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Abstract

Background: Core Binding Factor or CBF is a transcription factor composed of two subunits, Runx1/AML-1 and CBF beta or
CBFb. CBF was originally described as a regulator of hematopoiesis.

Methodology/Principal Findings: Here we show that CBF is involved in the control of skeletal muscle terminal
differentiation. Indeed, downregulation of either Runx1 or CBFb protein level accelerates cell cycle exit and muscle terminal
differentiation. Conversely, overexpression of CBFb in myoblasts slows terminal differentiation. CBF interacts directly with
the master myogenic transcription factor MyoD, preferentially in proliferating myoblasts, via Runx1 subunit. In addition, we
show a preferential recruitment of Runx1 protein to MyoD target genes in proliferating myoblasts. The MyoD/CBF complex
contains several chromatin modifying enzymes that inhibits MyoD activity, such as HDACs, Suv39h1 and HP1b. When
overexpressed, CBFb induced an inhibition of activating histone modification marks concomitant with an increase in
repressive modifications at MyoD target promoters.

Conclusions/Significance: Taken together, our data show a new role for Runx1/CBFb in the control of the proliferation/
differentiation in skeletal myoblasts.

Citation: Philipot O, Joliot V, Ait-Mohamed O, Pellentz C, Robin P, et al. (2010) The Core Binding Factor CBF Negatively Regulates Skeletal Muscle Terminal
Differentiation. PLoS ONE 5(2): e9425. doi:10.1371/journal.pone.0009425

Editor: Axel Imhof, Ludwig-Maximilians-Universität München, Germany

Received August 21, 2009; Accepted February 3, 2010; Published February 25, 2010

Copyright: � 2010 Philipot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Association Française contre les Myopathies (AFM); the Fondation Bettencourt-Schueller; the Agence Nationale de la
Recherche (ANR); the Ligue Nationale contre le Cancer; the Association pour la Recherche sur le Cancer (ARC), the CNRS; the Université Paris-Sud and the
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Introduction

Runx1 (for Runt-related transcription factor 1, also known as

AML1 for Acute Myeloid Leukemia 1, CBFA2 or PEPB2aB)

belongs to a family of highly homologous heterodimeric transcrip-

tion factors named Core Binding Factors or CBF (reviewed in: [1]).

In addition to the Runx1 subunit which binds DNA directly, CBF is

composed of a non-DNA-binding subunit named CBFbeta (CBFb)

[2]. Runx1 binds better DNA in the presence of CBFb. Runx1 was

originally identified at a breakpoint on human chromosome 21 in

the t(8;21) translocation, known as the most common target of

chromosomal translocations in human leukemia [3,4]. Genetic

studies showed that Runx1 is essential in the developing murine

embryo for definitive hematopoiesis of all lineages [5,6].

There is now strong evidence that Runx proteins are also

important for differentiation of multiple cell types, including

osteoblasts [7], neurons [8,9], hematopoietic cells of all lineages

[5,6,10] and skin epidermis and hair follicle stem cells [11,12].

Runx1 is also involved in promoting senescence in primary mouse

fibroblasts [13], and in cell cycle regulation [14–16].

Runx proteins have the potential to either activate or repress

transcription in a context dependent manner. Runx1 seems to

promote proliferation in progenitor cells, whereas in differentiating

cells it cooperates with tissue-specific transcription factors to

regulate tissue-specific gene expression. For example, Runx1

cooperates with C/EBPa and C/EBPb to regulate hematopoiesis

and osteogenesis, respectively [17,18]. The dual role of Runx1 in

regulating proliferation and differentiation could depend on

differential interactions with protein partners, specific for each

stage of cell development. The molecular mechanisms underlying

such a switch in Runx1 function remain however to be

deciphered.

Runx1 and CBFb have also been linked to skeletal muscle

differentiation [19–21], and prevention of muscle wasting [20]. In

skeletal muscle, proliferation and differentiation are mutually

exclusive. Indeed, skeletal muscle terminal differentiation begins

with an irreversible withdrawal from the cell cycle, followed by

muscle-specific marker expression [22]. Irreversible cell cycle exit

involves a definitive silencing of proliferation-associated genes

(reviewed in [23] and references therein). Terminal muscle

differentiation is orchestrated by myogenic bHLH transcription

factors, such as MyoD and Myf5, two master myogenic

determination factors. MyoD is expressed in proliferating

myoblasts, but is unable to activate its target genes even when
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bound to their promoters [24,25]. MyoD therefore may have a

repressive role at its target genes prior to initiating chromatin

remodeling in differentiating cells [24,26,27]. In proliferating

myoblasts, MyoD is associated with histone deacetylases (HDACs),

the histone methyltransferase Suv39h1 and heterochromatin

protein HP1, and might actively inhibit expression of its target

genes by inducing a local repressive chromatin structure

[24,28,29].

Here we show that CBF associates with MyoD preferentially in

proliferating myoblasts, and knockdown of Runx1 or CBFb
accelerates cell cycle exit and terminal differentiation. Conversely,

overexpression of CBF slows cell cycle exit and delays muscle

differentiation. In proliferating myoblasts, the MyoD/CBF

complex contains several chromatin modifying enzymes such as

HDACs. In agreement with this, when overexpressed, CBFb
maintains histone H3 hypoacetylated, hypomethylated on lysine 4

and hypermethylated on lysine 9, on MyoD target promoters,

along with HDAC1 recruitment, even in differentiation condi-

tions. Finally, Runx1 is recruited to MyoD target genes

preferentially in proliferating myoblasts, when these genes are

repressed. Altogether, our data suggest that CBF transcription

factor plays a pivotal role as a negative regulator of skeletal muscle

terminal differentiation.

Results

CBF Subunits, Runx1 and CBFb, Interact with MyoD in
Proliferating Myoblasts

In an attempt to characterize MyoD protein partners, we

carried out double-affinity purification of HA-Flag MyoD stably

expressed in HeLa cells (see purification scheme on Figure S1).

MyoD protein complex composition was then analyzed by mass

spectrometry (MS) and western blot (WB). MS analysis of the

purified protein complex revealed some already known partners of

MyoD (Figure S2), such as Id, Pbx1, PC4 and E12/E47, and

partners that had never been described to interact with MyoD.

Indeed, MS analysis unveiled CBFb protein within MyoD

complex with a high number of peptides, covering almost 20%

of its protein mass and amino acids content (Figure 1A). WB

analyses confirmed that result and showed that Runx1 also co-

purified with MyoD (Figure 1B).

We then performed a complementary experiment by transfect-

ing HA-tagged MyoD and/or HA-tagged Runx1 into HeLa cells

stably expressing Flag-HA-CBFb (ectopic, eCBFb). We showed

that, indeed, MyoD co-precipitated with eCBFb (Figure 1C, lane

6). Moreover, the simultaneous co-transfection of HA-tagged

Runx1 resulted in its co-precipitation with CBFb (Figure 1C, lane

5) and, more importantly, increased the MyoD co-precipitation

(Figure 1C, compare lanes 5 and 6).

To further investigate the CBF/MyoD interaction, we turned to

myogenic cells: the murine myoblastic cell line C2C12. Both

Figure 1. Runx1 and CBFb interact with MyoD in vitro and in
proliferating myoblasts. A. Peptide sequences identified by mass
spectrometry in the MyoD complex corresponding to CBFb protein. B.
Western blot analysis of double-purified Flag-HA-MyoD (MyoD), or
eluate from HeLa control cells (Mock) with the indicated antibodies (WB
Ab). S: soluble; C: chromatin associated. C. HeLa cells stably expressing
Flag-HA-CBFb (eCBFb) or HeLa control cells stably transfected with the
empty vector (Ctr) were transiently transfected with expressing vectors
for HA-tagged MyoD and/or HA-tagged Runx1. 24 hours post-
transfection, cells were harvested and lysates were used for immuno-
precipitation (IP) using Flag resin to precipitate Flag-HA-CBFb.
Precipitates were then subjected to western blot using HA Ab (WB a-
HA) to simultaneously detect HA-Runx1, HA-MyoD, and Flag-HA-CBFb
(discriminated on the gel by their molecular weight). However, we have
checked the identity of each HA-revealed band by using antibodies
recognizing the native proteins (Figure S8). D. Nuclear extracts from
proliferating (prolif.) or differentiating myoblasts (48 h, indicated as

Diff.) were used for immunoprecipitation (IP) with antibodies (Ab) raised
against MyoD (lanes 4 and 9) and Myf5 (lanes 2 and 7), with control
beads (lanes 3 and 8) or with normal rabbit IgG (lanes 5 and 10) as
negative controls. The resulting precipitates were then subjected to
western blot analysis (WB) for the presence of MyoD, Myf5 and CBFb.
Input extracts were loaded to show endogenous protein levels (lanes 1
and 6). E. Runx1, CBFb, or luciferase (Luc) were in vitro translated in the
presence of 35S-Methionine (inputs on lanes 1-3, respectively) and
incubated with equivalent amounts of GST-MyoD beads (lanes 4–7) or
GST beads (lanes 8–11). GST pull-down was then conducted as
described in the Material and Methods section, and the radiolabeled
proteins were detected by autoradiography. *: CBFb.
doi:10.1371/journal.pone.0009425.g001
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CBFb and Runx1 are expressed in the C2C12 myoblasts and their

protein level do not vary significantly during differentiation (Figure

S3). We found that MyoD, and the other myogenic determination

factor Myf5, co-precipitated with CBFb preferentially in prolifer-

ating compared to differentiating C2C12 myoblasts (Figure 1D).

To assay whether MyoD has the ability to interact directly with

CBF, we performed GST pull-down experiments, which showed

that GST-MyoD strongly interacts with Runx1 (Figure 1E, lane 4),

but not with CBFb (Figure 1E, lane 5). The interaction of MyoD

with Runx1 was specific; we did not detect any Runx1 signal in the

presence of GST protein alone (Figure 1E, lane 8) nor any

luciferase signal with GST-MyoD (Figure 1E, lane 7). Interesting-

ly, GST-MyoD interacts with CBFb only in the presence of Runx1

(Figure 1E, compare lanes 5 and 6), in agreement with our

previous findings (Figure 1C). These results show that MyoD

interacts directly with heterodimeric transcription factor CBF, via

the Runx1 subunit.

The bHLH and the Transactivating Domains of MyoD,
and the Transcription Regulation Domain of Runx1 Are
Required for Their Interaction

In an attempt to delimit the domain of MyoD responsible for

interaction with Runx1, we used HA-tagged mutants of MyoD

transfected into HEK 293 cells. Anti-HA immunoprecipitation

revealed an interaction of Runx1 and CBFb with wild-type MyoD

as expected, and only with a MyoD 82-318 mutant, which retains

the bHLH and the C-terminal transactivating domains (Figure 2A).

Runx1 and CBFb failed to interact with truncated MyoD versions

lacking either the bHLH, i.e., mutants Nter and Cter, or the C-

terminal domain, i.e., mutants DCter, Nter and bHLH (Figure 2A).

These experiments clearly show that the bHLH and the C-

terminal transactivating domains are required for interaction with

Runx1. Notably, MyoD deletion mutants that do not interact with

Runx1 do not interact with CBFb (Figure 2A). This result,

combined with the results presented on Figure 1E, indicate that

Runx1 is most likely the subunit that directly interact with MyoD.

To delimit the Runx1 domain involved in the interaction with

MyoD, we performed a GST-pull down experiment (Figure 2B).

Our results show that the transcription regulation domain located

in the C-terminal part of Runx1 is required for the interaction

with MyoD (Figure 2B). The interaction of MyoD with Runx1 was

specific; we did not detect any Runx1 signal in the presence of

GST protein alone nor any luciferase signal with GST-MyoD

(Figure 2B).

CBF Negatively Regulates Cell Cycle Exit and Terminal
Differentiation in Skeletal Myoblasts

We used siRNAs to decrease Runx1 level in order to investigate

its role in differentiating myoblasts (Figure 3A, see Runx1

quantification). Downregulation of Runx1 resulted in a more efficient

differentiation (Figure 3A); both the expression of muscle markers

and the proportion of multinucleated cells were higher in Runx1-

depleted cells (Figure 3A and Figure S4A). In particular, myogenin

and MCK (Muscle Creatine Kinase) were expressed at higher levels

in Runx1-depleted cells (Figure 3A). Interestingly, cyclin D1 level

decreased more rapidly when Runx1 is downregulated (Figure 3A).

Similarly, CBFb downregulation induced an accelerated differen-

tiation (Figure 3B, top panel) and a more rapid decrease in cyclin

D1 (Figure 3B, lower panel). Indeed, we could detect MCK

expression in CBFb-depleted myoblasts as soon as 24 h after the

induction of differentiation (Figure 3B, top panel). These cells

moreover exhibited larger myotubes (Figure S4B). We confirmed

these results in primary myoblasts (Figure 3C).

Figure 2. The domains of MyoD and Runx1 involved in their
interaction. A. The bHLH domain and the C-terminal transactivating
domain of MyoD are involved in the interaction with Runx1 and CBFb.
Top panel, Schematic diagram of MyoD functional domains, TAD:
transactivation domain, bHLH: basic Helix Loop Helix. Lower panel,
Runx1 and CBFb interact with MyoD wild-type and with MyoD deletion
mutant containing the bHLH and the C-terminal domain. Lower panel,
expression vectors for wild-type MyoD and its deletion mutants were
transfected in HEK 293 cells using Calcium phosphate precipitation as
described in Material and Methods section. 48 h post-transfection, cells
were lysed and lysates were subjected to anti-HA immunoprecipitation.
Precipitates were then analyzed by western blotting using with the
indicated antibodies (WB Ab). *: specific bands. B. The transcription
regulation domain located in C-terminal part of Runx1 is required for
the interaction with MyoD. Top panel, Schematic diagram of Runx1
protein. The Runt, transactivation (TA), and transcription inhibition (ID)
domains are indicated. Lower panel, Runx1 and its deletion mutants, or
luciferase (Luc) were in vitro translated in the presence of 35S-
Methionine (inputs shown on the right panel) and incubated with
equivalent amounts of GST-MyoD or GST agarose beads (normalization
is shown in the lower panel). GST pull-down was then conducted as
described in the Material and Methods section, and the radiolabeled
proteins were detected by autoradiography.
doi:10.1371/journal.pone.0009425.g002
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In agreement with our previous results, we have found that

Runx1 or CBFb downregulation led to a significant decrease of S-

phase cells proportion concomitant with an increase in G1-phase

cells (Figure 3D). This suggests that CBF positively regulates

myoblasts proliferation.

As for the specificity of the siRNAs, we obtained the same

phenotype with three different siRNAs that target CBF: the two

targeting CBFb subunit and the one targeting Runx1 subunit

isoforms. Thus, the observed effects are unlikely due to any off-

target effect.

To complete our analysis, we studied the effect of CBFb
overexpression on terminal differentiation. Overexpression of

CBFb in C2C12 myoblasts (C2C12-CBFb) was well tolerated

and did not lead to morphological abnormality (Figure S5).

However, in differentiation conditions, C2C12-CBFb cells showed

a delay in cell cycle exit, as measured by early-G1 phase cyclin D1

level that decreased with a 24 to 48 h delay compared to control

cells (Figure 4A), but not that of late-G1 cyclins A and E

(Figure 4C). Note that proliferating C2C12-CBFb cells contain

more cyclin D1 protein then the control cells (Figure 4A), but not

cyclins A2 and E (Figure 4C). The delayed cell cycle exit

correlated with delayed expression of muscle markers such as

myogenin (48 h delay), MCK (24 h delay), and MHC (Myosin

Heavy Chain, not detected at 120 h) (Figure 4A). In contrast to

control cells, C2C12-CBFb cells exhibited smaller and mainly

mononucleated myotubes (Figure 4B and Figure S5) with low

expression of MCK and MHC (Figure 4B) in differentiation

conditions. This suggests that differentiation kinetics was not

completely impaired but greatly delayed when CBFb was

overexpressed. Further analysis of cell cycle regulators expression

showed that, in addition to a delayed decrease in cyclin D1

(Figure 4A and C), cyclin D3 and p21 expression is delayed in

C2C12-CBFb cells compared to C2C12 control cells (Figure 4C).

Altogether, these results suggest that CBF plays a dual role

during skeletal muscle differentiation by regulating cell cycle

withdrawal and expression of muscle markers.

CBF Transcription Factor Is Located to MyoD Early Target
Genes and Regulates Negatively Their Expression

The fact that CBF is a transcription factor which interacts with

MyoD preferentially in proliferation conditions, led us to

investigate whether it would be targeted to MyoD target genes

to repress their transcription. Using an in silico approach, we first

found that on early target gene promoters of MyoD, Runx1 and

MyoD binding sites were adjacent (Figure S6A). In order to test

the effective recruitment of Runx1 onto MyoD target promoters,

we performed ChIP experiments. Our results showed a preferen-

tial enrichment in Runx1 on myogenin, p21 and cycD3 promoters in

proliferating compared to differentiating myoblasts (Figure 5A).

These MyoD target genes are expressed early in differentiating but

not in proliferating myoblasts (Figure S6B).

Our ChIP assays showed that Runx1 was not located on late

target genes of MyoD, such as Desmin, MHC and MCK (data not

shown), while it was on early muscle differentiation genes myogenin,

p21 and cycD3. In addition, we did not find Runx1 binding sites

adjacent to E-boxes on late MyoD target genes’ promoters. These

findings suggest that Runx1 would essentially regulate early events

of skeletal muscle terminal differentiation. Taken together, our

results strongly suggest that Runx1 could be recruited onto MyoD

early target genes to regulate negatively their expression in

proliferating myoblasts.

To gain insights into the mechanism of action of CBF on MyoD

target genes, we purified CBFb protein complex from proliferating

C2C12-CBFb cells via its Flag tag. As expected, CBFb co-purified

Figure 3. Downregulation of CBF subunits expression acceler-
ates cell cycle exit and muscle terminal differentiation entry. A.
C2C12 myoblasts were transfected with scrambled (Scr) or anti-Runx1
siRNAs. 48 h post-transfection (0 h, lanes 1–2), cells were placed in
differentiation medium for 24 h (lanes 3–4) or 48 h (lanes 5–6). Cells
were then analyzed by western blot with the indicated antibodies (WB
Ab). The differentiation times are indicated in hours (h). Runx1
downregulation has been quantified (indicated as ‘‘Runx1 quantif.’’)
using Bio1D application (Vilber Lourmat). a-tubulin is used as a loading
control. B. As in A, except that we used two different CBFb siRNAs (C1,
C2). C. As in A and B, except that we used proliferating primary
myoblasts instead of C2C12 myoblasts, and combined Runx1 and CBFb
siRNAs (lane 4). Note that all the kinetic studies of differentiation were
carried out in the same 10 cm diameter cell culture dish for each
sample. D. FACS analysis of the cell cycle distribution of C2C12
myoblasts transfected with the indicated siRNAs. Cells were analyzed
48 h post-transfection. Scr: scrambled siRNA.
doi:10.1371/journal.pone.0009425.g003
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with the myogenic factor MyoD and with its dimerization partner

Runx1 (Figure 5B). The other partners that co-purified specifically

with CBFb are proteins known to be involved in transcriptional

repression: the histone 3 lysine 9 (H3K9) methyltransferase

Suv39h1, the heterochromatin protein HP1b, and the histone

deacetylases HDACs 1, 2 and 3 (Figure 5B). These interactions

could be mediated by Runx1. Indeed, these proteins are already

known partners of Runx1 on the one hand [30], and repressors of

MyoD activity on the other hand [31–33].

Given the association of CBFb with chromatin-modifying

enzymes, we studied the chromatin status of three target gene

promoters of MyoD in differentiating C2C12-CBFb using

chromatin immunoprecipitation (ChIP). Our results showed that,

in contrast to control cells in which histone H3 acetylation (a mark

associated with transcription activation) on myogenin, cyclin D3 and

p21 promoters increased in differentiation compared with

proliferation conditions, histone H3 acetylation levels at these

promoters did not vary in C2C12-CBFb cells (Figure 5C). More

generally, in differentiation conditions, we found that activating

marks (histone H3 acetylation, histone H3 lysine 4 tri-methylation)

are abnormally lower on myogenin and cyclin D3 promoters in

C2C12-CBFb cells compared to control cells (Figure 5D).

Concomitantly, repressive marks (histone H3 lysine 9 tri-

methylation, presence of HDAC1) are higher (Figure 5D).

These results are in agreement with our findings showing that

CBF associates with chromatin modifying enzymes, such as

HDACs, Suv39h1 and HP1b (Figure 5B), which are known to

repress MyoD activity in proliferating myoblasts. Thus, CBF has

an effect on the chromatin structure of three early target genes of

MyoD and contributes to maintain a repressive chromatin state.

Runx1 Represses MyoD Transcriptional Activity
To investigate the effects of Runx1 on MyoD transcriptional

activity, we used a luciferase reporter gene under the control of the

myogenin promoter, which is a direct target promoter of MyoD that

harbors a Runx-binding site adjacent to MyoD-binding site

(Figure S6A). Co-transfection experiments were performed in

HeLa cells line that does not express MyoD endogenously. We

observed that the co-transfection of Runx1-expressing plasmid

together with MyoD expression vector resulted in the inhibition of

myogenin promoter activity in a dose-dependent manner (Figure 6).

The inhibitory effect of Runx1 is specific and is MyoD-dependent.

Indeed, it was not seen with Renilla–luciferase expression under a

CMV promoter (used as a normalization control for transfection

efficiency). Thus, Runx1 inhibits MyoD activity.

Discussion

Here we show that CBF transcription factor, composed of

Runx1 and CBFb subunits, is expressed in proliferating myoblasts

where it interacts with MyoD. Modulating the expression levels of

either Runx1 or CBFb impaired cell cycle exit and terminal

myogenic differentiation.

Runx1/CBFb Interact with MyoD
Mass spectrometry analysis revealed that CBFb is part of MyoD

complex. Further western blot analyses of the same MyoD

complex revealed the presence of Runx1 subunit. We have

narrowed our study to Runx1 because of all the three Runx

proteins, to our knowledge, Runx1 is the only one linked to

skeletal muscle [20]. In addition, Runx1 is one of the MyoD target

genes in myoblasts [34]. Among the other Runx members, Runx2

is mainly involved in osteogenesis, and it has already been shown

that Runx2 expression is not detectable in myoblasts [35].

Moreover, ectopic expression of Runx2 in myoblasts triggers

osteogenic transdifferentiation [35–37]. Finally, concerning

Runx3, it has been shown that it is not expressed in skeletal

muscle and is mainly linked to neurogenesis [38–42]. Thus, we

explored the role of Runx1/CBFb during muscle skeletal terminal

differentiation. However, Runx1 has been reported to play an

Figure 4. Overexpression of CBFb delays cell cycle exit and
muscle terminal differentiation. A–C. C2C12 cells stably overex-
pressing Flag-HA-CBFb (C2C12-CBFb) or control cells (C2C12-Ctr) were
differentiated at the indicated times (in A and C, in hours), and analyzed
by western blotting with the indicated antibodies (WB Ab) (A, C) or by
immunofluorescence (IF) (636magnification) (B). The kinetic studies were
carried out in the same 10 cm diameter cell culture dish (A, C). IF
experiments using anti-MCK or anti-MHC antibodies were performed 48 h
and 72 h respectively after induction of differentiation. Cells were DAPI-
stained prior to fluorescent microscopy analysis (636magnification).
doi:10.1371/journal.pone.0009425.g004
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important role in protecting denervated, fully differentiated,

myofibers from atrophy and autophagy [20]. In this paper [20],

Runx1 has been assigned a role of a growth-promoting factor of

muscle cells to limit muscle wasting. In this very elegant study, the

authors generated knock-in homozygous mice carrying inactive

Runx1 in skeletal muscle cells. However, Runx1 inactivation was

conducted under the indirect control of MCK promoter, which is

active only at late stages of terminal differentiation. Thus, with this

system, we cannot see the effect of Runx1 inactivation on early

stages of terminal differentiation, where MCK promoter is not yet

active.

Runx1 and CBFb Regulate Cell Cycle Exit and Terminal
Differentiation

Runx1 or CBFb downregulation in myoblasts induced an

accelerated cell cycle exit. Indeed, cyclin D1 protein disappears

Figure 6. Runx1 represses MyoD-mediated transcription. Co-
transfection into HeLa cells with a myogenin promoter-driven Firefly
luciferase reporter plasmid (kind gift of V. Sartorelli, NIH) without or
with a fixed amount of MyoD expression vector (800 ng), and increasing
amounts of vector expressing Runx1. The quantities of Runx1
expression vector used were: 0, 30, 60, 150, and 300 ng. The total
amount of plasmid was normalized when necessary to 300 ng with the
empty vector. The inhibitory effect of Runx1 was specific, indeed, it was
not seen with a Renilla luciferase expression under a CMV promoter
(used as a normalization control for the transfection). Results are the
mean of 2 independent experiments performed each in triplicates.
doi:10.1371/journal.pone.0009425.g006

Figure 5. CBF acts at the chromatin level to regulate MyoD
target genes. A. ChIP using anti-Runx1 Ab were performed from
either proliferating (grey bars) or differentiating myoblasts (black bars).
We quantified copy numbers of the myogenin, p21 and cyclin D3
promoter regions harboring the MyoD and Runx1 target sequences,
compared to 36B4 gene, which was used as a reference gene. Results

are the mean of 3 independent experiments. B. Western blot analysis
with the indicated antibodies (WB Ab) of Flag-purified Flag-HA-CBFb
stably expressed in C2C12 cells (CBFb), or from C2C12 control cells (Ctr).
Both inputs are probed in lanes 1–2 and eluates are shown in lanes 3–4.
C. Chromatin immunoprecipitation (ChIP) experiments using anti-acetyl
H3 antibody were performed from either proliferating (grey bars) or
differentiating (black bars) C2C12 control (left) and C2C12-CBFb (right)
cells. We quantified copy numbers of the myogenin (myog.), cyclin D3
and p21 promoter regions harboring the MyoD target sequences.
Results are the mean of three measurements. D. ChIP experiments
using antibodies against acetyl histone H3 (AceH3), trimethylated
histone 3 lysine 4 (me3H3K4), trimethylated histone 3 lysine 9
(me3H3K9), Histone Deacetylase 1 (HDAC1) were performed from
differentiating C2C12 control (grey bars) or C2C12-CBFb (black bars)
cells (48 h differentiation time). We quantified copy numbers of the
myogenin and cyclin D3 promoter regions harboring the MyoD target
sequences. Results with the transcription activating marks (AceH3 and
me3H3K4) were normalized using the expressed housekeeping gene
36B4, while the repressive marks (me3H3K9 and HDAC1) were
normalized using the repressed major satellite repeats. Results are the
mean of three measurements.
doi:10.1371/journal.pone.0009425.g005
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24 h earlier in differentiation conditions. In addition, Runx1 or

CBFb downregulation led to a an increase in G1-phase cells,

suggesting that CBF promotes myoblasts proliferation. Conversely,

CBFb overexpression delayed the early-G1 phase cyclin D1

disappearance in differentiation conditions (cyclin D1 is still

detectable 72 hours after the induction of differentiation), but not

that of late-G1 and early-S phase cyclins A2 and E1. Note that

proliferating C2C12-CBFb cells contain more cyclin D1 protein, but

not cyclins A2 and E, than the control cells. Together, these results

suggest that CBFb overexpression impacts on early G1 markers. In

addition, expression of the cell cycle exit regulators p21 and cyclin

D3 [43,44] is delayed in differentiating CBFb-overexpressing cells,

suggesting a delayed or impaired cell cycle exit and terminal

differentiation entry. In agreement with this, our ChIP results

showed that in proliferating myoblasts, CBF (via Runx1) is recruited

to repressed p21 and cyclin D3, which encode cell cycle exit regulators

[43,44]. Together, these results suggest that CBF regulates positively

proliferation, and negatively terminal differentiation, of skeletal

myoblasts. Thus, CBF impacts on the proliferation/differentiation

switch in myoblasts (see model on Figure S7).

In differentiation conditions, C2C12-CBFb cells showed

delayed molecular differentiation (expression of muscle markers),

and delayed appearance of myotubes that are abnormally small

and mainly mono-nucleated. One alternative explanation is that

these cells managed to differentiate correctly, although in a

delayed manner, but exhibited a specific block in fusion and multi-

nucleation. Indeed, CBFb subunit is retained in the cytoplasm by

cortical filamins [45]. In muscle cells notably, structural proteins

and cell adhesion proteins are required for the reorganization of

the cell cytoskeleton during cell fusion to form myotubes [46].

Some studies do suspect a cytoplasmic role for CBFb [47]. Thus,

CBFb overexpression in myoblasts, especially in the cytoplasm,

could have a role in impairing the correct cytoskeleton

reorganization during fusion. This could explain the phenomenon

we observe in differentiating CBFb-overexpressing myoblasts.

Moreover, we observed a very low expression of myogenin

transcription factor in myoblasts overexpressing CBFb and since

that myogenin is involved in cell fusion, this is an alternative

explanation of the observed the mono- or di-nucleated myotubes.

CBF Regulates Muscle Differentiation via a Direct
Interaction between MyoD and the Runx1 Subunit

Our results revealed that the role of CBF in myoblasts is likely to

be partly mediated through direct interaction with MyoD. GST

pull-down experiments showed that MyoD interacts directly with

Runx1 subunit, but not with CBFb. This is confirmed by the use

of MyoD deletion mutants in living cells. Indeed, MyoD deletion

mutants that fail to interact with Runx1 do not interact neither

with CBFb. MyoD/Runx1 interaction implicates the bHLH and

the C-terminal transactivating domains of MyoD, and the

transcription regulation domain of Runx1.

The preferential association of MyoD and CBF in proliferating

myoblasts could mean that CBF might be acting as a negative co-

factor of MyoD. Indeed, we provide evidence that CBF is

recruited to early MyoD target genes, via Runx1, in proliferating

myoblasts, where MyoD is mainly associated with transcriptional

repressors [24,26,31]. This suggests that CBF may serve for

assembly of a transcription repression complex at early MyoD

target genes such as myogenin, p21 and cyclin D3 (see our model on

Figure S7). As for example, such a mechanism could be involved

in the repression of the skeletal muscle acetylcholine receptor gene,

which contains a repressive E-box that mediates its repression in

proliferating myoblasts [48]. In agreement with this, we found that

in proliferating myoblasts, CBF associates with many chromatin

modifying enzymes, such as Histone Deacetylases (HDACs 1, 2

and 3), the histone H3 lysine 9 (H3K9) methylase Suv39h1, and

Heterochromatin Protein beta (HP1b), which are known to repress

MyoD activity in proliferating myoblasts [24,31,49,50]; and

already known to interact with Runx1 [30,51,52]. In agreement

with this, in myoblasts overexpressing CBFb, histone H3

acetylation and its trimethylation on lysine 4 (marks of active

transcription) are delayed on early MyoD target genes in

differentiation conditions. Concomitantly, these genes remain

abnormally marked by histone repressive marks (me3H3K9,

HDAC1).

Interestingly, although MyoD is expressed both in proliferating

and differentiating cells, we found that the interaction between

MyoD and CBF was lost in differentiating cells. In addition, we

showed that overexpression of CBFb in myoblasts led to

stabilization of Runx1 subunit that could more efficiently repress

MyoD transactivating activity, which induces a delay in terminal

differentiation. In agreement with this, we have shown that Runx1

represses MyoD activity in a gene reporter assay.

We did not succeed to show the concomitant presence of Runx1

and MyoD on MyoD target genes, given that it has previously

been demonstrated that in proliferating conditions, only a small

fraction of MyoD contributes to the repressive remodeling of its

target genes, prior differentiation. Alternatively, Runx1 could

prevent the proper binding of MyoD and the recruitment of the

transcriptional machinery. Notably, the displacement of Runx1 in

differentiating conditions is concomitant with a strong binding of

MyoD to its target promoters (data not shown).

MyoD and Runx1 are both subject to post-translational

modifications. Notably, MyoD is phosphorylated during the cell

cycle while it becomes acetylated during differentiation. Runx1

can also be phosphorylated, acetylated or methylated, while these

modifications still need to be characterized in muscle cells and

during muscle differentiation. We propose that these modifications

could favor or impair MyoD interaction with Runx1, respectively.

Conclusion
Our findings concerning the role of CBF in the regulation of the

proliferation/differentiation balance are in agreement with several

reports. CBF was indeed implicated in skin epidermis and hair

follicle differentiation [11,12], as well as in neuronal differentiation

[8,9]. These data support an emerging role for Runx proteins in

cell fate regulation in many cell lineages. Furthermore, MyoD was

also shown to regulate osteogenic differentiation [53]. In addition,

it has been shown that muscle satellite cells can differentiate into

osteocytes or adipocytes under some conditions [54,55]. Thus, our

results point to a model in which CBF and myogenic bHLH

protein families could act in concert to induce cell-lineage-specific

gene expression, dependent on the extra-cellular stimuli.

In summary, we propose that CBF transcription factor might

participate in recruiting chromatin modifying enzymes to repress

MyoD early target genes by locally inducing a repressive

chromatin structure. Our data reveal a new critical role of CBF

in the regulation of the balance between proliferation and

differentiation in skeletal muscle cells. They also demonstrate a

new mechanism of repression of differentiation genes in prolifer-

ating myoblasts.

Methods

Cell Culture
C2C12, HEK 293 and HeLa-S3 cells were cultured under

standard conditions. C2C12 cells and mouse primary myoblasts

were cultured and differentiated as described in: [56].
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Stable Cell Lines Establishment and Plasmid Construction
A HeLa cell line stably expressing MyoD was established with a

transgene encoding for full-length MyoD; and HeLa and C2C12

cell lines expressing CBFb were established with a transgene

encoding for full-length CBFb. The transgenes were tagged with

double-HA (Haemagglutinin) and double-FLAG epitopes at the

N-terminus as described in [57].

Control cell lines transduced with the empty vector were also

established. Murine CBFb cDNA (a kind gift from Dr Nancy A.

Speck) was amplified by PCR with specific primers with

protruding restriction sites (fw-Pspx1: CCGCTCGAGCCG-
CGCGTCGTCCCGGG, rev-Not1: ATTCTATATGCGG-
CCGCTAACGAAGTTTGAGATCATCG, and sub-cloned

into the XhoI-NotI sites in the pREV retroviral vector after

Pspx1 and Not1 digestion (Pspx1 is compatible with Xho cloning

site in the pRev vector) [57,58].

Protein Complex Purification
Flag-HA-MyoD complex purification from HeLa-MyoD cells

was performed as described in: [31]. Briefly, we used retroviral

transduction strategy to establish HeLa-S3 cell lines expressing

double tagged Flag-HA-MyoD [31,57,58], or a control cell line

transduced with the empty pREV vector has been established. We

carried out double-affinity purification of Flag-HA-MyoD from

HeLa cells (Figure S1), using either nuclear soluble or chromatin

fractions. For this, cells were resuspended in a hypotonic buffer

(10 mM Tris-HCl pH 7.65; 1.5 mM MgCl2; 10 mM KCl) and

disrupted with 20 strokes of a tight-fitting Dounce homogenizer.

The cytosolic fraction was separated from nuclei by 7 min

centrifugation at 4uC at 9000 rpm. The nuclear soluble fraction

was obtained by incubation of the nuclear pellet in a high salt

buffer (900 mM NaCl, 20 mM Tris pH 7.65, 25% glycerol,

1.5 mM MgCl2, 0.2 mM EDTA), to get 300 mM NaCl, for

30 min at 4uC and centrifugation at 10,000 rpm. The resulting

pellet, which corresponds to chromatin fraction, was resuspended

and digested with micrococcal nuclease (Sigma, Saint-Quentin

Fallavier, France), until it consisted primarily of mononucleosomes

[57]. Nuclear soluble and chromatin fractions were then

ultracentrifugated at 32000 rpm for 1 h at 4uC. Tagged-MyoD

complex were then purified using anti-FLAG antibody immobi-

lized on agarose beads (Sigma). After elution with the FLAG

peptide (Ansynth, The Netherlands), the bound complexes

containing nucleosomes were further affinity-purified on anti-HA

antibody-conjugated agarose (Sigma) and eluted with the HA

peptide (Ansynth, The Netherlands). Double-immunopurified

complexes were resolved on 4–12% SDS-PAGE bis-Tris acryl-

amide gradient gel in MOPS buffer (Invitrogen), and stained using

either the SilverQuest kit (Invitrogen, Cergy-Pontoise, France)

[31], or with Colloidal blue (Invitrogen) for mass spectrometry

(MS) analyses. In the latest, bands corresponding to proteins were

cut from the gel, trypsin-digested using 0.4 mg of sequencing-

grade trypsin (Promega, Charbonnières, France), and identified by

MS analysis.

To purify CBFb complex from C2C12 cells, 3 grams of C2C12-

CBFb cell pellet were used to purify tagged CBFb using a simple-

affinity purification method using Flag resin.

Preparation of Nuclear Extracts
Cells were scraped in a minimal volume of PBS and centrifuged

2 min at 400 g. The pellet was resuspended in 5 volumes of:

20 mM HEPES pH 7, 0.15 mM EDTA, 0.15 mM EGTA,

10 mM KCl, then lysed by addition of NP-40 up to 4.5%. Nuclei

were immediately neutralized with addition sucrose buffer

(50 mM HEPES pH 7, 0.25 mM EDTA, 10 mM KCl, 70%

(m/v) sucrose). After centrifugation (5 min, 2000 g), nuclei were

suspended in glycerol buffer (10 mM HEPES pH 8, 0.1 mM

EDTA, 100 mM NaCl, 25% glycerol) to remove any trace of

cytosolic components and centrifuged again. The nuclei were then

resuspended in sucrose buffer nu2 (20 mM Tris pH 7.65; 60 mM

NaCl; 15 mM KCl; 0.34 M Sucrose) then lysed in a final

concentration of 250 mM NaCl using High Salt Buffer (20 mM

Tris pH 7.65; 0.2 mM EDTA; 25% glycerol; 900 mM NaCl;

1.5 mM MgCl2). The lysates were sonicated 3 times for 15 s with

the BioRuptor (Diagenode, Liège, Belgium) on ‘‘High’’, then

centrifuged 10 min at 13000 rpm to harvest the total nuclear

extracts (supernatants). Protein concentration for each sample was

estimated with BCA kit (Perbio, Brebières, France).

Transient Transfections, Flag-Affinity Precipitation of
Flag-HA-CBFb, HA-MyoD Precipitation

For plasmid transfection, 25 mg of pRcCMV-HA-Runx1 (kind

gift of Dr I. Kitabayashi, Japan), pCMV-HA-MyoD or pRC-

CMV backbone were transfected into HeLa-CBFb cells, using

calcium phosphate pH 7.12, and Flag IPs was performed 24 h

post-transfection (results presented on Figure 1C). Each IP was

performed with 1.5 mg of total nuclear extracts and with 25 mL

stock of ssDNA and BSA-pre-blocked Agarose Flag M2 resin from

Sigma. IP was performed on wheel overnight at 4uC. Resin was

then washed 5 times with TEGN buffer (20 mM Tris pH 7.65;

0.1 mM EDTA; 10% glycerol; 150 mM NaCl; 0.5% NP-40) and

eluted by competition with high-purity Flag peptide at a final

concentration of 0.2 mg/ml. The resin-free eluate was retrieved

using Clean-up Post reaction columns (Sigma).

For interaction experiments using MyoD deletion mutants,

HEK 293 cells were transiently transfected using calcium

phosphate at pH 7.12. We used for a 10-cm dish 5 mg of a

pCMV-3HA-MyoD or its deletion mutants (Cter 241-318, Nter 1-

66, bHLH 82-172, DCter 1-240, DNter 82-318), or the empty

vector, along with 5 mg of pcDNA3-Runx1 and 5 mg of pcDNA3-

CBFb vectors. 48 h post-transfection, cells were lysed in lysis

buffer (300 mM NaCl, 50 mM Tris–HCl, pH 7.5, 0,4% NP-40,

10 mM MgCl2) to extract proteins. Anti-HA immunoprecipitation

was then performed as described above.

siRNA Transfection
siRNAs were purchased from Sigma (Saint-Quentin Fallavier,

France) and were transfected using Hi-Perfect reagent (Qiagen,

Courtaboeuf, France) according to the manufacturer recommen-

dations. We usually transfect 0.2 mmol of siRNA per 100 mm cell

culture dish. CBFb targeting siRNA sequences used are: C1:

CCGGGAAUAUGUCGACUUA, and C2: UAACUUAGGUGGCG-
GUGAU; Runx1 siRNA: CUGUGAAUGCUUCUGAUUU; and the

scrambled siRNA: ACUUAACCGGCAUACCGGCTT.

Immunoprecipitation of Endogenous Proteins
For IP, we usually use 2 mg of antibodies, 10 mL protein A/G

Sepharose beads from Perbio and 1.2 mg of nuclear extracts from

C2C12 cells, or 0.5 mg from primary myoblasts. Elution was

performed with 40 ml of 0.1 M glycine pH 2.5, 15 min at 25uC,

the eluate was recovered using Spin cleaning-up post-reaction

column (Sigma). Acidity was neutralized with Tris pH 8.0 before

adding loading buffer.

Western Blotting
For western blotting, protein samples were resolved on pre-cast

NuPage 4–12% bis-Tris acrylamide gradient SDS-PAGE gel

(Invitrogen, Cergy-Pontoise, France). Proteins were then trans-

CBF in Muscle Differentiation

PLoS ONE | www.plosone.org 8 February 2010 | Volume 5 | Issue 2 | e9425



ferred onto nitrocellulose membrane during 1 h at 400 mA in

transfer buffer (25 mM Tris, 150 mM Glycine, 0.1% SDS and

20% methanol). Membranes are blocked 1 hour in PBS-0.2%

Tween, 10% skimmed milk and incubated overnight at 4uC with

primary antibodies. Membranes were incubated with the appro-

priate secondary antibodies coupled to HRP and revealed using

West Dura from Pierce (Perbio, Brebières, France) and ChemiS-

mart 5000 system (Vilber Lourmat, Marne-La-Vallée, France).

Plasmids, GST Fusions and GST Pull-Down
GST and GST-MyoD plasmid constructs were expressed in

Escherichia coli strain BL21 and purified using glutathione-

sepharose beads according to the manufacturer (Sigma, Saint

Quentin-Fallavier, France). Purified proteins were quantified by

coomassie staining after SDS–PAGE separation. In vitro transcrip-

tion and translation (TNT) of pcDNA3-Runx1 and its deletion

mutants aa 1-189 and 1-242, pcDNA3-CBFb and luciferase were

performed with Riboprobe in vitro transcription systems (Promega,

Charbonnières, France) in the presence of 35S-labelled methio-

nine.

Agarose beads coated with equal amounts of GST or GST-

MyoD (1 mg) were incubated with 10 mL of radioactive TNT

reaction in reaction buffer (50 mM Tris pH 7.6, 150 mM NaCl,

0.1% Triton) during 2 h at 4uC. Beads were washed 5 times with

wash buffer (50 mM Tris pH 7.6, 300 mM NaCl, 0.5% Triton

100), resuspended and proteins resolved by SDS-PAGE gel and

revealed by autoradiography.

Immunofluorescence
Cells were cultured in Labtecks permanox (Falcon) and fixed

briefly with 4% formaldehyde in PBS. Residual formaldehyde was

neutralized with 0.1 M Glycine pH 8.0, and washed with PBS.

Cells were permeabilized and blocked using 1% BSA, 1% goat

serum, 0.3% Triton-X100 in PBS. Primary and secondary

antibodies were diluted in the permeabilizing/blocking solution

and were washed with 0.3% Triton-X100 in PBS. Nuclei are

stained with DAPI and the glass lid is fixed using an anti-fading

polymerizing media from DakoCytomation (Dako, Trappes,

France).

Antibodies
The anti-MyoD (C-20), anti-myogenin (M-225), anti-Myf5 (C-

20), anti-CBFb (FL-182), anti-cyclin A2 (C19, sc-596), anti-cyclin

D1 (72-13G, sc-450), anti-cyclin D3 (C-16, sc-182), anti-cyclin E

(sc-25303), anti-p21 (C-19, sc-397) and normal rabbit IgG

antibodies were all purchased from Santa Cruz (Santa Cruz,

CA, USA). Rabbit polyclonal anti-Suv39h1 (07-550), anti-

trimethyl histone 3 lysine 9 (07-442) and rabbit anti-acetyl histone

H3 (06-599) antibodies were obtained from Upstate Biotech (Lake

Placid, NY, USA). Anti-HP1b (1MOD1A9AS) was from Euro-

medex (Souffelweyersheim, France). Anti-HDAC1 (pAB-053-050)

was from Diagenode (Liège, Belgium). Anti-trimethyl H3K4 was

from Abcam (Paris, France). Rabbit polyclonal anti-MCK

antibody was developed by Dr H. Ito [59]. Anti-Flag and anti-

a-tubulin antibodies were purchased from Sigma (Saint-Quentin

Fallavier, France). Rat anti-HA antibody was purchased from

Roche (Meylan, France). Mouse anti-Runx1 antibody

(MAB10062) was purchased from Millipore (Saint Quentin en

Yvelines, France) and mouse anti-HDAC 1-3 antibody (611125)

from BD Biosciences (Le Pont de Claix, France). Goat anti-rat IgG

Alexa-488-conjugated, anti-rabbit IgG Alexa-488 were from

Invitrogen (Cergy-Pontoise, France) and anti-mouse IgG TRITC

(T7657) were from Sigma (Saint-Quentin Fallavier, France).

FACS Analysis
C2C12 were transfected with the siRNAs as indicated in the

Material and Method section. 48 hours post-transfection, cells

were washed with PBS, then scraped in 500 mL of PBS. Cells were

kept on ice while 4,5 ml of ethanol 70% were added. Then cells

are kept at least overnight at 220uC. Propidium iodide (PI)

staining proceeds as follows: cells are centrifuged and the pellet is

washed with PBS. Cells are then centrifuged and resuspended in

2 mL PI solution (PI 25 ng/ml, RNase 200 ng/ml, Triton 0,1%)

30 minutes and kept in the dark. Cells are homogeneized by

vortexing before analysis. We worked on a Beckman and Coulter

FACS apparatus and we counted at least 3000 events for each

condition.

Chromatin Immunoprecipitation (ChIP)
ChIP protocol and primers have been described in: [56]. The

yet unpublished primers used are: Myogenin fw: GAATCA-
CATGTAATCCACGGA, rev: ACGCCAACTGCTGGGTGCCA.

Cyclin D3 fw: CTGCTTGCCTCTGTCTTCA; rev: GACCCATG-
TCAGATGACTC. 36B4 fw: ATGTGCAGCTGATAAAGACTGG;

rev: CTGTGATGTCGAGCACTTCAG.

Gene Reporter Assays
HeLa cells at 60% confluence were co-transfected by Calcium

Phosphate co-precipitation with a myogenin promoter-driven Firefly

luciferase reporter plasmid (kind gift of V. Sartorelli, NIH) without

or with a fixed amount of MyoD expression vector (800 ng), and

increasing amounts of vector expressing Runx1. The quantities of

Runx1 expression vector used were: 0, 30, 60, 150, and 300 ng.

The total amount of plasmid was normalized when necessary to

300 ng with the empty vector. A Renilla luciferase expression

under a CMV (cytomegalovirus) promoter was used as a

normalization control for the transfection. 24 h post-transfection,

cells were lysed in a reporter lysis buffer (Promega, Charbonnières,

France). Luciferase activity was determined using Dual-Luciferase

Reporter Assay System (Promega). Firefly luciferase activity was

then normalized to the level of Renilla luciferase and to the total

protein amount.

Supporting Information

Figure S1 Schematic representation of the purification protocol

used to purify the MyoD complex from HeLa cells.

Found at: doi:10.1371/journal.pone.0009425.s001 (0.38 MB EPS)

Figure S2 MyoD known partners identified by mass spectrom-

etry in the MyoD complex.

Found at: doi:10.1371/journal.pone.0009425.s002 (0.05 MB

DOC)

Figure S3 Expression of Runx1 and CBFb proteins during

muscle terminal differentiation. Cellular extracts from proliferat-

ing or differentiating C2C12 myoblasts (left panel) or from mouse

primary myoblasts (right panel) were subjected to western blot

analyses for the expression of CBFb, Runx1, MyoD, myogenin

(Myog.) and Muscle Creatine Kinase (MCK). a-tubulin is detected

as a loading control. Differentiation times are indicated in hours

on the top of each panel. Lanes 1 and 7 correspond to proliferating

cells.

Found at: doi:10.1371/journal.pone.0009425.s003 (0.57 MB EPS)

Figure S4 Downregulation of CBF subunits expression acceler-

ates muscle terminal differentiation entry. A. C2C12 myoblasts

were transfected with control siRNA (Scrambled, Scr) or with

Runx1 siRNA as indicated. 48 hours post-transfection (Prolifera-

tion) cells were placed in differentiation medium (Differentiation)
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for 86 hours. Cells were then analyzed by microscopy (106
magnification). B. As in A, except that we used CBFb siRNA.

Found at: doi:10.1371/journal.pone.0009425.s004 (11.55 MB

EPS)

Figure S5 C2C12-CBFb cells characterization. A. Expression

level of CBFb in C2C12 control (ctr) and in C2C12-CBFb, in

proliferating myoblasts (0 h) or at the indicate differentiation times

(in hours), as measured by western blot using anti-CBFb antibody.

ex.: exogenous; end: endogenous. B. C2C12 cells stably overex-

pressing Flag-HA-CBFb (C2C12-CBFb) or control cells (C2C12-

Ctr) were differentiated for 72 hours and analyzed by light

microscopy (106magnification).

Found at: doi:10.1371/journal.pone.0009425.s005 (10.67 MB

EPS)

Figure S6 A. Runx1 and MyoD binding sites found in silico on

MyoD target genes myogenin and p21. B. Western blot analysis

(with the indicated antibodies) of cell extracts used for the ChIP

experiment presented on Fig. 5A. a-tubulin (a-tub.) is used a

loading control.

Found at: doi:10.1371/journal.pone.0009425.s006 (0.52 MB EPS)

Figure S7 Proposed model of skeletal muscle terminal differen-

tiation regulation by CBF and MyoD. Note that in muscle system,

proliferation inhibition or cell cycle exit is a pre-requisite to

terminal differentiation. Thus, cell cycle exit regulators, such as

p21 and cycD3, are activated early during terminal differentiation.

Muscle specific early markers, such as myogenin, are also activated

before late muscle markers. In proliferating myoblasts, Runx1/

CBFb (CBF dimer) proteins repress MyoD target genes, possibly

via a direct interaction with MyoD. Thus, in proliferating

myoblasts, CBF binds early MyoD target genes via Runx1 subunit

and recruits chromatin modifying enzymes such as HDAC1,

Suv39h1 and HP1. Upon triggering of terminal differentiation,

CBF dissociates from the promoters and MyoD recruits activating

chromatin modifying enzymes, such as HATs. HDAC1: Histone

Deacetylase 1; HAT: Histone acetyltransferase.

Found at: doi:10.1371/journal.pone.0009425.s007 (0.54 MB EPS)

Figure S8 Control of the anti-HA western blot results presented

on Figure 1C using antibodies against native proteins: MyoD,

CBFb and Runx1.

Found at: doi:10.1371/journal.pone.0009425.s008 (0.53 MB EPS)
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