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Abstract

Immunoglobulin (1g) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity
(ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for
locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck
(SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical
relevance of cetuximab-mediated ADCC and other immune functions and provide a biological
rationale concerning why this property positions cetuximab as an ideal partner for immune
checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic
review of available preclinical and clinical data involving cetuximab-mediated immune activity
and combination approaches of cetuximab with other immunotherapies, including ICls, in SCCHN
and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes
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adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to
immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICls
with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can
ostensibly overcome these immunosuppressive counter-mechanisms in the tumor
microenvironment. Moreover, combining ICls (or other immunotherapies) with cetuximab is a
promising strategy for boosting immune response and enhancing response rates and durability of
response. Cetuximab immune activity—including, but not limited to, ADCC—provides a strong
rationale for its combination with ICls or other immunotherapies to synergistically and fully
mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will
evaluate the clinical effect of these combination regimens and their immune effect in CRC and
SCCHN and in other indications.
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Introduction

In recent years, emerging tools for targeting tumor cells via the immune system have shifted
oncologists’ focus away from cytotoxic chemicals and onto immunotherapy. Almost all of
the functions of the immune system may have therapeutic implications, and many have
already been widely studied in experimental models and in humans. Among them, antibody-
dependent cell-mediated cytotoxicity (ADCC) appears to be a promising field of
investigation.

Years of preclinical and clinical work have shown that immunoglobulin (Ig) G1 monoclonal
antibodies (mAbs) have the highest capability for stimulating ADCC compared with other
isotypes (eg, 19G2) and, furthermore, that ADCC occurs in humans treated with 1gG1-based
therapies [1-3]. In oncology, several commonly used therapeutic mAbs have the IgG1
backbone and are shown to stimulate ADCC, including trastuzumab (an anti-human
epidermal growth factor receptor [EGFR] 2 [HER2] mAb, widely used in breast cancer) [4],
necitumumab (an anti-EGFR mAb used in lung cancer), rituximab (an anti—cluster of
differentiation [CD] 20 mAb used in non-Hodgkin lymphoma and chronic lymphocytic
leukemia) [4], and cetuximab (an anti-EGFR mAb used in KAS wild-type metastatic
colorectal cancer [nCRC] and locally advanced and recurrent and/or metastatic squamous
cell carcinoma of the head and neck [LA and R/M SCCHN]) [4]. These mAbs have the 1gG1
backbone and are thought to owe part of their antitumor activity to modulation of immune
cells, especially when treating immunologically “hot” tumors [5-8]. Novel
immunostimulatory therapies have made possible a new approach to combination therapy
with 1gG1 isotype mAbs such as cetuximab [9], namely, the synergizing of ADCC (and
other possible immune actions) with additional immunomodulatory treatments.

With the emergence of immune checkpoint inhibitors (ICIs) targeting programmed death-
ligand 1 (PD-L1), its receptor PD-1, and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4)-along with other immunotherapies—the possibilities for combining various
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immunostimulatory drugs are now being explored in clinical trials. ICls and other
immunotherapies have been developed and are being tested in many indications. However, in
SCCHN and CRC, ICI monotherapy seems associated with relatively low overall response
rates (ORRs; <18% in R/M SCCHN and ~0% in chromosome-unstable CRC [representing
the majority of cases] [10-12]) and a lack of dramatic responses in many patients [13]
compared with the more impressive ORRs of up to 57% in other advanced/pretreated
indications, such as non-small cell lung cancer and melanoma [14-16]. Combination
immunotherapy represents a promising approach to boost antitumor activity in indications
such as SCCHN and CRC as well as any other indications suitable for immunomodulatory
therapy.

As cetuximab is already an established standard of care in both SCCHN and CRC, in this
manuscript we focus on cetuximab as a key example of an IgG1 therapy with clinically
relevant ADCC and related immunomodulatory activities in order to explore its potential for
combination with immunotherapies such as ICIs. We describe the detailed mechanisms for
cetuximab-driven immune actions and summarize the available evidence for these effects in
CRC and SCCHN. In addition, we provide the scientific rationale for combining ICls/other
immunotherapies with cetuximab to synergistically mobilize the adaptive and innate
immune systems against tumor cells, thereby potentially improving upon durable
responsiveness and patient survival in challenging indications such as SCCHN and mCRC
(Fig. 1). These principles of combining immunostimulatory therapies are also likely to be of
interest in indications beyond CRC and SCCHN.

Mechanism of cetuximab-driven immune activity

ADCC is a biological process that contributes to the targeting and killing of antibody-coated
cells by immune cells and is triggered by IgG1 isotype mAbs in the presence of natural
killer (NK) cells. Cetuximab has strong immunomodulatory activity, in part via ADCC, in
addition to inhibition of the EGFR intracellular signaling pathway [17-20]. Briefly,
cetuximab stimulates ADCC when its constant region, Fc, binds to a receptor found on NK
cells (activating Fc receptor CD16/FcyRIII) [21], resulting in NK cell activation. Active NK
cells can carry out their own lytic activity on tumor cells, and each active NK cell can
serially lyse multiple target cells [22]. This is the process of ADCC. Importantly, other
immune activity also results from the activation of NK cells via the interaction with the Fc
region of an 1gG1 isotype mAb. NK cells appear to use interferon-y (IFN-y) and various
cytokines to facilitate crosstalk with dendritic cells (DCs) and other immune cells (eg,
macrophages, other NK cells). Activated NK cells that lyse tumor cells lead to the release of
tumor antigens, which can be cross-presented by DCs to cytotoxic T cells, priming them for
additional tumor cell killing activity [19,23-28]. Thus, the binding of an IgG1 isotype mAb
to its target and to the CD16 receptor on NK cells can stimulate the priming and activation
of both immune effector cells of the innate and adaptive immune systems. Additionally,
cytokine-mediated crosstalk with macrophages and other immune cells is essential for
bringing into the intratumoral space additional active, cytotoxic T cells, which can then carry
out lytic activity on tumor cells and thus generate additional tumor antigens and further
stimulate a long-term immune response [29,30]. Thus, cetuximab stimulates immunogenic
tumor cell death, involving multiple cytotoxic immune cell types [29,30]. An overview of
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the mechanism for mounting a cetuximab-driven, antitumor immune response is shown in
Fig. 2A, and current preclinical and clinical evidence for cetuximab-driven ADCC and other
mechanisms is summarized in Tables 1 and 2.

Cetuximab elicits tumor cell apoptosis via EGFR inhibition and additional tumor cell death
mediated by the distinct mAb-dependent immune actions (cytotoxic T cell recruitment and
priming), including mechanisms specific to its IgG1 backbone (NK cell-mediated ADCC)
[6,24,31-33]. The existence of an 1gG2 isotype anti-EGFR mAb, panitumumab (which does
not trigger NK cell-mediated ADCC), has offered researchers the unique opportunity to
compare the effects of mAb-mediated EGFR inhibition +/- the attribute of NK cell
stimulation. The immunologic distinction between these 2 mAbs has been conclusively
demonstrated ex vivo: when all other conditions are equal and optimized, an 1gG1 anti-
EGFR mAb (cetuximab) stimulates NK cell-mediated ADCC and thus increases immune-
mediated tumor cell death to a greater level than does an 1gG2 anti-EGFR mADb
[19,29,31,34]. This difference in activity may account for the differential efficacy of the 2
mAbs sometimes observed in human patients; for example, in clinical trials, cetuximab has
measurable antitumor activity (resulting in overall survival benefits) in SCCHN in
combination with radiotherapy or platinum-based chemotherapy, while panitumumab was
not able to demonstrate a statistically positive difference [35-38]. Tumor-antigen binding
(i.e., to EGFR) and ADCC stimulation are interlinked processes, a phenomenon that may
explain why ADCC appears highly relevant for antitumor efficacy in SCCHN (extremely
high tumor EGFR expression, i.e., more available targets). Similarly, there are populations of
patients with mCRC who may benefit more from an IgG1-based therapy than from an 1gG2,
potentially due to an increased sensitivity to immunostimulation, including the mechanism
of ADCC; discussion follows. Indeed, this may be the case for other indications with high
tumor EGFR expression, such as lung cancer [39], or for any patient with cancer who has
high basal ADCC activity [2,40].

Experimentally, ex vivo and in vitro assays with patients’ purified lymphocyte populations
[3,19,25,26,41] from the tumor microenvironment and the peripheral blood are used to
directly observe NK cell activation and lytic activity [31,42,43]. Indirect measurements are
performed using markers on circulating and tumor-infiltrating T cells, NK cells, and DCs, as
well as cytokine levels in the plasma [1,44], including expression of activating receptors
such as CD16, CD107a, CD137, NK group 2 member D (NKG2D), and NK cell p46-related
protein (NKp46) receptors [26,42,45]. Furthermore, expression of perforin and granzyme B,
the functional molecules of NK cell lytic activity, also indicates high tumor cell killing, and
their depletion can lead to the eventual dampening of lytic activity [22,42,45]. Conversely,
increased levels of transforming growth factor p (TGF) or interleukin 10 (IL-10) in plasma,
increased expression of CTLA-4 and PD-1 on T cells, PD-L1 expression on tumor or
immune cells, or NK group 2 member A (NKG2A) receptor expression on NK cells are
considered indicators of immunosuppression, and they work to downregulate NK and
effector T cell cytotoxic activity [25,42,45-47]. Finally, increased frequency of CD4*/
forkhead box p3* (CD4*/Foxp3™) regulatory T cells (Treg), especially in the tumor
microenvironment, is associated with suppressed NK lytic activity and reduction of the
immune response markers mentioned previously [25,42,46,48], similarly suppressing ADCC
activity. The abundance of regulatory mechanisms underline the relevance that ADCC and
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other cetuximab-mediated immune activity have in tumor control and eradication, in
particular by “priming” innate and adaptive immunity, as well as by inducing a tumor
microenvironment that is well suited to further inhibition of ICls, or to elimination of ICI-
bearing dysfunctional lymphocytes, to stimulate better adaptive, T cell-mediated immunity.

Overall, individual patients’ basal ADCC activity, high NKp46 expression, and increased
average ADCC-mediated killing have all been shown to correlate with positive clinical
outcomes, including longer relapse-free survival, increased likelihood of response to therapy,
and prolonged overall survival [2,3,40,45].

Collectively, these observations strongly support the conclusion that ADCC is an important
component of cetuximab’s antitumor activity; more generally, studies suggest that ADCC
measurement, monitoring, and targeting are of clinical importance during cancer treatment
of individual patients with 1gG1 isotype mAbs [5,31].

Markers for ADCC and related immune responses

Biological differences between tumor types can be overshadowed by the individual
intervariability seen among patients with a given tumor type based on factors such as disease
stage, age, genetic markers, and tumor biomarker expression. Individual ADCC activity and
CD16 receptor alleles may be predictive for clinical outcomes in response to 1gG1-based
anticancer therapy [2,49,50]. Furthermore, the additive presence of high levels of baseline
ADCC and EGFR expression can have a positive correlation with the rate of complete
responses in patients with LA SCCHN who are treated with cetuximab and radiotherapy
[40]. Also possibly having an effect on baseline ADCC activity are KRAS mutations
(although data are conflicting with regard to directionality) [31,51,52], presence of disease
(healthy volunteers mount a greater response than cancer patients), and polymorphisms in
the CD32A and CD16 Fc receptors [31,33,53,54]. Because increased ability to mount an
ADCC response tends to correlate with prolonged overall survival [3,33], it is important that
these differences be understood and used to potentially guide personalized treatment
decisions. Such information is especially crucial in the first line, when the immune system
may be best poised to mount an antitumor response (given that immune depletion often
occurs following chemotherapy) [55]. As of this writing, the CD16 polymorphism is the
best-studied biomarker for ADCC.

CD16 is not required for endogenous NK cell-mediated tumor cell lysis, but it is necessary
for IgG1-mediated ADCC [33,56], and studies suggest that increasing the binding affinity of
the Fc region to CD16 can increase NK cell cytotoxic activity [57,58]. A CD16 Fc receptor
that has a valine (V) at codon 158 (vs a phenylalanine [F]) has a much higher binding
affinity for mAbs. Therefore, patients who carry the V/V polymorphism are more
immunologically responsive to IgG1 isotype mAb-based therapy (cetuximab, rituximab,
trastuzumab, etc) than patients with the F/F polymorphism; the V/F variant appears to
manifest as an affinity phenotype that is intermediate between V/V and F/F or equal to V/V,
depending on the study [33,49,50,53,54,59]. Downstream of CD16 activation, CD137
expression (which stimulates recruitment of EGFR-specific cytotoxic T cells to the tumor)
correlated with clinical response [44,60]. Interestingly, in an analysis of 107 patients with
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SCCHN who received cetuximab, no predictive value for CD16 codon 158 polymorphism
was detected for anti-EGFR therapy efficacy (although only 13 patients had the V/V
variant); another study in 49 patients with KRAS wild-type mCRC found a significant
difference in outcomes among patients with different genetic variants of CD16 [26,61].
Therefore, the predictive value of CD16 remains to be fully confirmed.

An additional polymorphism associated with cetuximab immune activity is found on codon
131 (histidine [H] vs arginine [R]) of the CD32A/Fc-yRlIla receptor on DCs and neutrophils
[25]; this polymorphism helps restore tumor immune surveillance and stimulates
downstream immunogenic response. The 6-month disease control rate (DCR) was higher in
patients with CRC (n = 47) treated with cetuximab and carrying the H/H and H/R variants
(67% and 50%, respectively) vs the R/R variant (17%), despite all patients having a mutation
in KRAS, NRAS, BRAF, or PI3K (suspected to confer resistance to cetuximab in CRC). In
the same study, patients carrying the V/V or V/F variant on CD16 (31 patients; 70% of the
overall study population) had a combined 6-month DCR of 52% vs 23% in patients carrying
the F/F variant (n = 13) [62]. Similarly, in patients with mCRC treated with cetuximab plus
irinotecan-based chemotherapy, overall survival was significantly longer in patients carrying
a 158 V genotype [63]. A meta-analysis of studies of anti-EGFR mAb-based therapy in CRC
(that did not distinguish between cetuximab and panitumumab, a choice that could have
confounded the results) concluded that neither the CD32A nor the CD16 polymorphisms are
predictive of response during therapy [64]. It should be noted that IgG2-driven immune
activity may be associated with polymorphisms on CD32A [65]. Indeed, it appears that any
effect of CD32A polymorphisms on baseline ADCC activity is due to linkage disequilibrium
rather than direct interaction [66]. Further investigation is required to fully characterize the
predictive value of CD16/32 receptor polymorphisms during immunomodulatory therapy.

Treg and other immunosuppressive mechanisms are triggered in the intratumoral space as
feedback mechanisms to counteract cytotoxic tumor cell lysis [42,48,67—71]. These negative
regulatory mechanisms, detailed in the next section, could become additional therapeutic
targets when planning combination treatments with cetuximab.

Immune modulation of ADCC and T cells and implications for cetuximab-

based treatment

Treg

An overview of the immunosuppressive pathways activated in response to cetuximab-
mediated immunostimulation in the tumor microenvironment is presented in Fig. 2B
[42,48,67-71]. Treg activity is one of the most powerful immunosuppressive mechanisms in
the intratumoral space. Compared with those of healthy subjects, cancer patients’ peripheral
blood and tumor-infiltrating lymphocyte populations are enriched in Treg, possibly due to
conversion from Foxp3~ to Foxp3* in response to increased TGFp signaling (based on
preclinical and ex vivo studies) [48,67,68,72,73]. Treg secrete suppressive cytokines and
express membrane-bound TGF, thus inhibiting the cytolytic activity of T cells and NK
cells, as well as the maturation of DCs [42,68]. Furthermore, highly immunosuppressive
Foxp3*/CTLA-4* or PD-L1* Treg are found to be more concentrated in the tumor

Cancer Treat Rev. Author manuscript; available in PMC 2020 September 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ferris et al.

Page 7

microenvironment than in the peripheral blood [48]. In the presence of increased CD4*/
CD25Ni/Foxp3* Treg populations in the intratumoral space, NK cells have lowered
expression of biomarkers indicative of ADCC activity, such as granzyme B, perforin, and
CD16 [42,46]. In vitro and ex vivo assays demonstrate that the addition of CD4*/CD25M/
Foxp3* Treg suppress cetuximab-driven NK-mediated ADCC in patients with SCCHN via
secreted cytokines and membrane-bound TGFB; TGFp inhibitors are sufficient to block this
Treg-mediated immune suppression in vitro [42,46,68,70,71]. Crucially, in vitro experiments
and a phase 1a clinical trial suggest that depleting the CD4*/Foxp3* Treg population can
restore or enhance NK cell cytotoxic activity [68,74,75].

Furthermore, it is conceivable that Treg-mediated suppression of cetuximab-driven immune
activity can potentially be a prognostic factor in patients undergoing treatment with
cetuximab for LA SCCHN. Cetuximab plus chemotherapy/radiotherapy treatment in patients
with LA SCCHN (n = 22) led to a significant increase in the frequency of CD4*/Foxp3™*
Treg within lymphocyte populations in both the peripheral blood and tumor
microenvironment [42]. Furthermore, 4 weeks of cetuximab monotherapy (n = 18 patients)
appeared to increase the frequency of intratumoral CD4*/Foxp3* Treg expressing markers of
immunosuppression such as CTLA-4, CD39, and membrane-bound TGFp. Peripheral
CD4*/Foxp3* Treg were significantly enriched in CTLA-4, possibly indicating a response to
cetuximab-driven immunostimulation (and by extension the conversion of an
immunologically “cold” tumor to a “hot” phenotype) [25,42]. When comparing the
frequency of Treg in both the periphery and the intratumoral space in clinical responders to
cetuximab with that of nonresponders, Jie et al. found that responders have stable Treg
populations, while nonresponders have significant increases in CTLA-4" Treg within both
the peripheral blood and tumor-infiltrating lymphocyte populations [42]. Similar
observations regarding the correlation between Treg recruitment to the tumor
microenvironment and lower patient survival have been made across multiple tumor types
[72,76]. Interestingly, specifically in CRC, tumor-infiltrating Treg can have high
(suppressive) vs low (nonsuppressive) Foxp3 expression, and the presence of the latter may
be a positive prognostic biomarker of immune response [77]. Overall, it appears that
cetuximab-driven ADCC and other immune activity initiate a negative feedback loop of
immunosuppression via immune checkpoints; thus, inhibition of suppressive Treg (eg,
CTLA-4* or PD-L1* populations) through ICI treatment is a logical therapeutic strategy to
use in combination with cetuximab in both SCCHN and CRC [78]. In addition, experimental
data underline the role of the PD-1/PD-L1 axis inhibition in the prevention of the
peripherally induced Treg [79] leading to the curtailment of this cell population into the
tumor microenvironment. This fact may be of high importance considering that Ghiringhelli
et al. showed an inverse relationship between NK cell activation and the extension of the
Treg population [68].

Other immunosuppressive mechanisms impacting cetuximab-driven immune activity

Cetuximab monotherapy results in an increased frequency of CD107a* and CD137* (i.e.,
active) NK cells in the tumor microenvironment of patients with SCCHN. Interestingly,
cetuximab monotherapy also leads to an increased frequency of circulating vs tumor-
infiltrating perforin* and granzyme B* NK cells [42]. As perforin and granzyme B are the
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operative molecules of NK cell lytic activity [45], these findings suggest that additional
immunosuppressive mechanisms are ongoing in the intratumoral space and that these
mechanisms prevent NK cells in the intratumoral space from mounting degranulation and
tumor cell lysis. These immunosuppressive processes are likely therapeutically targetable in
a way that would further increase the antitumor effects of cetuximab-mediated immune
activity (Fig. 2B). Evidence suggests that suppressive activity also occurs in patients with
CRC. For example, the presence of CRC and its increasing stage both correlate with higher
levels of NK cells present in the peripheral blood vs the intratumoral space; activating
receptors such as NKG2D and NKp46 are decreased in expression on NK cells from patients
with CRC vs healthy donors [45]. Blocking the immunosuppressive receptor CD32B on
DCs, or incubation with IL-2 or IL-15, has been shown to alleviate some of this inhibition
on NK lytic activity [22,25,45], and this strategy may therefore be useful in combination
with cetuximab treatment in SCCHN and CRC.

Myeloid-derived suppressor cells (MDSCs) are another cell population considered an
important hurdle in immunotherapy [69,80]. Their numbers increase in cancer patients vs
healthy volunteers [69], and they encourage tumor immune escape by expressing high levels
of TGFB and producing IL-10 in the tumor microenvironment, its periphery, or the lymph
node tissue [81]. Additionally, myeloid-derived cytokines suppress antitumor activity of T
cells via C-X-C motif chemokine receptors (CXCR3 and 4, for example) [82,83].
Interestingly, the disinhibition of T cells via anti—PD-1 therapy initiates a negative feedback
loop, stimulating myeloid cell production of PD-L1 and subsequent T cell reinhibition [82].
These observations suggest that ICI therapy is a good candidate to counter MDSC-mediated
suppression of cytotoxic cells via PD-1/PD-L1 in the tumor microenvironment. Like Treg,
MDSC development, expansion, and function can be guided by a variety of factors [84,85].

IFN-y is secreted by NK cells in response to the presence of cells coated with cetuximab and
stimulates the maturation of DCs; in addition to priming cytotoxic T cells, DCs reciprocally
activate NK cells to induce more IFNy secretion. The blocking of IFN-y with a neutralizing
mADb prevents crosstalk between NK cells and DCs [25,26], revealing potentially relevant
mechanisms for immune escape. Incubation of human NK cells in the presence of TGFB
also suppresses CD16-mediated IFN-y secretion, and extended treatment inhibits ADCC via
reduction of granzymes A and B [86]. In addition, IFNvy can signal via signal transducer and
activator of transcription 1 (STAT1) and human leukocyte antigen (HLA) class I to further
stimulate cytotoxic T cell activity [87]; defects in this pathway have been associated with
impaired T cell-mediated lysis [88], and maintaining HLA class | levels during therapy has
been correlated with improved clinical responses to cetuximab-based therapy in patients
with SCCHN [87]. Interestingly, EGFR activity works to suppress this pathway, hence
facilitating tumor immune escape. HLA class | can thus be upregulated via cetuximab’s
EGFR-inhibitory activity [87]. Therefore, cetuximab is a logical therapy in that it
simultaneously promotes IFN+y secretion and EGFR blockade, both of which are processes
that can counteract EGFR-mediated immunosuppression in the tumor microenvironment
[87,89,90]. Finally, EGFR signaling and, interestingly, IFN+y aid in tumor immune escape by
stimulating PD-L1 expression on tumor cells through the Janus kinase 2 (JAK2)/STAT1
pathway, thus inhibiting active T and NK cells in a PD-1/PD-L1-dependent manner [27,91].
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Thus, cetuximab treatment could be useful in potentially priming tumors for better T cell
recognition, which would then be enhanced with ICls.

Optimizing immune action: the promise of combination between cetuximab

and immunotherapy

Cetuximab has demonstrated clinically meaningful activity in both SCCHN and RASwild-
type mCRC; it is a vital component of the standard of care for both indications in the
unresectable setting, and it yields favorable outcomes in clinical trials and in the real-world
setting [35,38,92-95]. Furthermore, cetuximab promotes high response rates as evidenced
by its addition to prior standard-of-care treatments (e.qg., radiotherapy, chemotherapy), which
has led to enhanced ORRs and prolonged survival. In addition to the benefits associated with
EGFR inhibition, cetuximab-mediated ADCC and the recruitment and priming of cytotoxic
T cells to the intratumoral space are powerful attributes. However, as described above, such
immunostimulation is necessarily associated with negative feedback loops (Treg, MDSCs,
and increased expression of checkpoint molecules such as PD-1, PD-L1, and CTLA-4).
Therefore, co-targeting of these immunosuppressive processes, and the potential synergy
between the different mechanisms of action of cetuximab and ICls, holds the potential to
improve patient outcomes in SCCHN and CRC. For example, CTLA-4 or PD-1/PD-L1
blockade has the potential to alleviate Treg- or MDSC-mediated inhibition on both T cells
and NK cells, thereby restoring cytotoxic activity and fully mobilizing the adaptive and
innate immune systems against tumor cells [96-99], because many of these
immunosuppressive mechanisms impinge upon negative regulation of T cells and NK cells
via PD-1, PD-L1, or CTLA-4 (Fig. 2C) [13,27,47]. As further evidence in favor of this
combination of drugs, cetuximab recruits new immune cells to the tumor microenvironment,
whereas ICls disinhibit cells already present. Thus, cetuximab and ICls complement each
other, and cetuximab could serve to prime the immune system in preparation for (or counter
T cell and NK cell depletion [protective effect] as a result of) ICI therapy, raising the
possibility of true synergistic activity via complementary activation of the innate and
adaptive immune systems and the engagement of multiple types of immune cells. Although
the known safety profiles of cetuximab and ICls do not appear to overlap, minimal safety
and efficacy data are currently available from trials of cetuximab and ICI combinations.
Studies assessing acute and late toxicities of cetuximab and ICI combinations are currently
ongoing. On the other hand, compounding of toxicities has been observed in ICI plus ICI
combination treatments, with which additive immune-related adverse events can be severe
and may preclude the widespread use of dual-1CI therapy [100,101]. Next, we outline the
biological rationale for the combination of cetuximab, a logical combination partner due to
its various immunostimulatory effects, with emerging immunotherapies in SCCHN and
mCRC (cetuximab’s approved indications for use), placing special focus on ICls.

Patients with SCCHN are good candidates for powerful immunostimulatory therapy, because
such cancers’ possible methods of origin are associated with an immunologically “hot”
phenotype [8,13,102-106]. Additionally, the common use of radiotherapy in LA SCCHN
provides a unique opportunity to combine the radiosensitizing properties and
immunostimulatory activity of cetuximab with T cell disinhibition as well as the
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hypothesized abscopal effect with ICls [21]. Additionally, the combination of cetuximab and
avelumab (an anti—-PD-L1 IgG1 isotype mAb) is of high interest due to both agents’ ability
to stimulate ADCC, because the use of 2 ADCC-inducing mAbs could potentially generate a
beneficial immune effect by priming and activating NK cells cooperatively.

Although CRC has traditionally been considered an immunoresistant cancer, prognostic
factors such as high basal ADCC activity and the presence of tumor-infiltrating T cells
suggest this presumption is inaccurate [2,24,107]. However, individual tumor molecular
subtypes may be differentially susceptible to ICI monotherapy, and thus far only
microsatellite-unstable tumors have shown responses to such an approach [108-110], likely
because of their tendency to produce neoantigens. Therefore, research into combination
therapy with ICIs plus an agent with already-proven activity in mCRC (i.e., cetuximab) is
necessary to determine whether such a combination regimen would possess activity in non-
microsatellite-unstable tumors.

Consequently, although CRC and SCCHN are very different diseases, cetuximab plus ICls
may still result in additive activity in CRC tumors by priming them for immunotherapy (e.g.,
by inducing PD-1/PD-L1 expression on immune cells and by recruiting immune effector
cells to the tumor). Additionally, cetuximab can mediate increased immune activity within
the tumor microenvironment (e.g., drive crosstalk between NK cells and DCs and recruit
cytotoxic T cells to the tumor microenvironment) [19,23-28], thus priming the immune
system to be more responsive to ICI treatment. Reciprocally, in vitro research on this
combination suggests that IClIs added to cetuximab can overcome cetuximab resistance, such
as that mediated by mutations in RAS and other genes [43].

Although we have focused on ICls, cetuximab-mediated immune action drives crosstalk
with a variety of immune cell types and processes, and therefore it holds the potential for
combination with many additional classes of immunotherapy. From ex vivo studies in CRC,
combination treatment with cetuximab plus cytokines such as IL-2 or IL-15 was sufficient to
restore the lytic activity of patient-derived NK cells to levels comparable to those of healthy
donors [45]. Similarly, in SCCHN, cotreatment with cetuximab and urelumab (a CD137-
agonist mAb) in a phase 1b trial led to increased levels of granzyme B and NKp46 on NK
cells, although there were no changes in IFNy, PD-1, CD107a, NKG2D, or CD16 [44]. As
mentioned earlier in this review, CD137 is a possible marker for clinical response, and
urelumab treatment has been shown to lead to increased IFNy-driven gene expression and
cytokine production and overall enhanced immunologic activity [111]. Furthermore,
cetuximab in combination with cytokines or urelumab was also able to exert immune
activity on EGFR-expressing CRC cell lines or xenograft models despite the presence of a
KRAS, NRAS, or BRAF mutation [43,45,60]. Similar observations have been made for
cetuximab in triple-negative breast cancer xenografts and KRAS mutant cell lines [112,113].

Additional non-IClI agents currently in clinical trials in combination with cetuximab include
monalizumab (IPH2201), an anti-NKG2A mAb that blocks this inhibitory receptor on NK
cells in R/M SCCHN (NCT02643550). This combination would stimulate ADCC, inhibit
the EGFR, and simultaneously disinhibit NK cells suppressed via TGFp or IL-10.
Motolimod, a toll-like receptor—8 agonist, is being tested in combination with cetuximab for
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patients with R/M SCCHN (NCT01836029) and has some available early results indicating
a DCR of 54% and increases in circulating cytokines [1]. Combination motolimod plus
cetuximab with or without nivolumab is now being tested in patients with LA SCCHN
(NCT02124850). Other combinations include systemic immunomodulation via heat-killed
mycobacteria (IMM-101, NCT03009058), DNA demethylation via valproic acid
(NCT02624128) that has been shown to possess antitumor effects in other indications [114],
and stimulation of neutrophil growth and activity with granulocyte-colony stimulating factor
(NCT02124148). Finally, several trials are investigating ex vivo—grown and —activated
immune cells, including NK and CD4* or CD8* T cells, in combination with cetuximab
(NCT02028455, NCT02507154) across indications. Therapies for additional novel targets,
such as CXCR4 activation, MDSC inhibition, and TGFp traps, will likely compose the next
wave of combination therapies.

Key ongoing trials of cetuximab and ICI combination therapy in CRC and SCCHN are
summarized in Table 3.

Conclusions and future outlook

ICI monotherapy is a new and exciting treatment option, but response rates are modest in
some indications, including SCCHN and CRC. Fortunately, there is a strong scientific
rationale for combining ICls and the existing standard-of-care mAb cetuximab for the
treatment of advanced SCCHN and CRC. In addition to EGFR inhibition, cetuximab
mediates clinically relevant ADCC and other immune activity in the intratumoral space,
which is associated with tumor cell killing by components of both the innate and adaptive
immune systems. Cetuximab can prime the immune system for ICI therapy by recruiting
cytotoxic cell effectors of both the innate and adaptive immune systems to the intratumoral
space. Additionally, associated negative feedback loops lead to CTLA-4/PD-1/PD-L1-
mediated immunosuppression of active cytotoxic cell types, an issue that ostensibly could be
overcome successfully via combination therapy with IClIs. Indeed, in some situations such as
non-small cell lung cancer, it has been shown that strong PD-(L)1 expression is associated
with better outcomes when treated with anti-PD-(L)1. In the case of cetuximab plus
avelumab, ongoing prospective studies will evaluate whether using 2 ADCC-inducing mAbs
will generate a beneficial immune effect by priming and activating NK cells cooperatively.
More generally, by synergistically and fully mobilizing the adaptive and innate immune
systems against tumor cells, cetuximab in combination with I1CIs or other immunotherapies
could hold the key to raising ORRs and durability of response in challenging indications
such as SCCHN and CRC. Empirical evidence from currently ongoing clinical trials that are
evaluating this hypothesis is eagerly anticipated.
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Fig. 1.

Ra?tionale for combination therapy. Complementary and synergistic activities of cetuximab
and ICl-based therapies. This Venn diagram describes the known advantages (in black) and
challenges (in red) associated with the use of cetuximab and IClIs. The two therapies have
complementary properties (eg, when considering TTR and mobilization of Treg), and thus,
the combination of cetuximab and ICls may yield high levels of immunostimulation and a
durable response in a high percentage of patients. ADCC, antibody-dependent cell-mediated
cytotoxicity; EGFR, epidermal growth factor receptor; ICI, immune checkpoint inhibitor;
NK, natural killer; ORR, overall response rate; PD-L1, programmed death-ligand 1; RR,
response rate; Treg, regulatory T cells; TTR, time to response. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 2A.

Mgchanism of cetuximab-mediated immune activity. The binding of cetuximab to EGFR
and to the CD16 receptor on NK and dendritic cells sets off multiple immune actions that
can lead to tumor cell targeting and death, including ADCC (innate immunity) and T cell
priming (adaptive immunity). CD, cluster of differentiation; CXCL, chemokine (C-X-C
motif) ligand; CXCR, C-X-C chemokine receptor; EGFR, epidermal growth factor receptor;
F, phenylalanine; 1gG1, immunoglobulin G1; IFN-y, interferon-y; IL, interleukin; NK,
natural killer; V, valine.
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Fig. 2B.
Immunosuppressive mechanisms that can account for the dampening of cetuximab-mediated

immune activity. Immunostimulatory activity initiated by the binding of cetuximab to EGFR
and to the CD16 receptor on NK and dendritic cells sets off feedback immunosuppressive
mechanisms, including Treg tumor infiltration and expression of immune checkpoints on
tumor and immune cells. CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; CXCL, chemokine (C-X-C matif) ligand; CXCR, C-X-C chemokine
receptor; EGFR, epidermal growth factor receptor; HLA, human leukocyte antigen; IFNy,
interferon-vy; IL, interleukin; MDSC, myeloid-derived suppressor cell; NK, natural killer;
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PD-1, programmed death receptor 1; PD-L1, programmed death-ligand 1; TGFp,
transforming growth factor B; Treg, regulatory T cells.
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Fig. 2C.
Mechanisms of synergy between cetuximab and ICIs (or other immunotherapies). ICls may

synergize with cetuximab-driven immune activity by disinhibiting immune effector cells
present in the intratumoral space. CD, cluster of differentiation; CTLA-4, cytotoxic T-
lymphocyte-associated protein 4; CXCR, C-X-C chemokine receptor; EGFR, epidermal
growth factor receptor; IFNvy, interferon-y; IL, interleukin; MDSC, myeloid-derived
suppressor cell; NK, natural killer; PD-1, programmed death receptor 1; PD-L1,
programmed death-ligand 1; TGF, transforming growth factor §; Treg, regulatory T cells.
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