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Abstract: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human
pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through
infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%.
Despite its high virulence and increasing prevalence, molecular and functional studies in situ are
scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field
virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR
Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock.
Through the use of advanced genomic tools, we present here a complete, in-depth characterization of
this viral stock, including a comparison with both the virus in its arthropod source and in the human
case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV
viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the
development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.
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1. Introduction

Severe fever with thrombocytopenia syndrome virus (SFTSV; Bunyavirales: Phenuiviridae: Dabie
bandavirus [1]) is an emerging tick-borne virus that is distributed throughout much of Eastern Asia
and causes severe fever with thrombocytopenia syndrome (SFTS: ICD-11: 1D4E; ICD-10: A93.8) [2].
Clinical signs include acute fever, thrombocytopenia, leukocytopenia, and gastrointestinal symptoms;
severe presentations can progress to organ failure and death (12–30% case fatality rate) [3]. The earliest
identification and characterization of SFTSV-infected patients and ticks occurred in China in 2010.
Thereafter, animal surveillance studies and newfound clinical awareness of SFTS revealed an expansive
geographical range and increasing prevalence [4] of SFTSV in Eastern Asia: SFTSV infections have
been reported in the Korea [5], Japan, Republic of China/Taiwan, and Vietnam [2,4,6–8].

The complete transmission cycle of SFTSV has not been fully demonstrated, although several
studies have reported the detection of the virus from ticks—most frequently from Asian longhorned
ticks (Haemaphysalis longicornis) and also from ticks of other species (e.g., Amblyomma testudinarium,
Ixodes nipponensis, Haemaphysalis concinna, Haemaphysalis flava, Rhipicephalus microplus) [9–12].
Human-to-human transmission [13] and detection of the virus in different animal species (including
goats [14], sheep, cattle, dogs, pigs, chickens [15], cats [16], and rodents [17]) has been documented.
While the SFTSV is believed to be primarily transmitted by the bite of infected ticks, secondary
transmission has been documented, occurring through contact with body secretions of infected
individuals and possibly through contact with infected domestic animal hosts [18,19].

The genome of SFTSV is divided into three single-stranded RNA segments (large [L], medium
[M], and small [S]) of negative polarity. The L segment encodes for the RNA-directed RNA polymerase
(RdRp), the M segment encodes for the envelope glycoproteins (GPs) GN and GC, and the S segment
encodes for both a nucleocapsid protein (N) and a nonstructural protein (NSs) [2,20]. Like other
tri-segmented RNA viruses, the evolutionary characteristics of SFTSV make functional genomics
studies difficult to execute; high substitution rates, widespread geographical co-circulation between
China, Japan, and KOR strains, and the existence of infectious recombinant and reassorted strains [21]
complicate genotype-to-phenotype studies. Furthermore, SFTSV is a biosafety level 3 (BSL-3) agent
and requires specialized containment facilities and highly trained personnel.

Without a reverse genetics system or well-characterized viral stocks, SFTSV investigations
can be limited and slow. Herein, we describe a complete workflow involving intense in-the-field
virological surveillance and viral isolation from positive ticks, followed by genomic and phylogenetic
characterization of the isolate and analysis of its pathogenic capabilities in an animal model. As a
result, we produced a well-characterized, regulatory-grade SFTS virus isolate that can be used under
United States Food and Drug Administration (FDA) regulations to test countermeasures and study the
different biological aspects of the virus. In addition, we compared the SFTSV from the pool of ticks
with SFTSV detected in a human case (death) in which the patient was infected by a tick collected in
the same area and time frame. Our work illustrated a comprehensive methodology for the production
of quality viral stocks and contributed to our understanding of the population dynamics and the
molecular epidemiology of this emergent zoonotic viral pathogen of medical importance.
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2. Materials and Methods

2.1. Human SFTS Case

On August 11, 2017, a KOR army soldier (male; 43 years old) assigned to the 8th Division,
Korea Army (ROKA), located in Pocheon (포천시, Gyeonggi Province [경기도]) (Figure 1), reported
with high fever accompanied by myalgia and chills. The patient was confirmed to be infected
with SFTSV by RT-PCR. The patient’s health rapidly deteriorated, with pulmonary edema, sepsis,
and multiple-organ dysfunction syndrome (MODS) followed by death on August 24, 2017, after two
weeks of hospitalization. Serum samples taken during hospitalization were sent to The 4th Research
and Development (R&D) Institute, Agency for Defense Development (ADD) in Daejeon (대전시),
KOR, for further investigation. Specimens were stored at −70 ◦C until processed. The study was
approved by the Institutional Review Board (IRB) of the Armed Forces Medical Command (AFMC),
KOR (AFMC-19094-IRB-19-070).
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Figure 1. Location of the tick collection points and the severe fever with thrombocytopenia syndrome
(SFTS) case. Ticks were collected in: Paju (파주시; 2015; number 1); Jeju Island (제주도; 2015–2016;
number 8); Pohang (포항시; 2017; number 7); Gapyeong (가평군; 2017; number 3; severe fever
with thrombocytopenia syndrome virus (SFTSV)-positive tick pool); Inje (인제군; 2017; number 5);
Pyeongtaek (평택시; 2017; number 4); and Gochang (고창군; 2017; number 6). The SFTS patient
(Pocheon [포천시], 2017; number 2) was assigned to the Korea Army (ROKA) base located at Gapyeong
(가평군; number 3).

2.2. Tick Specimens

Three tick surveys were conducted for years 2015, 2016, and 2017, and collected ticks were
assayed for the presence of SFTSV by quantitative RT-PCR (RT-qPCR). Ticks (larvae, nymphs,
and adults) were collected at different locations in KOR (Figure 1). The 2017 collection point of
Gapyeong (가평군; number 3 in Figure 1) was near a training area adjacent to the ROKA military
base where the SFTSV-positive ROKA soldier was assigned. Tick surveys were conducted monthly
from March to October each year, a time frame that coincided with the primary tick activity period
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in KOR [22]. Ticks were collected by tick drag [23], placed in cryovials (adults and nymphs alive;
larvae in 80% ethanol), returned to the Entomology Section, Force Health Protection & Preventive
Medicine (FHP&PM), 65th Medical Brigade, and subsequently identified to the species rank as
described previously [5,24,25]. Ticks of the species H. longicornis, H. flava, H. phasiana, I. niponnensis,
and R. sanguineus were pooled by species, stage of development, sampling location, and year of
collection (a total of 726 pools) and processed for RT-qPCR analysis (Table 1).

Table 1. Total number of tick specimens and pools distributed by species and lifecycle stage and
analyzed for the presence of SFTSV by RT-qPCR.

Taxonomy Larvae Nymph Adults Total

Asian longhorned ticks (Haemaphysalis
longicornis Neumann, 1901) 4776 8214 57 13,047

Haemaphysalis flava Neumann, 1897 68 250 78 396
Ixodes nipponensis Kitaoka and Saito, 1967 0 10 130 140
Haemaphysalis phasiana Saito, Hoogstraal

and Wassef, 1974 17 35 0 52

Brown dog tick (Rhipicephalus sanguineus
(Latreille, 1806)) 0 0 1 1

Total specimens 4861 8509 266 13,636

Pools 186 445 95 726

2.3. SFTSV Detection by Molecular Assays

SFTSV detection in the ROKA patient was performed by The 4th R&D Institute, ADD,
Daejeon (대전시), KOR. Total RNA was extracted from serum specimens of the SFTS
patient using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. cDNA was prepared using the SuperScript III First-Strand
Synthesis System (Invitrogen, San Diego, CA, USA) and random hexamers. SFTSV
was detected by means of a nested PCR with the following oligo-nucleotide primers:
SFTSV-S1F (5′-ACACAAAGACCCCCTT-3′) and SFTSV-S406R (5′-CATTGCCCAGCTGTTCT-3′)
followed by SFTSV-S1F and SFTSV-S302R (5′-AGTAGCACCTCATGTCC-3′) for the
S segment; SFTSV-M86F (5′-CAATCATCTGCGCAGGAC-3′) and SFTSV-M555R
(5′-AGCAACATCACCTATCCA-3′) followed by SFTSV-M177F (5′-GCTGATACATGTTTCGTC-3′)
and SFTSV-M495R (5′-GTCTGAACTGCAGAGCTC-3′) for the M segment; and SFTSV-L1F
(5′-ACACAGAGACGCCCAGAT-3′) and SFTSV-L343R (5′-CATCCCATCAGAACCATCAT-3′)
followed by SFTSV-L1F and SFTSV-L263R (5′-TGAAGTCATGATTGATCT-3′) for the L segment.
Initial denaturation was at 94 ◦C for 5 min, followed by 15 cycles of denaturation at 94 ◦C for 40 sec,
annealing at 50 ◦C for 40 sec, and elongation at 72 ◦C for 1 min. This was followed by 25 cycles of
denaturation at 94 ◦C for 40 sec, annealing at 52 ◦C for 40 sec, and elongation at 72 ◦C for 1 min. PCR
was performed on a ProFlex PCR System (Applied Biosystems, Foster City, CA, USA). PCR products
were purified with the QIAquick PCR Purification Kit (Qiagen), and DNA sequencing was performed
in both directions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, USA) on a 3500 Series Genetic Analyzer (Applied Biosystems).

SFTSV detection in tick specimens was performed as follows: Tick pools were homogenized in
500 µL of BD Universal Viral Transport Medium (Beckton Dickinson, Franklin Lakes, NJ, USA) using a
1600 MiniG Automated Tissue Homogenizer and Cell Lyser (SPEX SamplePrep, Metuchen, NJ, USA).
After homogenization, preparations were visually inspected to verify that ticks were broken down
into small pieces. Homogenates were transferred to new Eppendorf tubes, centrifuged for 15 min at
5000× g at 4 ◦C, and supernatants were stored at −80 ◦C until further use. RNA was extracted from
100-µL aliquots of supernatants with TRIzol LS Reagent and the Phasemaker Tubes Complete System
according to the manufacturer’s guidelines (Thermo Fisher Scientific, Waltham, MA, USA). Detection
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of SFTSV was performed using 5-µL RNA extracts using a multiplex RT-qPCR method, targeting the
three genomic segments of the viral genome as previously described [26], with minor modifications
introduced in the sequences of the primers and probes (Table 2).

Table 2. Primer and probe sequences used in the quantitative SFTSV multiplex RT-qPCR assay.

Genome Segment Primer Primer/Probe Sequence 5′-3′

L

L-F-3-mod AGTCTAGGTCATCTGAYCCGTTYAG

L-R-3 TGTAAGTTCGCCCTTTGTCCAT

L-Probe-3-mod [HEX] CAATGACAGAYGCCTTCCATGGTAATAGGG [BHQ1]

M

M-F-3-mod AAG AAR TGG YTG TTC ATC ATT ATT G

M-R-3-mod GCC TTR AGR ACA TTG GTG AGY A

M-Probe-3-mod [FAM] TCA TCC TCC TTG GRT ATG CAG GCC TCA [BHQ1]

S

S-F-3-mod GGRTCCCTGAAGGAGTTRTAAA

S-R-3-mod TGCCTTCACCAAGACYATCAATGT

S-Probe-3-mod [TexasRed] YTCTGTCTTGCTRGCTCCRCGC [BHQ-2]

RT-qPCR was performed with the AgPath-ID One-Step RT-PCR kit (Thermo Fisher Scientific)
in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The assay was
designed according to the manufacturer’s guidelines and using a final concentration of 0.4 µM for the
primers and 0.12 µM for the probes, in total reaction volumes of 25 µL each. Cycling conditions were
as follows: 30 min at 50 ◦C, followed by 10 min at 95 ◦C, and 35 cycles for 15 sec at 95 ◦C, and 45 sec
at 60 ◦C, after which fluorescence was measured. For viral RNA quantification, a standard curve
was generated against a synthetic oligonucleotide (one for each genomic segment) and expressed as
genome copies (c)/mL.

2.4. Viral Isolation and Characterization

2.4.1. Viral Isolation and Titration

Detection and isolation of SFTSV from the positive tick pool was performed in the BSL-3
biocontainment laboratory at the U.S. Army Medical Research Institute of Infectious Diseases
(USAMRIID) following U.S. Centers for Disease Control and Prevention (CDC) and institutional
BSL-3 safety guidelines. Grivet (Chlorocebus aethiops) Vero E6 cells (ATCC #CRL-1586) were cultured
in Eagle’s Minimum Essential Medium (EMEM, Thermo Fisher Scientific), supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 2 mM l-glutamine, 100 U/mL penicillin, and 100 µg/mL
streptomycin (Thermo Fisher Scientific). All cells were maintained at 37 ◦C with 5% CO2. To isolate
SFTSV from the positive tick pool, the tick homogenate was filtered through a 0.45-µm syringe filter
and applied as a low volume (100-µL) inoculum to a single sub-confluent well of a six-well dish of
Vero E6 cells. The virus inoculum was incubated at 37 ◦C for 1 h. Then, 2 mL of fresh medium was
added to the well and incubated for 7 d (Passage 1).

Virus or control supernatants and cells were passaged 7 d after infection to yield Passage 2 as
follows: Supernatant was collected and clarified by centrifugation at 3000× g for 10 min. Fresh medium
was added back to the virus-infected or control wells and the cells were scraped, collected in a conical
tube, and mechanically homogenized. Medium was removed from two new sub-confluent T-25 flasks,
and 1 mL of clarified supernatant or 1 mL of homogenized cells was added to each flask and allowed
to incubate at 37 ◦C. After 30 min, 7 mL of fresh medium was added to each flask and cells were
incubated for 7 d.

To yield Passage 3, virus or control supernatants and cells were passaged as described above for
Passage 2, except T-75 flasks were used to increase the total virus yield. After Passage 3 was incubated
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for 7 d, supernatants from SFTSV-containing T-75 flasks were collected, clarified, aliquoted, and stored
at −80 ◦C until use.

Viral stock titration was performed as follows: Passage 3 stocks of SFTSV were titrated using
an infectious cell culture assay in Vero E6 cells. Because detectable cytopathic effect (CPE) was not
observed during the SFTSV isolation attempts in this cell line, a multiplex RT-qPCR assay was used to
estimate the 50% tissue culture infectious dose (TCID50). Briefly, Vero E6 cells were plated in 96-well
dishes that were expected to be ~80% confluent the next day. Twenty-four hours following plating,
the cells were transferred into the BSL-3 laboratory, and the SFTSV stock was serially diluted six
independent times. These replicates were used to infect the Vero E6 cells. After 7 d, supernatants were
collected, clarified as described above, and inactivated using a 3:1 ratio of TRIzol LS supernatant per
manufacturer guidelines. RNA extraction and SFTSV detection by multiplex RT-qPCR were performed
as described above. Every dilution from each of the six replicates was assayed in triplicate in the
multiplex RT-qPCR, the presence or absence of virus in each dilution and replicate was determined,
and the TCID50 titers were calculated following the method described by L. J. Reed and H. Muench [27].

2.4.2. Transmission Electron Microscopy

Transmission electron microscopy (TEM) analysis was performed using a method reported
previously [28]. Vero E6 cells were plated onto electron microscopy (EM) 35-mm dishes with EM
coverslips. The next day, cells were transferred to a BSL-3 laboratory and were mock-exposed or
exposed to Passage 3 SFTSV with RT-qPCR cycle thresholds ranging from 13–17. At Day 3 and
Day 6 after exposure, medium was removed, and cells were washed with phosphate-buffered saline
(PBS, Thermo Fisher Scientific) before the entire dish and lid were submerged in TEM fixative (4%
formaldehyde, 2.5% glutaraldehyde, and 0.1 M of sodium cacodylate pH 7.4 buffer, JEOL Ltd., Akishima,
Tokyo, Japan). In accordance with standard laboratory BSL-3 biocontainment procedures, one dish
and one lid were left completely submerged in TEM fixative for more than 24 h before removal from
the BSL-3 laboratory for further processing. After washing three times in 0.1-mM sodium cacodylate
buffer at 2.5 ◦C for 3 min each, the primary-fixed cells were post-fixed by incubation with 1% osmium
tetroxide (Millipore Sigma, St. Louis, MO, USA) in 0.1 M of sodium cacodylate for 1 h on ice. After
washing with distilled water three times for 3 min each, the fixed cells were stained and stabilized
in 1% uranyl acetate (Millipore Sigma) at 2.5 ◦C for 1 h and dehydrated in a series of 25%, 50%, 75%,
and 95% ethanol at 2.5 ◦C for 3 min each. Cells were then dehydrated at room temperature three times
for 3 min each in 100% ethanol and infiltrated with well-mixed 50% ethanol, 50% Durcupan ACM
resin (Millipore Sigma) for 1 h with agitation at room temperature, followed by 100% Durcupan ACM
resin twice for 3 h with agitation. Infiltrated samples on glass coverslips of the MatTek dishes were
placed in a hybridization oven for polymerization at 60 ◦C for at least 48 h. Glass coverslips were
peeled away from the bottom of the MatTek dishes using razor blades and were cut out arbitrarily
into small pieces. The pieces were then glued with the cell side up to a block for sectioning. Thin
sections (~80 nm thick) were collected and pre-stained with 1% uranyl acetate and Reynolds’s lead [29]
before examination using a 1011 Transmission Electron Microscope (JEOL, Akishima, Japan) at 80 kV.
Digital images were acquired using the Advanced Microscopy Techniques camera system (Advanced
Microscopy Techniques, Danvers, MA, USA).

2.4.3. Immunofluorescence Microscopy

For immunofluorescence microscopy analysis, Vero E6 cells were plated on coverslips of 24-well
dishes and incubated overnight at 37 ◦C. The following day, the cells were transferred to a BSL-3
laboratory and were mock-exposed or exposed to SFTSV from Passage 3 and incubated for 5 d.
Following incubation, medium was removed, cells were washed with PBS, and the entire dish and
lid were completely submerged in 10% formalin (final concentration: 4% formaldehyde) for at least
24 h. After fixation, dishes were removed from the BSL-3 biocontainment laboratory and stored at
4 ◦C until further processing. Briefly, after rinses with phosphate-buffered triton (PBT; 0.1% Triton
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X-100 [Millipore Sigma] in PBS, pH 7.4), the cells were blocked with PBT containing 5% normal
goat serum (Thermo Fisher Scientific) overnight at 4 ◦C and then incubated with rabbit anti-SFTSV
polyclonal antibody (pAb; Abnova, Taipei, Republic of China/Taiwan; 1:500) and mouse anti-GM130
pAb (BD Biosciences, Franklin Lakes, NJ, USA; 1:50) for 2 h at room temperature. After rinses
with PBT, the sections were incubated with secondary goat anti-rabbit Alexa Fluor 488 antibody
(Thermo Fisher Scientific; 1:500) and goat anti-mouse Cy3 pAb (Thermo Fisher Scientific; 1:500) for
1 h at room temperature. Cells were mounted using Vectashield Mounting Medium with DAPI
(Vector Laboratories, Burlingame, CA, USA). Images were captured on an LSM 880 confocal system
(Zeiss, Oberkochen, Germany) and processed using ImageJ software (National Institutes of Health,
https://imagej.nih.gov/ij/). A commercially available SFTSV pAb (Abnova; #PAB27171) raised against
the SFTSV HB29 strain was used to detect the SFTSV GPs. An antibody to GM130 (BD Bioscience,
Franklin Lakes, NJ, USA; #610822) was used to label the Golgi apparatus.

2.5. Target-Enrichment Whole-Genome Sequencing

Viral genomes from the serum samples of the patient, from the RT-qPCR-positive tick pool,
and from the SFTSV isolate from Passage 3 were obtained through target-enrichment high-throughput
sequencing (HTS). Sequencing libraries were prepared from RNA extracts using a modified version
of the Illumina TruSeq RNA Exome Kit (Illumina, San Diego, CA, USA) as previously described [30].
For this study, SFTSV-specific 80mer probes tiled along the three genomic segments of the virus were
used for library selection and enrichment. Samples were barcoded with non-overlapping dual indexes
in a true dual-indexing configuration and pooled and sequenced using the MiSeq Reagent kit v2 or v3
(Illumina) on a MiSeq instrument (Illumina). Sequencing runs were performed at 2×151-bp reads.

Complete genome consensus sequences were generated from the HTS data as follows: Open-source
programs Cutadapt [31], Prinseq-lite [32] and Picard (http://broadinstitute.github.io/picard/) were
used for preprocessing of samples, including adapter removal, PCR duplicate removal, and quality
filtering of the index (<30 Phred) and reads (<20 Phred). For HTS data obtained from the human case,
consensus sequence generation was performed using CLC Genomics Workbench version 7.5.2 (CLC
Bio, Cambridge, MA, USA) with SFTSV strain KASJH (GenBank #KP663733, KP663732, and KP663731)
as the reference sequence. For HTS data obtained from the tick pool and from the SFTSV cell-culture
isolate, a validated analysis pipeline was used [33], with SFTSV strain KACNH3 (GenBank #KP663745,
KP663744, and KP663743) as the reference sequence. Briefly, after adapter removal and quality filtering
steps as described above, reads were aligned to the reference using Bowtie2 [34], duplicates were
removed with Picard, and a new consensus was generated using a combination of Samtools v0.1.18 [35]
and custom scripts. Only bases with a Phred quality score ≥20 were utilized in consensus calling,
and a minimum of 3× read-depth coverage, in support of the consensus, was required to make a
call; positions lacking this depth of coverage were treated as missing (that is, called “N”). Sequence
similarity analysis was performed with MUSCLE [36].

2.6. Genomic Characterization

In-depth viral population characteristics from the SFTS case, the tick pool sample, and the Vero
E6 isolate were studied using a validated analysis pipeline (VSALIGN) [37]. VSALIGN is built on
Perl and uses open-source programs Cutadapt [31] and Prinseq-lite [32] for preprocessing of samples,
including adapter removal, PCR duplicate removal, and quality filtering of the index (<30 Phred)
and reads (<20 Phred). Additional preprocessing steps were included to remove chimeric sequences,
single or low quality paired-end reads, and reads that did not have any homology to the reference
sequence. Sequences were aligned to the consensus SFTSV genome generated from ticks (reference
sequence) using default parameters in VSALIGN to determine the frequency (events per site per
genome) of single nucleotide polymorphisms (SNPs), insertions and deletions (indels), transitions,
and transversions and to determine subclonal diversity (SCD) measured as the combined frequency

https://imagej.nih.gov/ij/
http://broadinstitute.github.io/picard/
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(events per site per genome) of the aforementioned parameters. These viral population diversity
parameters were measured for nucleotide positions meeting a minimum depth of 100 reads.

2.7. Phylogenetic Analysis and Haplotype Network

All publicly available SFTSV segment sequences were downloaded from GenBank through the
Viral Pathogen Database and Analysis Resource (www.viprbrc.org) on April 2, 2020. Coding sequences
from L (RdRp) and M (GN and GC) segments were extracted; sequences from the S segment were split
by NSs and N coding sequences. An in-house script removed all strains that did not have all four coding
sequences (https://github.com/rainakumar/common_fasta_utils). Individual coding sequences were
concatenated in Geneious version R9 (www.geneious.com) to form coding-complete genomes. Strains
with confirmed reassortments were removed from downstream Bayesian analyses [38]. GenBank
accession numbers and metadata can be found in Table S1. Concatenated sequences were aligned
using MAFFT v7.388 [39] and manually curated in Geneious. A maximum-likelihood tree was inferred
using FastTree version 2.1 [40] with a generalized time reversible (GTR) nucleotide substitution model,
exhaustive search, pseudotypes, 5000 bootstrap repetitions, and 2000 gamma rate categories (Figure S1).

A Bayesian-inferred, maximum-clade credibility phylogenetic tree and associated evolutionary
rates were estimated using the Hasegawa–Kishino–Yano 85 (HKY85) model [41] for 207 concatenated
coding sequences and general time-reversible model [42] for 19 genotype B-1 concatenated coding
sequences. Both models included gamma-distributed rate variation (+ Γ4) and invariant sites (+ I),
which were inferred by jModeltest2 [43]. Partitions shared a constant-size coalescence prior and a
continuous time Markov chain reference prior [44]. An uncorrelated lognormal relaxed molecular
clock was independently inferred (unlinked) across four partitions (L, M, N, and NSs open reading
frames [ORFs]). Each analysis consisted of 10 × 108 Markov chain Monte Carlo steps (25% of which
were discarded as burn-in); parameters and trees were sampled every 100,000 generations. Tracer
v.1.6 [45] was used to ensure run convergence (effective sample size >200), and TreeAnnotator 1.8.4 [46]
was used to calculate a maximum-clade credibility (MCC) tree using a posterior probability limit of 0.7.

2.8. IFNAR-/- Mice Infections

Adult (7–8 weeks old), interferon (α/β) receptor knockout (IFNAR-/-) laboratory mice (strain:
B6.129S2-Ifnar1tm1Agt/Mmjax) were purchased from the Jackson Laboratory (Bar Harbor, ME, USA).
The mice were acclimated for 6 days to the Maximum Containment (BSL-4) Laboratory within the
National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID),
Division of Clinical Research (DCR) Integrated Research Facility at Fort Detrick (IRF-Frederick).
Animals were housed in sterilized, ventilated cages (One Cage, Lab Products, Seaford, DE, USA). Male
mice were housed individually while female mice were housed 3 or 4 per cage on paper bedding
(TEK-Fresh 7099, Envigo, Madison, WI, USA) and provided sterilized food (Teklad Global Rodent
Chow, 2018SX, Envigo, Madison, WI, USA) and water without restriction. The water was treated by
a reverse-osmosis system (RO8600, Avidity Sciences, Waterford, WI, USA) prior to sterilization by
autoclaving in bottles. Additional nesting material (Enviro-dri, Shepherd Specialty Papers, Watertown,
TN, USA) was added to each cage. Environmental conditions, including air changes, temperature,
humidity, and light cycle were controlled. Air changes were 22–24 per hour, temperature was set
to 72 ◦F, humidity was set to 50%, and the light:dark cycle was 12:12 h. All animal manipulations,
including cage changes at two-week intervals, were performed in a class II biosafety cabinet within
the animal room. The mice were divided into two groups of 13 animals per group (six males/seven
females). One group (“virus”) was inoculated subcutaneously (0.2 mL) with 1 × 105 TCID50 of SFTSV
strain USAMRIID-HLP23_VE6. The other group (“mock”) was inoculated with the same volume of
PBS (Gibco, Gaithersburg, MD, USA). Mice were weighed 5 d prior to exposure (Day -5) and daily
after inoculation (Day 0–Day 21) and monitored twice daily for signs of disease. All observations were
recorded along with the weight measurements. All animal care and experimental procedures were

www.viprbrc.org
https://github.com/rainakumar/common_fasta_utils
www.geneious.com
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performed in accordance with Comparative Medicine SOPs and the experimental protocol approved
by the IRF-Frederick Animal Care and Use Committee.

3. Results

3.1. Detection of SFTSV in Ticks

A total of 13,636 tick specimens (larvae, nymphs, and adults) were collected and distributed
in 726 pools according to species, stage of development, sampling location, and year of collection
(Table 1). Larvae (4861 specimens; ~26 specimens per pool) were distributed in 186 pools, nymphs
(8509 specimens; ~19 specimens per pool) were distributed in 445 pools, and adults (266 specimens;
~3 specimens per pool) were distributed in 95 pools (Table 1). All 726 pools were analyzed by RT-qPCR
for the presence of SFTSV. Only one out of 726 pools (0.14%) was positive for SFTSV by multiplex
RT-qPCR assay. This pool (Pool 23) consisted of 59 Asian longhorned tick nymphs collected in 2017 at
a military training area adjacent to the ROKA base in Gapyeong (가평군), Gyeonggi Province (경기도),
where the SFTSV patient was assigned (Figure 1).

3.2. Isolation and Characterization of the SFTS Virus from the Tick Pool

3.2.1. Viral isolation and Titration in Vero E6 Cells

The virus was first isolated from the positive tick pool. Sub-confluent Vero E6 cells were inoculated
with the filtered, positive-tick-pool homogenate and incubated for 7 d (Passage 1). Supernatants and
Vero E6 cell homogenates were blindly passaged two additional times, each 7 d apart (Passage 2
and Passage 3). As infection of Vero E6 cells with the tick homogenate did not induce CPE in any
of the passages, we used multiplex RT-qPCR to confirm the presence of SFTSV. All passages tested
positive (results not shown). Passage 3 was additionally quantified with the multiplex RT-qPCR assay,
measuring genome segment copy numbers of 5.29 × 109 c/mL, 7.97 × 109 c/mL, and 9.42 × 109 c/mL
for the S, M, and L segments, respectively. The infectious virus titer of Passage 3 was determined by
a modified TCID50 assay, during which multiplex RT-qPCR was used to determine the presence or
absence of virus in each dilution and replicate, resulting in a virus titer of 2.51 × 107 TCID50/mL.

3.2.2. SFTSV Particles Co-Located with the Golgi Apparatus in Vero E6 Cells

The expression of the SFTSV GP was investigated by immunofluorescence microscopy to confirm
SFTSV infection in Vero E6 cells. Viral GP was detected in the cytoplasm of infected cells and localized
within the Golgi apparatus using SFTSV serum-specific pAb (Figure 2). These data are consistent with
previous reports of intracellular SFTSV localization [2,47,48].
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Figure 2. SFTSV viral particles co-located with the Golgi apparatus in Vero E6 cells. GM130 (red) was
used as a cis-Golgi marker (BD, #610822). SFTSV GP (green) antibody was created against the SFTSV
HB29 strain (Abnova, #PAB27171). DAPI (blue) was used to stain nuclei. Cells were infected with SFTS
virus at a multiplicity of infection of 4 and incubated for 5 days.
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To confirm the presence of complete virus particles in the SFTSV stock by TEM, Vero E6 cells were
infected and subsequently processed for imaging at 3 d and 6 d after infection. Intact virus particles
were seen throughout the cell at both 3 d and 6 d after infection and were absent in the uninfected
controls (Figure 3A,B).Viruses 2020, 12, x FOR PEER REVIEW 10 of 20 
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Figure 3. TEM images of Vero E6 cells infected with SFTSV from Passage 3. (A) uninfected controls;
(B,C) cells with the viral particles (indicated by arrows) at day 3 post-infection; (D) magnified view
(direct mag: 150,000×) of the viral particle structures (indicated by arrows) at day 6 post-infection.

Virus particles had an approximate diameter of 100 nm (Figure 3D), were seen adjacent to
membrane structures identified as the Golgi apparatus, and were often found in vesicle-like structures
(Figure 3B,C). These observations are consistent with previous studies [2,47,48] which demonstrate
that SFTSV structural proteins are localized in the ERGIC compartment and Golgi complex of infected
cells, suggesting that these viral components start to assemble in those cellular compartments and that
the viral glycoproteins are required for transporting the RdRp and the NP proteins to the ERGIC and
Golgi complex.
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3.3. Target-Enrichment Whole-Genome Sequencing

Full-length genomic sequences were obtained from the SFTS case (SFTSV strain AFMC 17-1),
the RT-qPCR-positive tick pool (SFTSV strain USAMRIID-HLP23), and the Passage 3 isolate from Vero
E6 cells (SFTSV strain USAMRIID-HLP23_VE6). The three viruses had the same genome organization,
with three genomic segments containing four main ORFs. The S segment (1746 nt) contained two
ORFs of 882 and 738 nt in an ambisense organization, encoding two proteins of 293 and 245 amino
acids, identified as the NSs and the N proteins, respectively. The M segment (3378 nt) contained one
ORF encoding a protein of 1073 amino acids, identified as the GP precursor. The L segment (6368 nt)
contained one ORF encoding of 2084 amino acids, identified as the L protein, with its characteristic
RdRp domain.

Comparison of the entire S, M, and L segments between SFTSV strains AFMC 17-1,
USAMRIID-HLP23 strain, and USAMRIID-HLP23_VE6 showed a high level of homology (>99%) both
at the nucleotide and at the amino-acid level (Table 3).

Table 3. Comparison of the complete genomic sequences of SFTSV detected in the SFTS case, the tick
pool, and the Vero E6 isolate, showing a high level of both nucleotide and amino-acid homology. Data
are presented as a percentage-of-identity matrices, with the number of changes indicated between
parentheses, elaborated with either nucleotide (upper right half) or amino acid (lower left half) sequence
alignments of full L, M, and S genomic segments.

Strains AMFC 17-1 USAMRIID-HLP23 USAMRIID-HLP23_VE6

L segment
AMFC 17-1 - 99.89 (7) 99.92 (5)

USAMRIID-HLP23 99.9 (2) - 99.97 (2)
USAMRIID-HLP23_VE6 99.95 (1) 99.95 (1) -

M segment
AMFC 17-1 - 99.79 (7) 99.79 (7)

USAMRIID-HLP23 99.72 (3) - 100
USAMRIID-HLP23_VE6 99.72 (3) 100 -

S segment
AMFC 17-1 - 99.77 (4) 99.83 (3)

USAMRIID-HLP23 99.81 (1) - 99.94 (1)
USAMRIID-HLP23_VE6 99.81 (1) 100 -

All sequences were deposited into GenBank with the following accession numbers—SFTSV
strain AFMC 17-1: MT683683, MT683684, and MT683685; USAMRIID-HLP23: MN395043, MN395044,
and MN395045; USAMRIID-HLP23_VE6: MN450761, MN450762, and MN450763.

3.4. Phylogenetic Analysis

Concatenated coding-sequence phylogenetic analyses using all ORFs were combined with publicly
available and complete SFTSV genomes. We estimated that AMFC 17-1, tick pool, and Vero E6 isolates
belong to the B-1 genotype (Figure 4 and Figure S1). AFMC-17 is most closely related to KOR strain
16MS344, whereas the tick-related strains were closely related to KOR strains 16KS100 and 16KS104.
No geographical sampling data are publicly available of closely related strains [38].
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Figure 4. Radial maximum-clade credibility trees estimated using (A) 207 and (B) 19 B-1 genotype
concatenated coding-complete SFTSV genomes. Circles at tree tips are colored by country of isolation.
Time to the most recent common ancestor (tMRCA) and the 95% highest posterior densities (HPD) are
shown. Posterior support >0.7 is displayed for major tree nodes. Strain names of sequences generated
in this study are shown in bold along with host/source information and other B-1 genotype sequences.
Tree branches are scaled by substitutions per site per year. The inset tree (B) contains recently published
sequences from KOR that are not included in (A) [38].

3.5. Genomic Analysis

The genomic diversity of the viral populations was compared among the human SFTSV isolate,
the tick pool isolate, and the viral isolate from the Vero E6 cells, using as a reference the consensus
sequence of the virus from the ticks. Raw data from the VSALIGN analysis pipeline [37] representing
the frequency of each parameter across the entire genome (subclonal diversity, and frequency of SNPs,
transitions, transversions, and indels) is depicted in Table S2. Per-sample averages and medians with
standard deviations and interquartile ranges for each parameter across the entire genome (genome
coverage, depth of coverage, subclonal diversity, and frequency of SNPs, transitions, transversions,
and indels) are summarized in Table S3. A quasi-complete level of genome coverage (range 81.4–100%)
along with a high depth of coverage (range 4095.1–45,539.7 reads) for every sample was obtained
(Table S3). The frequency of SNPs was slightly lower in the viral isolate from the Vero E6 cells when
compared to the tick pool (p = 0.028; Figure 5).
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Figure 5. Viral diversity analysis of the SFTSV populations from AMFC 17-1 (human),
USAMRIID-HLP23 (tick pool), and USAMRIID-HLP23_VE6 (Vero E6) isolates. For each sample,
the three genomic segments (L, M, and S) were concatenated and the frequencies of each parameter for
every nucleotide position with at least 100 reads populated. For every parameter and each sample,
median frequencies were calculated along the entire genome. Error bars (representing the inter-quartile
range) are not visible due to the γ-axis scale, determined by the presence of outliers. Outliers are
represented by colored dots. (A) Frequency of SNPs (nucleotide positions presenting with a base
change that is supported by at least 2% of the reads and by no more than 50% of those). (B) Subclonal
diversity (SCD: events—SNPs and indels—per site per genome). (C,D,E) Individual frequencies (events
per site per genome) of transitions, transversions, and indels (insertions and/or deletions), respectively.
An asterisk indicates that differences were significant (p < 0.05) using the Wilcoxon rank sum test
(Table S2).
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Although the average levels were also slightly lower in the Vero E6 viral isolate, these differences
were not significant for SCD or for the frequency of transitions, transversions, and indels (Figure 5).
When comparing the virus populations from the tick and the human SFTS case, all parameters presented
with lower than average levels in the human SFTS case. These differences were significant for the
frequency of SNPs, the SCD, and the frequency of transitions (p = 3.989 × 10−5, p = 0.013, and p = 0.0036,
respectively), but not for the frequency of transversions and indels (p = 0.052 and p = 0.456, respectively)
(Figure 5).

Mutations (consensus nucleotide changes supported by >50% of the reads) along the entire
genome of the viral isolate from the Vero E6 and from the human case were populated with the
consensus sequence from the tick isolate as the reference. The genome of the viral isolate from Vero E6
cells had three mutations along the entire genome: two in the L segment (L1287 T to C and L6275 A
to T) and one in the S segment (S1455 T to C) (Table 4). The M segment sequence had no mutations.
Two of these mutations (L1287 and S1455) were already present among the viral subpopulations from
the tick pool as minor variants (2.6% and 19.9% of the reads, respectively). The L1287 nucleotide
change resulted in an F→S amino acid residue change at position 424 of L’s RdRp domain. The second
nucleotide change in this genomic segment (L6275) was located outside of the coding sequence (CDS).
The nucleotide change in the S segment (S1455) was a silent mutation that did not result in any
amino acid changes. The virus from the SFTS case contained 18 mutations along the entire genome,
including six that resulted in amino acid changes: two in L’s RdRp domain, three in GP, and one in NS.
The remaining 12 nucleotide changes were silent mutations.
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Table 4. Mutations (positions with nucleotide changes supported by >50% of the reads) in the SFTSV populations from the Vero E6 isolate and from the SFTS case in
relation to the virus from the ticks. Position nt/Position aa: nucleotide/amino acid position in the virus from the ticks; RdRp: RNA-directed RNA polymerase; GP:
glycoprotein; NS: nonstructural protein; NP: nucleocapsid protein; NC: non-coding; Freq.: percentage of reads supporting the corresponding nucleotide; Codon:
amino acid residue and the corresponding codon. Bases with and asterisk (*) in the virus from the ticks were supported by less than 100 reads, and the values are
shown for comparison purposes. Nucleotide and amino acid mutations in the Vero E6 isolate and in the virus from the SFTS case are shown in bold.

Consensus Changes

Position nt Segment Position aa Protein
Tick Vero E6 Human

Base Freq. Codon Base Freq. Codon Base Freq. Codon

1287

L

424

L

T 97.4 F (TTT) C 98.6 S (TCT) C 99.7 S (TCT)
2329 771 T 100 Y (TAT) T 99.9 Y (TAT) C 99.8 Y (TAC)
3070 1018 A 100 I (ATA) A 99.9 I (ATA) T 99.9 I (ATT)
3574 1186 C * 100 * H (CAC) C 99.9 H (CAC) T 99.9 H (CAT)
4170 1385 G 92.7 R (AGA) G 88.8 R (AGA) A 99.9 K (AAA)
6088 2024 A 100 A (GCA) A 99.9 A (GCA) G 99.6 A (GCG)

6275 NC NC A 98.1 NC T 99.8 NC T 99.9 NC

40

M

8

GP

A * 100 * T (ACC) A 99.9 T (ACC) T 100 S (TCC)
63 15 T 100 I (ATT) T 99.9 I (ATT) C 100 I (ATC)

564 182 T 100 P (CCT) T 99.9 P (CCT) C 99.6 P (CCC)
573 185 T 100 P (CCT) T 99.9 P (CCT) C 97.8 P (CCC)
1291 425 T 66.4 L (TTG) T 88.4 L (TTG) A 99.9 M (ATG)
1951 645 G * 100 * A (GCA) G 99.9 A (GCA) A 99.9 T (ACA)
3237 1073 A 100 A (GCA) A 99.9 A (GCA) T 99.9 A (GCT)

280

S

84
NS

G 97.1 C (TGC) G 88.4 C (TGC) A 99.9 Y (TAC)
716 229 T 100 D (GAT) T 99.9 D (GAT) C 99.9 D (GAC)
860 277 C 100 T (ACC) C 99.9 T (ACC) A 100 T (ACA)

1455 83 NP T 80.1 L (TTA) C 99.9 L (TTG) C 99.8 L (TTG)
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3.6. Lethality in IFNAR-/- Mice

SFTSV strain USAMRIID-HLP23_VE6 was used to evaluate the lethality of the virus in vivo.
Interferon (α/β) receptor knockout (IFNAR-/-) laboratory mice were divided into two groups of 13
animals per group. The control group was inoculated with saline solution whereas the experimental
group was inoculated subcutaneously with 1 × 105 TCID50 SFTSV. Among the animals infected with
SFTSV, the most common clinical signs of infection that were observed were subdued, ruffled fur,
hunched posture, weight loss, decreased mobility, reluctance to move. Control animals maintained
weight during the entire experimental period (21 d), whereas the experimental group began to drop
weight by post-inoculation Day 3 (Figure 6A). Only one animal from the control group died, on Day 3,
for unknown reasons. In contrast, animals from the experimental group were euthanized starting on
Day 5 as they reached endpoint criteria for euthanasia. Animals were euthanized based on a combined
scoring threshold for several parameters including weight loss, appearance and activity. Animals
scored most frequently based on appearance, activity and weight loss. No animal in the experimental
group survived beyond post-inoculation Day 6 (Figure 6B). There were no observable differences in
disease severity between male and female mice.
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Figure 6. SFTSV lethality in interferon (α/β) receptor knockout (IFNAR-/-) mice. (A) Weight curve from
the SFTSV-infected (orange) and control (red) mice. (B) Survival curves for mice exposed to SFTSV
(orange, experimental group) versus inoculated with saline solution (red, control group). Thirteen
animals per group (6 male and 7 female) were used.

4. Discussion

Syndromic and environmental surveillance resulted in the detection of SFTSV in a pool of ticks
collected at a ROKA training area in KOR and in an SFTSV-infected ROKA soldier assigned to the
same ROKA base. The complete characterization of both specimens using advanced genomic tools
enabled the production of a high-titer viral exposure stock that, due to its detailed characterization and
accurate documentation, will be useful for the development of animal models for SFTS that fulfill the
requirements of the main regulatory agencies.

The virus was amplified and isolated in cell culture producing a high-titer viral stock, as determined
by titration through a multiplex RT-qPCR-based TCID50 assay. TEM analysis and immunofluorescence
microscopy demonstrated clear virion-like particles and SFTSV properties consistent with previous
studies [2,47,48].

Viral genomes from the tick specimens (USAMRIID-HLP23), Vero E6 cells (USAMRIID-HLP23_VE6),
and the human specimen (AMFC 17-1) were deeply characterized by using target-enrichment
whole-genome sequencing. Both maximum-likelihood and Bayesian approaches estimated a close
phylogenetic relationship between human and tick sequences. The overlapping time and geographical
location of sample isolations suggest that the soldier may have been infected by a strain closely related
to USAMRIID-HLP23. However, additional geographical information of closely related strains is
needed to support this claim [38].

The phylogenetic analysis also demonstrated that virus isolation and propagation in Vero E6 cells
did not introduce substantial genetic changes in the original tick virus. Results of the deep-sequence
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population genomic analysis showed very little genomic diversity among the viral populations of the
tick virus and the cell-culture isolate. All parameters remained low and at comparable levels in the
Vero E6 virus isolate compared to the SFTSV detected in the pool of ticks, with the exception of the
frequency of SNPs that were slightly lower. Furthermore, only three nucleotide changes appeared in
the cell-culture isolate along the entire genome, only one of which resulted in an amino acid change
affecting L’s RdRp domain. This mutation, along with the nucleotide change in the nucleocapsid
protein, was already present among the SFTSV subpopulations from the pool of ticks as minor variants
that were further selected and becoming a dominant variant in the cell-culture isolate. No changes
were observed in the GP precursor (M segment). A certain degree of genetic variation is expected as a
result of the adaptation of the virus to the cell line in which it is grown, and similar or higher levels are
usually observed in other commonly used cell-culture viral isolates [49].

The combined results of the phylogenetic and the genomic analysis demonstrates that (a) the
SFTSV viral stock USAMRIID-HLP23_VE6 is highly representative of the natural viral strain reportedly
transmitted by ticks and (b) both SFTSV variants are very closely related to the SFTSV strain that
was the causative agent of SFTS in the ROKA soldier, with the aforementioned SFTSV detected in
the pool of ticks very likely constituting the source of this infection. Furthermore, the use of the viral
stock USAMRIID-HLP23_VE6 to model SFTS disease was tested in IFNAR-/- laboratory mice, with
the virus group demonstrating high lethality (100% of animals either reaching euthanasia criteria or
succumbing to disease) versus the mock group. This lethality is comparable to that achieved with
a similar mouse strain subcutaneously exposed to 106 TCID50 of human-derived Japanese SFTSV
strain SPL010 [50]. In both cases, animals succumbed before post-exposure Day 7, confirming that
the tick-derived SFTSV USAMRIID-HLP23_VE6 and the human-derived isolate behave similarly in
laboratory mice. Altogether, the important features discussed above highlight the value of SFTSV
USAMRIID-HLP23_VE6 as a well-characterized starting material to model SFTSV in animals.

Overall, the work performed in this study illustrates a comprehensive process for the rapid
characterization and subsequent production of well-characterized quality viral stocks. These can
be used as reliable and reproducible controls to study the biological aspects of viral agents while
providing valuable information during the development of medical countermeasures, such as vaccines
and therapeutic drugs.
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