1.9) 39.1 (1.4) NA NA
Birthweight (g), M (SD) 972 (239) 3263 (575) NA NA
Multiple pregnancy, n (%) 56 (49.1) 4 (11.1) OR 7.7 (2.6, 23.26) <0.001
BPD, n (%) 40 (35.1) 0 NA NA
PDA, n (%) 53 (46.5) 0 NA NA
Sepsis (proven), n (%) 35 (30.7) 0 NA NA
NEC (proven), n (%) 5 (4.4) 0 NA NA
Grade III/IV IVH, n (%) 4 (3.5) 0 NA NA
Moderate to severe WMA, n (%) 12 (10.5) 0 NA NA
Cystic PVL, n (%) 3 (2.6) 0 NA NA
General cognitive ability, M (SD) 102.9 (14.6) 109.9 (12.8) −6.7 (−11.6, −1.7) 0.008
Higher social risk background, n (%) 65 (57) 11 (31) OR 3.0 (1.35, 6.71) 0.007
Grade repetition, n (%) 13 (12) 1 (3) OR 4.7 (0.59, 37.32) 0.043
Mathematics score, M (SD) 94.7 (14.6) 102.6 (15.8) −8.1 (−14.1, −2.1) 0.009
Mathematics impairment, n (%) 41 (36) 8 (22) OR 1.96 (0.82, 4.71) 0.13
Reading score, M (SD) 104.3 (15.0) 108.4 (16.8) −3.9 (−10.2, 2.3) 0.22
Reading impairment, n (%) 22 (20) 3 (8) OR 2.6 (0.74, 9.37) 0.13

CI=confidence interval, n= number of participants, M=mean, SD=standard deviation, NA=not applicable, OR= odds ratio, BPD=bronchopulmonary
dysplasia, PDA=patent ductus arteriosus, NEC=necrotising enterocolitis, IVH= intraventricular haemorrhage, WMA=white matter abnormality,
PVL= periventricular leukomalacia.
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linear registrations were applied to the other diffusion images (axial
diffusivity (AD), RD, MD, neurite density and orientation dispersion
from NODDI, and neurite density and intrinsic diffusivity from SMT),
which were then projected onto the mean FA skeleton.

2.7. Statistical analyses

Demographic and behavioural data were analysed using Stata 14.2
(StataCorp, 2011). Group differences on demographic variables for VPT
and FT participants were examined using linear regression models for
continuous variables, and logistic regression models and chi-square
analyses for categorical variables. These analyses were also used to
examine group differences on demographic variables between partici-
pants and non-participants (all children from the wider cohort who did
not meet inclusion criteria for the current study or declined follow up).
Differences in mathematics and word reading performance scores be-
tween the VPT and FT groups were examined using linear regression
models. Secondary analyses were run adjusting for age at assessment
(in years) and social risk. All linear regression models were fitted using
generalised estimating equations reported with robust standard errors
to allow for clustering of multiples within a family (i.e., twins/triplets;
Carlin et al., 2005).

Voxel-wise non-parametric permutation testing was undertaken
using FSL's ‘randomise’ tool, version 2.9 (Nichols and Holmes, 2002;
Winkler et al., 2014). Firstly, general linear models were constructed to
examine relationships between the diffusion parameters and academic
performance across the total sample of VPT and FT children, adjusting
for age at scan (in years). Secondly, we investigated whether the re-
lationships between diffusion parameters and mathematics or reading
scores differed between the VPT and FT groups. We did this by con-
structing a model with an interaction between mathematics or reading
score and birth group. To explore whether the effect of VPT birth on
white matter microstructure varies as a function of impairment, we
performed secondary analyses using general linear models to compare
diffusion parameters between VPT children with versus without an
impairment in mathematics and reading. As there were only a small
number of FT children with a mathematics or reading impairment and
useable MRI data, we were underpowered to examine any potential
group-impairment interaction.

All voxel-wise analyses were performed with 5000 permutations,
family-wise error rate (FWE) correction and threshold-free cluster en-
hancement (Smith and Nichols, 2009). We ran both positive and ne-
gative contrasts to determine whether the microstructure measures
were positively or negatively associated with mathematics and reading
performance. Statistically significant voxels (p≤.05, FWE-corrected)
were labelled as being in the approximate location of particular ana-
tomical white matter regions using the John Hopkins University (JHU)
White Matter Tractography Atlas and the JHU International Consortium
of Brain Mapping (ICBM) DTI-81 White Matter Labels atlas (Hua et al.,
2008).

3. Results

3.1. Participant characteristics

The 13-year follow-up included 179 VPT and 61 FT children (80%
and 79% retention, respectively). To ensure the relationship between
academic performance and white matter microstructure was not influ-
enced by those with low general cognitive ability (< 70) at 13 years,
these individuals were excluded, resulting in 16 VPT children being
excluded. A further 33 VPT and 14 FT children did not have a MRI (did
not consent or did not pass the mock MRI training). Of those scanned,
12 VPT and 11 FT children were excluded due to having incomplete or
incorrectly acquired diffusion MRI data, and 4 VPT children were ex-
cluded due to excessive motion or other artefacts on diffusion images.
Thus, the final study sample included 114 VPT children and 36 FT

children who were assessed for academic performance and had useable
diffusion MRI data at 13 years.

Perinatal characteristics of VPT participants were generally similar
to non-participants. However, participants were more likely to have
been from a multiple pregnancy and less likely to have had moderate-
severe white matter abnormalities compared with non-participants
(Supplementary Table 1). FT participants (n=36) were similar to non-
participants (n=41) across all perinatal characteristics (data not
shown).

At 13 years, VPT and FT groups were similar in age at assessment
and sex (Table 1). Neonatal medical characteristics for VPT and FT
participants are reported in Table 1. Compared with FT children, VPT
children had lower general cognitive ability, were from families of a
higher social risk background, and were more likely to have repeated a
school grade. VPT children performed below their FT peers in mathe-
matics (Table 1), even after controlling for age and social risk [mean
difference (95% confidence interval (CI))=−5.8 (−11.3, −0.3),
p= .04]. For single word reading, the VPT group performed on average
4 points below the FT group, however, this difference was not sig-
nificant (p≥ .05). The VPT group was 2 times more likely to have a
mathematics impairment and 2.6 times more likely to have a reading
impairment than the FT group, though these were not significant
(p≥ .05; Table 1).

3.2. Associations between white matter microstructure and mathematics

TBSS analyses revealed that higher FA, and lower RD and MD, were
associated with better mathematics scores in the total sample (Fig. 1;
Supplementary Fig. 1). These associations were located in many white
matter regions, including the bilateral inferior fronto-occipital fasciculi,
inferior longitudinal fasciculi, external and internal capsules, thalamic
radiations, superior longitudinal fasciculi and corona radiata (Supple-
mentary Table 2). Additionally, higher neurite density from NODDI and
SMT were associated with better mathematics performance in several
regions, including the corona radiata, corpus callosum (for NODDI and
SMT), and the cerebral peduncles and left sagittal stratum (for NODDI
only; Fig. 1; Supplementary Fig. 1; Supplementary Table 2). There were
no associations between AD, neurite orientation dispersion or intrinsic
diffusivity and mathematics performance at p≤.05, FWE-corrected.
There were also no voxels that had an interaction at p≤.05, FWE-
corrected between birth group (VPT or FT) and mathematics score for
the associations with the diffusion parameters.

VPT children with a mathematics impairment had lower neurite
density (from SMT only) in the corpus callosum, the bilateral cingulum,
internal and external capsules, corona radiata, posterior thalamic ra-
diations, sagittal stratum, cerebral peduncles and superior longitudinal
fasciculi, the left fornix/stria terminalis, and the right superior fronto-
occipital fasciculus and uncinate fasciculus than VPT children without a
mathematics impairment (Fig. 2; Supplementary Fig. 1). There were no
voxels in which FA, RD, MD, AD, neurite orientation dispersion and
intrinsic diffusivity differed between VPT children with and without a
mathematics impairment at p≤.05, FWE-corrected. Average diffusion
values across the mean FA skeleton for children with versus without a
mathematics impairment are reported in Supplementary Table 3.

3.3. Associations between white matter microstructure and word reading

We found no associations between any of the diffusion parameters
and word reading performance in the total sample of VPT and FT
children, and there were no birth group interactions, at p≤.05, FWE-
corrected. Similarly, there were no voxels in which the diffusion
parameters differed between VPT children with versus without a word
reading impairment at p≤.05, FWE-corrected.
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Fig. 1. Left panel: TBSS results illustrating regions where white matter microstructure parameters were significantly associated with mathematics performance in the
total sample (VPT and FT groups) at p≤ .05, following family-wise error rate (FWE) correction and threshold-free cluster enhancement (TFCE). P-values in red-
yellow indicate positive correlations and dark blue-light blue indicate negative correlations. P-value maps have been overlaid on the standard space (MNI152) T1-
weighted image and the coordinates reported indicate standard space coordinates in mm. Right panel: The average diffusion value across all significant voxels for
each participant plotted against mathematics scores. FA= fractional anisotropy, RD= radial diffusivity, MD=mean diffusivity, NODDI=neurite orientation
dispersion and density imaging, SMT= spherical mean technique.
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4. Discussion

This study investigated associations between whole-brain white
matter microstructure using advanced models of diffusion, and aca-
demic performance in VPT and FT children at 13 years of age. For
mathematics, there were widespread associations with FA, RD, MD and
neurite density across VPT and FT children, however, for reading, there
were no significant associations with diffusion measures. The associa-
tions between white matter microstructure, mathematics and word
reading performance did not differ by birth group. Additionally, VPT
children with a mathematics impairment had lower neurite density in a
number of white matter regions compared to those without an im-
pairment, but there were no differences in white matter microstructure
between VPT children with and without a reading impairment.

4.1. White matter microstructural associations with mathematics

Better mathematics performance was associated with increased FA
and neurite density and decreased RD and MD in widespread and bi-
lateral white matter regions, including the hypothesised regions of the
inferior fronto-occipital and longitudinal fasciculi, superior long-
itudinal fasciculi and corona radiata, as well as the internal and ex-
ternal capsules and anterior corona radiata, in VPT and FT children.
These regions have previously been associated with mathematics per-
formance in the same VPT cohort at age 7 years (Kelly et al., 2016) and
in healthy individuals across a range of ages and types of mathematical
tasks (Moeller et al., 2015).

In addition to DTI, we have also utilised advanced models of dif-
fusion imaging, NODDI and SMT. The use of NODDI and SMT measures
is advantageous as they provide increased specificity to white matter
microstructural properties than DTI measures. The associations be-
tween DTI measures (FA, RD and MD) and mathematics performance in
the total sample were more widespread across the white matter than the
associations between NODDI density and mathematics performance.
Given that DTI is a non-specific technique, and DTI may be more in-
fluenced by cerebrospinal fluid contamination than NODDI, due to the
separate modelling of the cerebrospinal fluid compartment in NODDI
(Zhang et al., 2012), it is possible that DTI may be more prone to false
positive associations with mathematics performance than NODDI. It is
also possible that DTI may be more sensitive than NODDI to micro-
structural features other than neurite density that may be related to
mathematics performance, for example, myelination. While both DTI

and NODDI measures may be influenced by myelination (Zhang et al.,
2012), the use of additional techniques that are potentially more sen-
sitive or specific to myelination than DTI and NODDI may improve our
understanding of the microstructural factors related to mathematics
performance (Deoni et al., 2008; Glasser and Van Essen, 2011; Stikov
et al., 2015).

There was some agreement between the NODDI and SMT findings in
the total sample, with mathematics performance being associated with
neurite density from both NODDI and SMT in similar regions, including
the corona radiata, external capsule and corpus callosum. However,
while the SMT analyses suggested those VPT children with an impair-
ment had lower neurite density in widespread bilateral regions com-
pared with those without an impairment, the NODDI analyses did not.
This could suggest that SMT may have greater sensitivity than NODDI
for detecting differences between VPT children with and without a
mathematics impairment. While NODDI and SMT both conceptually
estimate neurite density, there are differences in the underlying models
which may influence the estimation of neurite density. For instance, the
NODDI model is based on three tissue compartments (intra- and extra-
neurite and cerebrospinal fluid) and sets fixed diffusivities in the
parameter estimation, whereas the SMT model is based on two tissue
compartments (intra- and extra-neurite) and does not set fixed diffu-
sivities (Zhang et al., 2012; Kaden et al., 2016; Zucchelli et al., 2018).
Additionally, NODDI estimates neurite orientation distributions using a
Watson distribution, while SMT is free of neurite orientation distribu-
tion models and factors out neurite orientation distribution in the
parameter estimation (Zhang et al., 2012; Kaden et al., 2016; Zucchelli
et al., 2018). In a comparative study of multiple microstructure models,
Zucchelli et al. (2018) found that NODDI may underestimate neurite
density while SMT may overestimate neurite density, and that SMT may
have less fitting error than NODDI (Zucchelli et al., 2018). Differences
such as these between NODDI and SMT may contribute to the differ-
ences in the NODDI and SMT results in the current study.

Because the parameters derived from DTI, NODDI and SMT are in-
direct measures of white matter microstructure, the mechanisms un-
derlying the relationships between academic performance and white
matter microstructure can only be speculated. The neurite density
measure from NODDI and SMT is thought to reflect axonal packing, but
could also be influenced by myelination (Kaden et al., 2016; Zhang
et al., 2012). Indeed, both axon density and myelination have been
reported to increase during childhood (Lebel and Deoni, 2018), and are
speculated to be adversely influenced by injury and developmental

Fig. 2. Left panel: TBSS results illustrating regions where neurite density from the spherical mean technique (SMT) was significantly lower in VPT children with
versus without a mathematics impairment, at p =< .05, following family-wise error (FWE) rate correction and threshold-free cluster enhancement (TFCE). P-value
maps have been overlaid on the standard space (MNI152) T1-weighted image and the coordinates reported indicate standard space coordinates in mm. Right panel:
The average neurite density value across all the significant voxels, plotted separately for impaired and non-impaired VPT children.
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disturbances associated with preterm birth (Volpe, 2009). Thus, better
mathematics performance in childhood may be associated with higher
axon density or more myelination per axon, which could enable the
transmission of more information, or faster transmission of information,
between brain regions involved in mathematics (Lazar, 2017).

Previous theoretical research has hypothesised a fronto-parietal
network involved in mathematics tasks (Dehaene et al., 2003), which
has subsequently been supported by studies using DTI and functional
MRI (Klein et al., 2013; Klein et al., 2016). Within this network, higher
FA and lower RD in the external and internal capsules and the left in-
ferior fronto-occipital and longitudinal fasciculi have been related to
better performance on measures of approximate arithmetic, magnitude
processing, mathematical fact retrieval, computation and mathematical
giftedness (Kelly et al., 2016; Klein et al., 2013; Matejko and Ansari,
2015; Navas-Sánchez et al., 2014; Rykhlevskaia et al., 2009). The ex-
ternal capsules have been shown to connect brain regions that are
thought to be used specifically for mathematical tasks (intraparietal
sulci and angular gyri), to regions that are involved in general cognitive
processing (dorsolateral prefrontal cortex and the inferior frontal gyrus;
Moeller et al., 2015; Navas-Sánchez et al., 2014). Further, the left in-
ferior fronto-occipital and longitudinal fasciculi are hypothesised to
relate to the visual and verbal representation of numbers, while the
corona radiata has been associated with multiple types of mathematical
skills (Matejko and Ansari, 2015; Moeller et al., 2015). Consistent with
previous findings, we found associations between mathematics and
white matter microstructure in relatively widespread regions, including
these fronto-parietal white matter regions. In addition to the proposed
fronto-parietal network, increased FA in the corpus callosum has been
consistently associated with better mathematics performance (Barnea-
Goraly et al., 2005; Navas-Sánchez et al., 2014) and decreased FA with
impaired performance (Barnea-Goraly et al., 2005; Rykhlevskaia et al.,
2009), which is consistent with our findings.

The current results are consistent with findings in our previous
paper reporting on children in the same cohort of VPT children at
7 years of age that found associations between mathematics perfor-
mance and FA in widespread white matter regions (Kelly et al., 2016).
However, in contrast to the previous findings at 7 years (Kelly et al.,
2016), we found an association between mathematics and neurite
density (from NODDI) at 13 years of age. This discrepancy could be due
to differences in sample compositions and image pre-processing
methods between studies. For example, in the 7-year study, the analysis
of associations between NODDI density and mathematics included VPT
children only (n=144; Kelly et al., 2016), whereas the current paper
included both VPT and FT children (n=114 and 36 respectively).
Additionally, the current paper excluded participants with an IQ
score < 70 and included susceptibility-induced distortion correction
for the diffusion images, whereas the 7-year paper did not (Kelly et al.,
2016).

4.2. White matter microstructural associations with reading

Unexpectedly we found no significant associations between reading
performance and white matter microstructure in our total sample of
VPT and FT children, and no significant differences when we compared
microstructure measures between impaired and non-impaired VPT
children. Previous research in this area is conflicting. Some studies
using TBSS have found associations between FA in various white matter
regions and reading in preterm children (Kelly et al., 2016; Feldman
et al., 2012b) and in typically developing children (de Moura et al.,
2016), whereas other studies using TBSS have not found associations
between FA and reading in typically developing children (Bathelt et al.,
2018). A previous study that used an alternative whole-brain approach,
Voxel-Based Morphometry, found that FA in the left temporo-parietal
white matter was associated with reading in typically developing chil-
dren (Beaulieu et al., 2005). Other previous studies have used region of
interest approaches, and have found associations between FA in various

white matter regions and reading performance in typically developing
(Deutsch et al., 2005; Niogi and McCandliss, 2006), and preterm chil-
dren (Andrews et al., 2010; Travis et al., 2015), including the superior
corona radiata, centrum semiovale (Niogi and McCandliss, 2006), the
superior longitudinal fasciculus (Deutsch et al., 2005), the corpus cal-
losum (Andrews et al., 2010) and cerebellar peduncles (Travis et al.,
2015). The different results between previous studies are likely due to
differing sample sizes, sample demographics (particularly age and age
range), methods for measuring reading ability, MRI acquisitions, and/
or image processing methods between studies. One major difference
between previous studies is that some were based on typically devel-
oping children (Bathelt et al., 2018; Beaulieu et al., 2005; de Moura
et al., 2016; Deutsch et al., 2005; Niogi and McCandliss, 2006), while
others were based on preterm children (Kelly et al., 2016) or a com-
bination of preterm and typically developing children (the current
paper; Andrews et al., 2010; Travis et al., 2015). In the current paper,
we found no significant birth group interactions on the white matter
microstructure-reading associations, suggesting that associations be-
tween white matter microstructure parameters and reading score do not
differ significantly between the VPT and FT groups. However, we ac-
knowledge that we had more VPT participants than FT participants and
thus, we may have been underpowered to detect birth group interac-
tions. Further research on the neural factors related to reading perfor-
mance in children is warranted.

4.3. Strengths and limitations

This study applied the advanced diffusion modelling techniques of
NODDI and SMT to data from a large, prospective cohort of VPT and
FT-born children. These techniques provide increased specificity to
white matter microstructural features compared with traditional DTI
(Zhang et al., 2012). However, NODDI has been criticised for using a
Watson distribution, which may not accurately model all neurite or-
ientation distributions, and for setting a fixed intrinsic diffusivity. This
motivated our use of also including SMT, which attempts to overcome
these particular limitations to NODDI (Kaden et al., 2016).

While TBSS is a well-established method for voxel-based analysis of
DWI data (Bach et al., 2014), our results must be interpreted in line
with the known limitations of TBSS. TBSS is dependent on accurate
registration and some studies have suggested more advanced registra-
tion methods may improve alignment between images (Schwarz et al.,
2014; Zhang et al., 2006). While the skeletonisation used in TBSS mi-
tigates some of the effects of misalignment, removes the need for data
smoothing, and reduces the dimensionality of the data, increasing sta-
tistical power (Bach et al., 2014; Jones et al., 2005; Smith et al., 2006),
it also introduces some difficulties in interpreting results. The skeleto-
nisation and projection steps cause the statistical sensitivity to vary by
spatial location and fibre orientation (Edden and Jones, 2011), and
have limited ability to assign diffusion values to the correct anatomical
tract within individuals and to the same tract between participants
(Bach et al., 2014). We also acknowledge that it is possible that our
results were driven by the larger VPT cohort and we were under-
powered to identify birth group interactions.

5. Conclusions

Widespread white matter microstructural alterations were asso-
ciated with poorer mathematics performance in 13-year-old VPT and FT
children. However, this may not be the case for reading performance.
This study expands on the current knowledge of neurobiological cor-
relates associated with mathematics performance, and variability in
performance, in childhood.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101944.
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