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SUMMARY

In this paper, we foreground some of the key research challenges that arise in the
design of trustworthy human-AI partnerships. In particular, we focus on the chal-
lenges in designing human-AI partnerships that need to be addressed to help hu-
mans and organizations trust their machine counterparts individually or as a col-
lective (e.g., as robot teams or groups of software agents). We also aim to
identify the risks associatedwith human-AI partnerships and therefore determine
the associated measures to mitigate these risks. By so doing, we will trigger new
avenues of research that will address the key barriers to the adoption of AI-based
systems more widely in our daily lives and in industry.

INTRODUCTION

Recent advances in Artificial Intelligence (AI), Machine Learning (ML), and Robotics have significantly

enhanced the capabilities of machines. Machine intelligence is now able to support human decision making,

augment human capabilities, and, in some cases, take over control from humans and act fully autonomously.

Real-world examples of autonomous systems including self-driving vehicles, recommender systems, facial

recognition systems, and automated trading are only just beginning to demonstrate the value machine intel-

ligence can deliver to society and the wider economy. However, unfortunately, there have also been failures in

the deployment of such autonomous systems that have resulted in fatal car crashes, plane accidents, and stock

market failures (Brynjolfsson andMcAfee, 2014; Daugherty andWilson, 2018). Such failures are often attributed

to a poor understanding of how to weave AI systems into our societal and industrial fabric.

Given this, we believe that the next big advance for AI and ML systems will involve them being significantly

more tightly embedded into systems alongside humans, interacting and influencing each other in a num-

ber of ways. Such human-AI partnerships are a new form of socio-technical system in which the potential

synergies between humans and machines are much more fully utilized. To achieve this, AI systems will

need to leave their currently solipsistic nature behind and be able to cooperate, coordinate, and compete

with one another and their human interlocutors. Such partnerships will combine their complementary skills

and capabilities to make the best use of the distinctive strengths of humans and machines (Licklider, 1960),

while also acknowledging their potentially diverging preferences, purpose, and objectives that may give

rise to conflict or cause them to attempt to influence (intentionally or not) each other’s decision-making.

Likewise, humans will likely be challenged to work and live with AI systems as fully autonomous partners,

rather than purely tools that they can manipulate or query. The modalities through which they engage

with AI systems will also vary greatly, shifting away from typical screen-based or tactile interfaces to voice

or brain-controlled, opening new opportunities and risks for interactions between humans and AI systems.

These elements of the human-AI partnership build upon and generalize notions of human-machine inter-

action or human-machine teaming that largely focus on the cooperative and coordination aspects.

Designing, building, anddeployinghuman-AI partnerships present a number of new challenges aswebegin

to understand their impact on our physical and mental well-being, our personal freedoms, and those of the

wider society. Indeed, the deployment of machine intelligence within systems that are traditionally human-

driven requires careful consideration of not only the reliability of these machines to take over human deci-

sion-making tasks, but also the ethical, legal, and psycho-social implications of the use of suchmachines. To

tackle these issues, research communities, such as the Safe AI or AI Ethics communities, have rapidly

grown,(These include venues such the AAAI/ACM AI Ethics conference (https://www.aies-conference.

com), the AI Safety workshop at the International Joint Conference on AI (IJCAI) and the SafeAI workshop

at the AAAI Conference on AI.) and new international initiatives have emerged in the last few years, such as

The Leverhulme Centre for the Future of Intelligence,(http://lcfi.ac.uk/) the NYU Center for Responsible

AI,(https://engineering.nyu.edu/research-innovation/centers/center-responsible-ai/) Stanford University’s
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Human Centered AI institute,(https://hai.stanford.edu/) or the UKRI Trustworthy Autonomous Systems

Hub.(http://www.tas.ac.uk/) From a technical perspective, human-centered (Lepri et al., 2021; Shneider-

man, 2020; Wilson and Daugherty, 2018) and machine-centered approaches (Rahwan et al., 2019; Awad

et al., 2018; Kraus et al., 2020) to the development of artificial intelligence have emerged. Human-centered

approaches propose to develop socially beneficial and ethical machine intelligence that also augments hu-

man capabilities and undertakes human tasks with high reliability. The former seek to ensure humans are in

control, or at least have a meaningful oversight of machine decisions, helping to foreground machine de-

cisions in ways that humans can comprehend and manage through various modalities. In contrast, ma-

chine-centered approaches aim to internalize human values because, in many situations, humans may not

be able to intervene or have the ability or time to fully understand what the machine is about to do. While

both approaches help focus research questions on the technical challenges involved in making machine

intelligence reliable and augmentative, they represent different points on the spectrum of human-AI part-

nerships and raise key interactional and ethical challenges. It is also important, however, to consider the psy-

cho-social aspects of systems involving humans and machines (i.e., the interdependence between social

factors and individual behaviors and thought and decision processes). Indeed, in previous work (Jennings

et al., 2014), we started to capture such aspects within the framework of Human-Agent Collectives

(HACs). HACs are systems where neither humans nor machines are always in charge and there is a need

to interact in various organizational and interactional setups in order to achieve their individual and common

objectives. The HAC framework also accounts for the fact that humans andmachines may need to be incen-

tivized to undertake tasks, and their actions need to be traceable to ensure that the system is accountable.

The HAC framework, nevertheless, has its own limitations. For example, it does not consider the ethical or

regulatory issues in diminishing human autonomy or tracking human activity, nor does it explicitly consider

how human or machine failures are managed within such systems. The challenge is exacerbated by the fact

that the AI and ML systems may involve networks of black-box autonomous systems that make it hard to

trace the causes and the widespread consequences of individual failures. Indeed, as with much research

within the AI community, projects tend to focus on efficiency rather than resilience, acceptance, or other

intrinsic or extrinsic performance measures as viewed by different stakeholders. Furthermore, work at

the boundary between AI and HCI (e.g., human-agent interaction or human-machine teaming) also tends

to ignore the competing interests of the many stakeholders that may be involved and the strategic deci-

sions they need to make. The result is that systems are built for lab-specific contexts and potentially never

make it to real-world applications. In cases where such systems are deployed in particularly dynamic and

uncertain environments, they will have to deal with events that neither the machines nor the humans

were prepared to deal with. Such concern is supported by recent events. For example, recent self-driving

car accidents involved the driver placing toomuch confidence in the capability of the autonomous car (e.g.,

either sleeping or watching videos, meaning they had no view of emergency alerts) (Banks et al., 2018),

while the Air France 447 crash exemplifies how a combination of system failures, the lack of team coordi-

nation and human skill in making sense of data generated by interconnected sensors, and in maneuvering

with no automated help, led to catastrophic consequences (Salmon et al., 2016). Furthermore, our reliance

on machines to comprehend masses of data from a variety of interconnected sources (e.g., sensors, data-

bases, and streaming broadcasts) in real time, in order to make decisions on our behalf, means that we are

exposed to the flaws built into these algorithms and the data they are trained on. In this vein, cases of bias in

datasets and algorithms have led to serious discrimination in the selection of candidates for jobs or racially

biased predictive policing (Daugherty and Wilson, 2018).

This has led to questions as to whether human-AI partnerships are feasible and financially viable as they

may lead to costly consequences or require more expensive safeguards and monitoring than non-AI-pow-

ered systems (Weardale, 2020). In some cases, developers of such systems have simplified the interactions

between humans and machines, always leaving humans in control (e.g., voice assistants asking for confir-

mation before making automated purchasing decisions or reducing the autonomy levels in self-driving

cars). Some have even recommended that black-box approaches should be avoided unless they can

explain themselves (Office for Artificial Intelligence, 2020; National Security Commission on AI, 2020).

We argue here that even if individual autonomous behaviors can be simplified or disambiguated, the inter-

connectedness of heterogeneous autonomous machines and humans (each with their own preferences,

values, and interests), will create emergent system behaviors that remain difficult to measure, predict, con-

trol, or certify. This could, in turn, undermine users’ trust in these systems because of the perceived risks

they pose. New approaches are therefore needed to design and oversee human-AI partnerships. We
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strongly advocate Responsible Research and Innovation (involving reflection, responsiveness, and antici-

pation as key elements) in the development of all human-AI partnerships to ensure they are ethical and

safe. We believe the challenges presented in this paper will be helpful in discussions with a wider set of

stakeholders beyond the research community. At a societal level, new approaches are required for the

governance and regulation of such partnerships to ensure the actors involved remain accountable and in-

dustry is provided with clear guidelines on how these systems should be developed. At a technical level, a

range of computational and interactional issues require urgent attention. For example, new models and

interaction mechanisms need to account for the fact that machines will be able to continually learn and

adapt in complex environments, and where data generated by humans and sensors may be liable to

bias and errors. Such approaches will also need to deal with actors that may have their own competing in-

terests, acting rationally to maximize their individual utility.

In this paper, we will foreground some of the key research challenges that arise in the design of trustworthy

human-AI partnerships (We will also touch upon some of the ethics, governance, and regulation challenges,

but a detailed exposition of such issues, in specific application domains, is well covered by the Safe AI and AI

Ethics communities). We define human-AI partnerships to be trustworthy by design if the humans and ma-

chines involved can rely on each other, self-organize to take advantage of each others’ strengths andmitigate

their weaknesses, and can be held accountable for their actions. In particular, we focus on the challenges in

designing human-AI partnerships that need to be addressed to help humans and organizations trust their ma-

chine counterparts individually or as a collective (e.g., as robot teams or groups of software agents). We also

aim to identify the risks associated with human-AI partnerships and therefore determine the associated mea-

sures tomitigate these risks. By so doing, we will trigger new avenues of research that will address the key bar-

riers to the adoption of AI-based systems more widely in our daily lives and in industry.

The rest of this paper is structured as follows. In section Trusting data-driven human-AI partnerships we

elaborate on the issues in developing and deploying continually learning systems that adapt to human

needs. Section Designing human-AI partnerships details the main challenges in designing the interactions

between humans and machines when they work together as part of teams. We also discuss how such teams

can be verified to be trustworthy at design time. Section Incentive engineering elaborates on incentive en-

gineering challenges, articulating the need to model human preferences and designing incentives to

engage them in social welfare maximizing behaviors. Section User stories provides two user stories that

bring together the range of challenges explored in realistic ways. Finally, Section Conclusions concludes.

TRUSTING DATA-DRIVEN HUMAN-AI PARTNERSHIPS

As with all data-driven technologies, the performance of machine learning systems can be significantly

affected by the quality of the data they are trained on, both in terms of the distribution of the data and

the methodology used to collect the data. In this context, a particular concern is algorithmic bias (Danks

and London, 2017). Here, we focus specifically on how new forms of bias may arise when human-AI partner-

ships are not just deployed in one-shot applications, but in long-lived systems where both humans and ma-

chines continually learn and adapt their behaviors.

Positive feedback loops

The obvious cases of algorithmic bias can be seen as reflections of biases that exist in our processes, orga-

nization design, and other social constructs. As discussed by Perez (2019), even infrastructure, vehicle

design, and academic career progression are all biased at the outset against women. Babuta and Oswald

(2019) show that issues of bias in predictive policing result in discrimination toward ethnic minorities. More-

over, Pink (2019) demonstrate that time-based biases impact the outcome of court judgments, the perfor-

mance of medical staff, or the performance of children at mathematics tests in their early years. Hence, it is

no surprise that machine learning systems that are driven by human-generated data or human-designed

organizations may be liable to perpetuate significant degrees of bias. That is not to say that such biases

cannot be identified and dealt with at source, but in many cases they cannot be detected until the machine

learning systems are tested on adversarial cases that are a poor fit to the training dataset. For example,

Slack et al. (2020) even show that standard bias-detection (through explanation) tools can easily be fooled.

More worryingly, the emergence of new biases is typically ignored. Techniques such as saliency maps and

attention networks can help both explain how machine learning systems place more weight on specific

features in the data and identify biases (Gilpin et al., 2018). However, weeding out biases in an online,

continually learning system remains a challenge.
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As humans and machines establish long-lived partnerships, the data that machines consume to continually

retrain themselvesmay come from the very humans their outputs are meant to influence. This is the case, for

example, where a user attempts to teach a smart thermostat the temperature profile they prefer. If, on

some day, it feels too hot, the user will again have to change the setting and the machine will learn again

to set the temperature accordingly. In some cases, the rate of change in user behaviors or preferences may

mean that themachine continuously has to play catch upwith the human. The thermostat may be constantly

trying to satisfy the human, and when it fails to do so, gets turned off. In other cases, pernicious two-way

biases (i.e., both human and machine influence each other’s biases) are introduced by the partnership

and these are hard to weed out. For example, a system where a CCTV operator uses a machine learning

system to classify people as potential intruders may train the system to recognize people of a certain

age, skin color or wearing specific types of clothes based on their own subjective views. The authority rela-

tionship between the human operator and the machine learning system implies that the learning system

should accept these new inputs as ground truth. Thus, a positive feedback loop is established, whereby

the CCTV operator will reinforce their personal biases, while doing the same for the learning system. Simi-

larly, autonomous vehicles trained on driver behaviors(https://towardsdatascience.com/teslas-deep-

learning-at-scale-7eed85b235d3) where such drivers may be aggressive, will bias the system to drive

aggressively, in turn, reinforcing this behavior in the driver and others using a similarly trained system.

Avoiding positive feedback loops is crucial, if these systems are to be embedded in our daily lives in the

long term, but detecting that such loops exist in the first place and how to address them remain a chal-

lenge. It may be possible to monitor and audit for individual user bias through independent review pro-

cesses, but these can be costly and time-consuming and therefore cost-effective solutions are needed.

At the same time, ongoing discussions with domain experts, individuals affected by automated decisions

and the general public are needed to establish the appropriate value systems that human-AI partnerships

should operate in (Friedler et al., 2021).

It may also be necessary to design AI to push back and police the humans’ flawed behaviors. This is even

more important if humans can maliciously game the machines, either to avoid detection or to benefit from

their poor performance. For example, during the Ushahidi crowdsourcing effort in Haiti, in some cases,

members of the crowd lied about their state (e.g., number of people in a settlement or their condition)

to influence the deployment of resources (Norheim-Hagtun and Meier, 2010; Heinzelman and Waters,

2010). Microsoft’s Twitter bot was maliciously trained with racist and rude language by Twitter followers

for pure fun (Neff and Nagy, 2016). To address this challenge, greater emphasis needs to be placed on

policing machine learning applications to detect attacks or verify human inputs. For example, Simpson

and Roberts (2015) show how poorly trained human labelers can be detected by the machine learning al-

gorithm and then presented with new tasks to upskill them. However, this may be difficult if the majority of

inputs ingested by the machine come frommalicious sources. New techniques are needed to address this.

Crucially, such techniques need to ensure that the costs of the associated remedial measures do not

outweigh the benefits of the system.

Finally, even if some of these measures are put in place, the positive feedback loops induced will make it

increasingly difficult to trace the root cause of the degradation of continual learning systems. Are these

failures due to a delay in adaptation or due to sensor failures or both? This problem is exacerbated in

interconnected machine learning systems whereby one machine learning system’s output (e.g., faces

classified as potential criminals or stock price predictions) feeds into another system as an input (e.g.,

to decide whether someone should be monitored by police or to drive trading decisions of many algo-

rithmic platforms). For example, during stock market shocks, algorithmic trading systems may react to

market recovery having learnt to behave in the same way as millions of other similarly trained algorithmic

trading platforms. The market may then suffer significant oscillations that are difficult to manage and sta-

bilize. As such systems fail, it may be too late for humans to trace the causes and devise an alternative

plan. In recent work, Pearl (2019) outlines a number of techniques for causal reasoning that may be able

to learn causal relationships in data and traces. Furthermore, the author proposes the algorithmization of

counterfactuals to weed out causes of certain biases or behaviors. These are promising avenues of

research. However, additional work is required to apply to highly unstructured domains where relation-

ships can be highly convoluted (as in the case of positive feedback loops involving multiple actors). In

particular, novel approaches are now needed to measure the impact and range of potential human

and machine failures and new approaches designed to verify these systems at design time. We expand

on this issue next.
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Tracking data and decisions

In human-AI partnerships, data can be generated through interleaved and sometimes joint actions. In many

cases, only the final outputs may be visible while, in fact, at every point in the data pipeline, biases and

errors are introduced. For example, in a disaster response scenario (Ramchurn et al., 2015), first, aerial im-

agery may be produced by UAVs. Second, humans and computer vision algorithms may work together to

classify the images. Third, another set of humans may extract key targets for food delivery, and collabora-

tively optimize the allocation of these targets with planning agents and another set of UAVs autonomously

flying in the air space. The UAVs, in turn, may need to iterate their routes with their human operators to

maximize team performance and achieve their goals efficiently. In this process, humans and machines

collaborate on tasks, jointly generating labels for images, interleave their decisions (i.e., humans and ma-

chines create tasks for UAVs, UAVs generate routes collaboratively with humans), and then humans may

take control of the machines when more granular control is needed (i.e., route optimization). Here, the

failure of any human or machine could cause either a lost food package or an accident. Due to the inter-

dependencies between humans and machines in the decision chain, attributing liability to either human

or machine (or both) can be a computationally (and legally) challenging task. In some cases, the various re-

lationships between the humans and the machines may already be known and can be modeled using tech-

niques such as probabilistic reasoning or Bayesian networks. As shown by Venanzi et al. (2014), Bayesian

approaches can be effective in weeding out biases and unreliable actors, while still delivering high quality

outputs. In other cases, where decisions are based on other humans and machines working together (e.g.,

jointly labeling a picture or creating a plan), attributing liability and detecting where inconsistencies arise in

the decision-making process may be difficult unless all the data and decisions made by the human-AI sys-

tem are tracked and monitored.

To provide an audit trail of such human-machine interactions, software engineering approaches such as

provenance tracking have been proposed as a potential solution (Moreau et al., 2008). Provenance tracking

solutions enable the capture of data and decisions in a machine readable and traceable format. These

methods generate directed acyclic graphs that can be analyzed for inconsistencies and to identify the

source of errors. However, in large systems producing large amounts of data every second, this analysis

rapidly unravels. This is even more difficult when data is held in proprietary databases. The challenge

then is to develop decentralized solutions that allow for the independent or containerized verification of

causes and effects (Chaudhry et al., 2015). Crucially, these techniques need to efficiently work on abstrac-

tions of histories or summarize and characterize the essential features of a provenance trace in a way that

still guarantees some traceability to the root cause of specific outcomes. It is also important to design such

provenance abstractions that can be interrogated and validated to ensure they can be trusted by both hu-

mans and machines, for example, using graph clustering or network analysis techniques (Huynh et al.,

2018). Otherwise, they would merely add another level of opacity to the system and increase the workload

of those managing the system.
DESIGNING HUMAN-AI PARTNERSHIPS

In human-AI partnerships, collaboration typically involves humans either making decisions individually or as

a collective, working closely with autonomous machines. While a wealth of research exists in the multi-

agent systems literature to deal with machine to machine conflicts, for example using argumentation or

negotiation (Rahwan et al., 2003; Baarslag et al., 2014; Vasconcelos et al., 2009), very little work has been

done to address conflicts in human-AI partnerships, particularly those involving multiple humans and mul-

tiple machines, going beyond constrained negotiation scenarios (Lin and Kraus, 2010). Here, we discuss,

with a practical example, the challenges that arise in such partnerships.

Building on the disaster response example above, a human-UAV team could involve UAVs being dis-

patched with an initial set of goals determined by their human team-mate(s) and the UAVs, in turn, reacting

to their environment, changing their plan, or suggesting to the human team on the ground to move to a

different position. Humans may also suggest to the UAVs new goals or constraints on their actions, and

negotiate with them over the viability of different courses of action. The UAVs may be expected to explain

why they would refuse to take certain paths or estimate how achievable are the goals suggested by the

operator (given the UAV’s perceived risks in the environment). Another example may be a set of smart

homes (each operated by a software agent) and human occupants, working together to adapt their elec-

tricity consumption profile in response to degraded supply on the power grid. The software agent may sug-

gest to the occupants to run their washing machine at off-peak times to save money, while the human may
iScience 24, 102891, August 20, 2021 5



ll
OPEN ACCESS

iScience
Review
indicate to the agent that they are unlikely to be home over the weekend to help the agent schedule heat-

ing and automated appliances optimally. In these different examples, onemay have a human in charge (‘‘on

the loop’’) or engaged directly in the operation of the team (‘‘in the loop’’). Over time, these partnerships

may also change from flat to hierarchical structures (where either the human or the machine is the leader) or

teams may need to disband to create new ones (e.g., if a sub-team of UAVs needs to be formed for a spe-

cific task or smart homes need to work together as part of energy collectives to purchase energy contracts).

Managing such relationships requires engineering the interactions, validating team structures, and

ensuring that these teams remain accountable. We address these issues next.
Designing interactional arrangements

Here, we consider the problem of configuring the roles and relationships between humans andmachines in

teams. Roles tend to be allocated based on the core capability of each member of the team, while consid-

ering the requirements or constraints of the environments. Typically machines are given the most data

intensive or repetitive tasks (e.g., monitoring the environment, calculating optimal routes, or allocating

tasks) while humans perform mostly reasoning tasks (e.g., setting goals and reacting to unseen situations)

(Tambe, 2011; Verame et al., 2016). In some cases, machines may be allowed to take over from humans

in situations where they can be trusted to operate at a similar level and can always be turned off if they

underperform (Verame et al., 2016; Costanza et al., 2014). In many cases, the starting point for the team

formation process will be the existing human-only setup with machines as replacements (e.g., to control

a vehicle or to extract insights from datasets) or enhancements (e.g., to reduce mental workload for a

CCTV operator or a doctor).

Doing so, however, risks increasing the workload for humans in dynamic situations and under-exploiting

more efficient human-AI partnerships. As seen in work by Ramchurn et al. (2016b), a team scheduling agent

(replacing a team leader) that gives some control to multiple members of a human team to choose their

preferred actions can result in poor choices at the team level. This is because the machine is unable to un-

derstand human constraints and cannot predict and inform them of the consequences of their choices in

many cases. As shown by Ramchurn et al. (2016a), having a human mediating between the machine and

the humans can achieve the best performance, also outperforming a purely human team. These interac-

tional arrangements dictate the architecture of a human machine team and should take into account not

only the capabilities of humans and machines, but also the respective requirements they place on each

other. For example, machines may need one or more humans to interpret their outputs and humans

need to be able to predict the reaction of machines to their inputs. Machines also need to be able to pro-

vide means for humans to interrogate them to better understand their suggestions or behaviors (as we

discuss next). Finally, roles may need to be specifically created to analyze and manage human-AI interac-

tions rather than purely focusing on task performance (Daugherty and Wilson, 2018).

Going further, it may be possible to configure the machine behaviors and controls to suit the specific hu-

mans they need to work with (e.g., the young, tech-savvy, or elderly). For example, machines may provide

extra controls for expert users and adjust their level of autonomy according to the experience of the indi-

vidual user or team interacting with it. Their autonomy levels could also be adjusted based on the config-

uration of the human team and the goals they would like to achieve. For example, a swarm of UAVs may

decide to split into smaller swarms if the tasks at hand require granular control and where there are suffi-

cient operators to manage their actions. The machines could either suggest the new plan to their tactical

commanders in charge of planning themission (and wait for approval or modifications) or could directly call

upon the operators (in charge of low-level control) to join their team in case they are readily available and

there is no time to overload their commanders with suggestions. In turn, commanders may want explana-

tions to be provided by the machines to justify their choices and may decide the plan does not meet their

objectives and override it. Similarly, in a smart home, a software agent could decide to switch the home to a

better low-carbon energy tariff, and continuously watch out for better tariffs after having learnt the occu-

pants’ carbon/price trade-off. In case the tariff requires the home and its occupants to change their energy

consumption habits (due to the intermittency of renewable power), the agent may create appliance and

heating schedules proactively in order to nudge the users to fit the required profile. The humans could

push back on this with revised preferences or simply take complete control of the tariff switching process.

The adaptive behaviors and interfaces described above ineluctably introduce additional interactional chal-

lenges that could be tackled either by providing the AI system with a better understanding of human needs
6 iScience 24, 102891, August 20, 2021
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and states (e.g., using sensors or asking for input) or by designing the system to account for a range of

human factors. For example, it is already possible to sense users’ levels of stress (e.g., using EEG or

ECG signals), frustration (from facial features), or tiredness (from their heart rate or time in working

mode) in order to adapt their notifications and behaviors. However, the challenge is to determine what

an AI systems should do if it detects potential stress or tiredness. While some have suggested using

Bayesian models or reinforcement learning to learn the right action to take (e.g., Truong et al. (2016) model

a user’s bother cost or Ramchurn et al. (2016a) model the preference of humans for certain team mates),

such solutions remain difficult to scale up and validate in the real world where there is significant uncertainty

as to the causes of stress, frustration, or tiredness. A possible solution is to center the design process on the

human-AI partnership, trialing different configurations of roles and AI capabilities in various iterations of

the system in different settings, and iteratively improving the interactional modalities and machine intelli-

gence at the same time. This may, for example, determine if the machines have the ability to deviate from

plans (e.g., when the environment significantly changes or when the human’s input is too delayed) and

when to do so without human input (e.g., when the human is busy with a more important task or unable

to communicate). In turn, humans may need to take on roles that are subordinate to machines in specific

circumstances. Complex human-AI partnerships are likely to emerge in that process. However, the more

complex such relationships become, the harder it is to verify and manage them, as we show next.
Verifiable and explainable human-machine teaming

Optimizing the design of human-machine teams against specific performance metrics does not usually

consider whether such performance can be guaranteed or be predictable in unseen contexts. Traditional

methods to verify software typically involve knowing the answer to a given situation or knowing all the

possible states in advance. Given a set of constraints or expected states, one can then test the system in

a variety of settings to make sure that the system conforms to its intended behavior. This approach can

completely break down in human-machine teaming settings, particularly those that involve a high level

of flexibility in terms of mixed-initiative decision-making in dynamic and uncertain environments that can

pose unpredictable challenges (Harel et al., 2020). Indeed, it is not clear how such a system can be verified

to be compliant and safe if it can potentially change its behavior (as in the case of machine learning systems

discussed above) depending on new unseen inputs or if humans make the wrong decision when they are

overloaded or tired. Traditional methods, such as model checking or formal verification, would require

modeling an infinite number of states to solve the problem, and also unrealistically assuming that human

behavior can be precisely modeled.

At best, autonomous systems tend to be developed, tested, and verified independently of the human be-

haviors or with assumed human responses. Recognizing the limitations of this, new approaches have been

developed to help system designers and users understand how human-AI systems reason or optimize their

behaviors (Rodden et al., 2013; Gunning et al., 2019; Ribeiro et al., 2018). These approaches aim to make

systems interpretable and explainable, in that they allow designers and users to interrogate and check what

a system uses as key features based on its inputs (from humans or the environment), in order to generate an

output (i.e., the link from the output to themost important parts of the inputs). These techniques also aim to

provide an explanation to end-users that focuses on simplifying the complex elements of decision-making

and help them predict future behaviors of a system. For example, an image classifier may provide a means

to identify key patient features or tissue features in an image that it uses to classify tissues as cancerous

(Jansen et al., 2020). Another example may be an autonomous navigation system that provides visualiza-

tions of its environment using a point cloud to show where it thinks the obstacles are (Wu et al., 2018). How-

ever, most research in this space tends to focus on machine learning systems rather than other forms of AI,

including human-machine teams (Samek et al., 2017).

Allowing designers to model and verify the potential behaviors of human-machine teams requires new

tools to interpret the dependencies within such teams, simulate their behaviors efficiently, and calculate

likelihoods of potential failures. Indeed, human-machine teams deployed in dynamic and uncertain envi-

ronments essentially exhibit the properties of a complex system where emergent behaviors and the risk

of cascading failures are vastly increased compared to traditional software systems where humans have

complete control. Applying standard testing protocols (e.g., black box or glass box testing) may give false

confidence in the certification of the system. Instead, we suggest the use of machine-generated explana-

tions that consider both the fundamental operating principles underpinning a human-machine team (i.e.,

what dependencies, checks, and balances they contain) and a summary of their simulated behaviors or
iScience 24, 102891, August 20, 2021 7
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digital twins in a variety of setups (e.g., as evidence to support explanations or to demonstrate that how

likely failures are and what mitigation measures they would adopt). These explanations present the user

with the ability to run what-if questions to better understand the range of potential behaviors and their

causes (Pearl, 2019). Moreover, when failures do occur, robust techniques are needed to model and ascribe

responsibility within complex human-agent teams (Yazdanpanah et al., 2021). Going further, given the

ethical issues that human-machine teams often raise (e.g., due to the harm they may expose humans or

the infrastructure to), it is also important to take into account the societal acceptance, regulatory, and legal

regimes within which they are implemented. This can only be achieved by involving experts from these

disciplinary backgrounds in the design, implementation, and certification process. In turn, the cost of

such processes may preclude small and medium-sized organizations utilizing human-AI partnerships

from accessing such experts and iterating their product or service to meet their requirements. Hence,

more work is needed to reduce such costs, potentially through the design of automated testing systems

and standards that are easier to commoditize and scale up at low cost.

INCENTIVE ENGINEERING

Human-AI partnerships are rarely dyadic relationships, but rather exist in complex organizations involving

many human and machine agents. These agents may have different, sometimes competing, aims and ob-

jectives. For example, they may be autonomous vehicles vying for space on an intersection or smart houses

coordinating their electricity consumption within a neighborhood to use a limited supply of renewable en-

ergy. To address these settings, we now elaborate on the socio-technical challenges of incentivizing hu-

mans and machines to take actions that are not only beneficial to themselves, but also to the wider society.

This is particularly difficult when the actors hold private information about their personal preferences and

constraints andmay not wish to share that information in case they are exploited. Hence, going beyond the

notions of human-machine interactions, we next focus on the modeling of preferences and engineering of

incentives to guide and sustain the formation of human-AI partnerships. On the one hand, models of pref-

erences permit the design of machine behaviors and systems that better respond to humans, while the en-

gineering of incentives ensures that human and machine behaviors are predictable and guarantee certain

outcomes. To date, a large amount of work from the economics and AI literature has established a wealth of

solutions and approaches to developing preference models and incentive mechanisms. However, they

invariably make strong assumptions that need to be tackled if human-AI partnerships are to thrive, as

we show next.

Preference modeling

To effectively assist or take decisions on behalf of humans, AI algorithms need to be aware of the prefer-

ences, needs, and constraints of humans. This is particularly the case when making decisions that affect

large groups of people, for example in smart electricity, smart transportation or disaster response applica-

tions. Here, a particular challenge is to collect preference information while safeguarding the privacy of

users. One promising option for achieving this is to take a citizen-centric approach, where an individual

is represented by a personal intelligent agent that learns and safeguards this information about private

preferences and then interacts with AI systems on the user’s behalf (Alan et al., 2016; Verame et al.,

2018). As a concrete example, such an agent could observe the usual departure times and daily energy con-

sumption of an electric vehicle driver and then use this information to participate in an electricity market or

dynamic pricing regime. When the driver wishes to travel further than their vehicle’s range, the same agent

might also book a multi-modal journey using public transport, while taking into account the user’s prefer-

ences for trading off speed and convenience with price. As such, an agent could run locally on a smart de-

vice or via a trusted third party, meaning no detailed private information has to be surrendered to a central-

ized decision-making system.

However, modeling the preferences of citizens accurately raises new research challenges. First, this has to

be achieved without placing undue cognitive burden on users. A potential approach for doing this is to

make use of inverse reinforcement learning to estimate a citizen’s latent preferences from observations

(Hadfield-Menell et al., 2016). This could be augmented with domain-specific preference and behavior

models, e.g., using mobility models (McInerney et al., 2013), thermal comfort models (Auffenberg et al.,

2018) or discrete choice models (Vastberg et al., 2020). To deal with uncertainty and unseen situations, it

will also be necessary to combine this approach with preference elicitation (Baarslag and Gerding,

2015), where the agent requests further input from the citizen if the expected benefit outweighs the cogni-

tive cost. Finally, in order to address the cold start problem and further reduce costly user interactions, data
8 iScience 24, 102891, August 20, 2021
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could be shared between multiple intelligent agents to identify common patterns and provide suitable

priors for the preference models, which are then refined through subsequent observations or queries.

This sharing of data could be undertaken directly between trusted agents, e.g., between the agents of fam-

ily members or friends, or it could be achieved via third-party preference aggregation agents that collect

and anonymize data. Such approaches might build on existing techniques used in recommender systems

(Aggarwal, 2016) or federated learning (Smith et al., 2017).

Incentives

When designing AI systems that interact with humans, it is critical to consider that these humans are not

passive providers of data with fixed behavior patterns. Rather, they are autonomous entities that pursue

their own personal goals, and these may interact with the decisions of AI systems in unexpected ways.

As argued earlier, this could lead to strategic manipulation, where a user purposefully supplies incorrect

data in order to obtain a personal benefit. At the same time, there are also opportunities to align the ob-

jectives of an AI system closely with the goals of human users and proactively encourage positive behaviors,

such as the reduction of energy consumption or delaying travel plans to reduce traffic congestion. To miti-

gate manipulation and encourage positive behavior change, it is thus crucial to model the goals of users

and provide them with the right incentives.

One prominent strand of research considers the use of game theory to achieve this and to model the

behavior of rational decision-makers in the presence of incentives (Nisan et al., 2007). This allows AI systems

to incentivize truthful reporting of private data, thus minimizing the potential for strategic manipulation (Al-

bert et al., 2017). Related techniques from decision theory can be employed tomodel how users respond to

varying prices or service quality levels, and this can be used to optimize overall system efficiency, for

example to encourage participants in a car sharing system to help relocate vehicles to socially-beneficial

locations (Drwal et al., 2017) or home occupants to adjust their thermostat settings to save on their energy

bills, trading off their comfort (Shann et al., 2017). However, while much work in game theory and decision

theory assumes rational behavior, humans do not necessarily satisfy that assumption. For example, there is

ample evidence that people do not evaluate all possible outcomes when making decisions, but rather

choose solutions that are deemed good enough (Simon, 1955). For many decisions, the framing of choices

is also important, leading people to choose different outcomes depending on how they are presented or

what alternatives are available (Tversky and Kahneman, 1981).

Designing these incentive-aware systems is challenging, because accurate models about how (potentially

irrational) individuals respond to incentives needs to be learnt. This is related to the modeling of prefer-

ences described earlier, but also needs to consider how individuals might strategically influence the

learning process in order to derive an advantage in future interactions (Amin et al., 2013). More generally,

when AI systems adapt their decision-making policies dynamically based on observations, this could allow

participants to exploit imperfect policies (Stein et al., 2020). In addition to addressing this strategic

behavior, it is also desirable to limit the amount of information required by a decision-making mechanism,

in order to safeguard privacy.

USER STORIES

Here we present two user stories that aim to exemplify the challenges described in the previous sections, in

different contexts and where the human-AI partnership elements perform well and also fail at times. We

aim to show the broad range of issues that can arise but where there is commonality in terms of the funda-

mental research questions that need to be addressed. By so doing, we also aim to demonstrate the kind of

impact that such human-AI partnerships can have if the challenges are met.

User story 1: Sarah is woken up by her digital assistant, who she affectionately calls Alice, that runs on her

alarm clock. Alice plays her preferred wake-up music and guides her through a mindfulness session to get

her ready for her day. Alice asks Sarah for her top tasks of the day and helps her schedule them, avoiding

conflicts with her other meetings. Alice can run from any of her personal devices, accessing Sarah’s profile

in the cloud at any time to provide her with a personalized experience in any context.

Alice is particularly useful when planning Sarah’s journeys to meetings with different clients across town.

Each of her clients also use similar personal assistants but not all use Alice, mainly because the firm that

runs Alice also shares their users’ data with third party marketing companies and other subsidiaries of
iScience 24, 102891, August 20, 2021 9
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the firm. Today, Sarah plans to meet George over coffee to discuss a new property development project

that just came up. To this end, Sarah asks Alice to negotiate a location and time with George’s digital as-

sistant called Bob. Bob is also run by a rival retail company to that of Alice. Alice requests Bob to share de-

tails of George’s schedule for the day and whether George has any preference in terms of location or any

constraints on travel. Bob refuses to share any details except George’s availability at certain times due to

George’s restricted data sharing agreement. Alice retrieves the history of interactions with George and de-

termines that George typically likes to meet downtown. She proposes a list of coffee shops in that area to

Bob, ranking the ones run by Alice’s firm first. Bob accepts the top suggestion and themeeting is booked in

George’s calendar. Closer to the meeting time, George realizes that the meeting has been set at a coffee

shop owned by Alice’s firm, which he dislikes. George calls Sarah and suggests a more preferred location

and informs Bob never to book ameeting in that coffee shop again. Bob records the change of location and

associates a negative preference with all coffee shops owned by Alice’s firm.

This story reveals the issues involved in delivering AI-based services that model, learn, and adapt to one or

more users’ preferences and also autonomously negotiate on behalf of their owners. The interactional

arrangement (see section designing interactional arrangements) here involves agents acting as mediators

for their human owners, but the relationship between human and agent is blurred by the firms that run Alice

and Bob. Alice can continually learn Sarah’s preferences and introduce biases as we see. It is unclear that

Sarah is even aware that some of her choices may be shaped by the firm that runs Alice and it may be hard to

determine who is eventually responsible for Sarah’s choices. In the long run, Sarah’s autonomy in making

her own choices may be compromised (see section positive feedback loops) and Alice’s biases could trans-

fer to Sarah and vice versa (i.e., Sarah may only prefer to go to Alice’s firm’s retail outlets or Alice may learn

to only propose specific coffee shops that Sarah chooses). Furthermore, while Alice can continually learn

Sarah’s preferences, it cannot easily do so with other human counterparts, though it attempts to restrict

the choices (i.e., ranking the coffee shops) offered to Bob in an attempt to incentivize Bob to pick the

top one (see section incentives). In George and Bob’s relationship, it is obvious that Bob just cannot

mediate on behalf of George effectively unless George consents to some extra information being passed

on to third parties (see section designing interactional arrangements). The problem could be fixed by hav-

ing Bob asking George to confirm the meeting in the first place. George is frustrated with the choice made

by Bob (who is not at fault) and realizes there is a gap in Bob’s model. George eventually directly inputs his

preferences to Bob (see section preference modeling). In this case, George’s dislike of Alice’s firm is strong

enough to overcome the bother cost of specifying his preferences to Bob. This example highlights poten-

tial design choices at hand:(There may be other design choices such as letting the user choose from amenu

of options or asking the user to fill the gaps in the agent’s knowledge when the need arises.) (1) letting

agents learn user preferences; (2) designing the agent to request confirmation before every automated de-

cision; or (3) asking the users to directly input their preferences. While (1) will meet typical machine learning

challenges, (2) and (3) can frustrate users and eventually break the human-AI partnership. Finding the right

balance will depend on a number of factors, including the users’ mental model of the AI, the risks involved

in getting choices wrong, and the benefit of machine-speed decision-making.

User story 2:David and Tom are part of a disaster relief charity, working in a major disaster zone in an Italian

city. An earthquake struck five hours ago, and David and Tom just landed at a nearby airport, tasked with

undertaking a rapid recce (reconnaissance mission) to get an understanding of the status of road networks,

building damage, and casualties. To help with this task, they have brought 3 containers carrying 1000 small

unmanned aerial vehicles, each equipped with onboard computing and communication capability that

allow them to deploy as a swarm and communicate live imagery in real time. As the lead Swarm Operator,

David is in touch with his headquarters (HQ) based in France and 100 other similar teams, deployed within a

100km radius. Tom, instead, is tasked with driving around the disaster area to verify information coming

from the swarm and to secure food and water depots.

At the press of a button on his tablet, David commands the swarm to take off, rapidly mapping the area.

David sees the map coming alive with the location of blockages and damaged buildings, with associated

likely casualties. David requests Tom to check on a supermarket in an industrial area to determine if it is safe

to use it as a food distribution point and to secure it. Tom can ask for support from the swarm if needed.

Three minutes later, a red light flashes on his screen telling him that a fire has erupted in the industrial area.

The swarm has lost a third of its units in that area. David assumes the fire has taken them out. A fewminutes

later, Tom radios in to say he has reached the site and that all is clear and that he is heading back. David asks
10 iScience 24, 102891, August 20, 2021
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Tom if he requested the swarm to scout a dangerous area, which might have led to the swarm being

degraded. Tom replies he did ask for scouting support but denies the crash is his fault.

This story highlights the benefits of reducing the complexity of managing a swarm of UAVs with a

few humans. The highly decentralized decision-making structure (where both humans and machines

are highly distributed) adds significant degrees of opacity when handling large-scale failures and dy-

namic environments (see section designing interactional arrangements). In such situations, it would

seem larger teams requiring greater control and visibility of the swarm would perform better. The key

challenge highlighted here is that of predicting the swarm’s emergent behaviors and managing them.

Tom may have requested the swarm to scout an area without quite understanding how the swarm would

execute this. Ideally, the swarm would have predicted its own behavior and explained potential risks to

Tom based on where its members may end up and allowing Tom to verify if the risks were acceptable

(see section verifiable and explainable human-machine teaming). Furthermore, the story suggests that

the swarm had high levels of autonomy, making decisions to go into risky areas without David confirming

it was allowed to do so (see section designing interactional arrangements). Ultimately, to confirm who is

at fault for the losses suffered, the provenance of the UAVs’ crash would need to be traced back to either

David’s or Tom’s decisions (see section tracking data and decisions). Assuring the data pipeline used by

the swarm and the humans involved is key to ensuring the human-AI partnership is accountable for its

actions.
CONCLUSIONS

We have outlined an agenda to address a range of high-level research questions to ensure that human-AI

partnerships are trustworthy by design. While we have touched upon some of the ethical issues such as hu-

man autonomy in human-AI partnerships (e.g., in long-lived interactions or in large human-machine teams),

we have not focused on the ethical, governance, and regulatory questions, as these are already under

active investigation by a range of multi-disciplinary communities (e.g., AI Ethics, Human-Centered AI,

and Safe AI). Instead, we explicitly focused on the technical challenges that need urgent attention and

are currently underserved by the research community. To develop trustworthy human-AI partnerships,

we discussed the need to consider: (1) the design of continually learning systems that work closely with hu-

mans and can create pernicious biases both for humans and AI systems; (2) the assurance of data pipelines

used by human-AI partnerships and provided initial ideas on how accountability can be preserved in such

systems using causal reasoning and provenance tracking; (3) interactional arrangements to create effective

organizational structures for human-AI partnerships; (4) the verification and validation of human-AI partner-

ships through the creation of simulations of human-AI teams (e.g., using digital twins) and explanation

tools; (5) the need to design incentives for human-AI partnerships to ensure they act individually and as col-

lectives to achieve socially beneficial outcomes; and (6) the need to model the preferences of the actors

involved to ensure fair and efficient outcomes for both humans and AI systems.

We presented two user stories to demonstrate how the issues of bias, accountability, control, and incentive

engineering can all arise in both routine human-AI partnerships and highly dynamic and uncertain work en-

vironments where the human-AI partnerships demand high degrees of accountability. By going beyond

settings involving one-human to one-agent, our stories serve to highlight specific issues with human-AI

partnerships that are not the typical focus of existing fields of research (e.g., HCI, HAI, or AI Ethics).

They also highlight that the development of trustworthy human-AI partnerships requires careful consider-

ation of psycho-social, interactional, and engineering issues, as well as the preferences of the actors or the

firms they represent.

Reflecting on the research directions proposed in this paper, we observe that they point to a stronger

embedding of models of societal conventions and ethics into sophisticated (home and industrial) robots

and software, interconnecting human and machine decision making. There is no question that the range

and intensity of human-machine partnerships will grow significantly as AI systems become less solipsistic

and more embedded in our daily lives, in industry, and even in government. Nevertheless, we believe

the full benefits of human-AI partnerships will only be realized if they can be trusted to operate safely as

they continually evolve. Such partnerships have the potential to improve our well-being, strengthen our so-

ciety’s resilience to natural and man-made disasters, and make our societies fairer and more economically

efficient. This will require research into new AI technologies and new methodologies for the design of hu-

man-AI partnerships, bringing together diverse disciplinary perspectives.
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