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Abstract: Glaucoma is characterised by loss of retinal ganglion cells, and their axons and many
pathophysiological processes are postulated to be involved. It is increasingly understood that not one
pathway underlies glaucoma aetiology, but rather they occur as a continuum that ultimately results
in the apoptosis of retinal ganglion cells. Oxidative stress is recognised as an important mechanism
of cell death in many neurodegenerative diseases, including glaucoma. NADPH oxidase (NOX) are
enzymes that are widely expressed in vascular and non-vascular cells, and they are unique in that
they primarily produce reactive oxygen species (ROS). There is mounting evidence that NOX are an
important source of ROS and oxidative stress in glaucoma and other retinal diseases. This review
aims to provide a perspective on the complex role of oxidative stress in glaucoma, in particular
how NOX expression may influence glaucoma pathogenesis as illustrated by different experimental
models of glaucoma and highlights potential therapeutic targets that may offer a novel treatment
option to glaucoma patients.

Keywords: NOX; oxidative stress; glaucoma; retinal ganglion cells; reactive oxygen species; neurode-
generation

1. Introduction

Glaucoma is a heterogeneous group of disorders unified by loss of retinal ganglion
cells (RGCs) and their axons, resulting in a characteristic phenotype consisting of an
excavated optic nerve head with corresponding visual field defects. The pathogenesis
of glaucoma is incompletely understood with multiple pathophysiological factors and
pathways postulated to be causative, such as mechanical, vascular, and immunological
factors, leading to the final result of apoptotic death of RGCs [1]. Increasingly it is becoming
apparent that these factors do not contribute to glaucoma independently, but rather they
can be viewed as a continuum in which each factor contributes to the damage of retinal
ganglion cell axons.

In recent years, the role of oxidative stress has been recognised as playing an im-
portant role in the pathogenesis of glaucoma. Oxidative stress is implicated in elevated
intraocular pressure [2–4] and advancing age [5–7] and may explain the underlying process
of these risk factors in glaucoma development. In addition to the known correlation of
mitochondrial dysfunction to oxidative stress in glaucoma pathology [8], there is accumu-
lating experimental evidence that NADPH oxidase (NOX) can also contribute to oxidative
stress in glaucoma. In this article, the role of oxidative stress, in particular the role of
NADPH oxidase in the pathogenesis of glaucoma, and potential therapeutic targets related
to oxidative stress in glaucoma are reviewed.

2. Pathogenesis of Glaucoma
2.1. Anatomical Structure of the Optic Nerve Head and Retina

The retina is composed of ten layers that consist of the retinal pigment epithelium as
the outermost layer and the internal limiting membrane as the innermost layer. RGCs and
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their 1.2 to 2.0 million axons reside in the inner retina just external to the internal limiting
membrane. All visual information transmitted from the retina to the brain travels through
the RGC axons. These unmyelinated axons converge at the optic disc, where they exit the
eye after making a 45–90◦ turn. The optic disc is a circular aperture in the sclera in which a
multi-layered network of collagen fibres that insert into the scleral canal wall, known as the
lamina cribrosa, allows passage of the axons through its pores. A complex arrangement of
supportive glial tissue that consists of astrocytes, other glial cells, capillaries and extracellu-
lar matrix coats the meshwork of laminar beams that make up the lamina cribrosa. Past the
lamina cribrosa, RGC axons become myelinated and terminate at the lateral geniculate
nucleus and superior colliculus in the brain. These sites produce neurotrophins which are
then transported in a retrograde fashion to the RGCs. As such RGC axons are critical for
maintaining the health of RGCs by regulating the activity and survival of cell somas.

The blood supply to the optic nerve is complex and unique. The central retinal artery,
which enters the eye through the centre of the optic nerve, supplies blood to the inner layers
of the retina and sends small branches to only the very superficial layers of the optic nerve
head (ONH) [9]. The prelaminar portion of the ONH is supplied by short posterior ciliary
arteries that stem off the ophthalmic artery [10,11]. These arteries form an incomplete
anastomosis known as the circle of Zinn–Haler, within the scleral canal. From this circle,
smaller end-arteries arise to supply the ONH, including branching capillaries that coat
the lamina cribrosa. The movement of oxygen and nutrients from the laminar capillaries,
through the laminar beam extracellular matrix across the astrocyte basement membrane
into the astrocyte, finally reaching the peripheral and central axons of each bundle via cell
processes, is critical for maintaining axonal health [12,13].

It is likely that the ONH is the only part of the central nervous system with no blood-
brain-barrier as the capillaries lack blood-brain barrier mechanisms [14]. In contrast to
retinal circulation, which is highly autoregulated, the ONH circulation is less efficiently
autoregulated [15], and susceptible to diffusion from the choroid circulation nearby. It is,
therefore, sensitive to circulating molecules such as endothelin-1 and angiotensin II [16],
which are known to cause NOX activation [17,18].

2.2. Mechanical Theory of Glaucoma

The mechanical theory of glaucoma offers a framework to explain the relationship be-
tween intraocular pressure-related stress and RGC pathophysiology. Elevated intraocular
pressure is a well-recognised risk factor of glaucoma and the only modifiable one. Elevated
intraocular pressure is the result of increased resistance in the trabecular meshwork outflow
pathway, preventing adequate drainage of aqueous humour. This, in turn, impedes axo-
plasmic transport, resulting in apoptosis of RGCs [19]. The site of this injury is postulated
to occur at the ONH, where RGC axons are more vulnerable to pressure-related changes
as lamina cribrosa, being structurally weaker than sclera, is more prone to distortion and
posterior-displacement [20,21]. It is the effect of this translaminar pressure gradient on
axonal physiology that underpins the mechanical theory of glaucoma. Assessment of
the movement of the cribrosal plates in glaucoma have demonstrated that the greatest
compressive force is exerted on axons lying in the peripheral part of the optic nerve [21];
this correlates with the clinical observation that vision loss in glaucoma initiates with loss
in the peripheral visual field.

However, it is unlikely that gross deformation of the cribrosal plates occurs in the early
stages of glaucoma. Whilst axons are undoubtedly damaged and lost in the early stages
of glaucoma, it is not due to physical alteration of the lamina cribrosa, and its proposed
mechanisms are discussed later in this article. However, stress and strain can build up at
the lamina cribrosa due to elevated intraocular pressure [21,22]. Reduced lamina cribrosa
elasticity with age means that in older eyes, the lamina cribrosa is less able to return to
normal configuration once pressure is normalised [23]. Hence the increased prevalence of
glaucoma with increasing age, and ageing is associated with oxidative stress.
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2.3. Vascular Theory of Glaucoma

The vascular theory of glaucoma postulates that glaucoma is a consequence of insuffi-
cient blood supply to the optic nerve due to either elevated intraocular pressure or other
risk factors leading to reduced ocular blood flow [24]. This results in hypoxia and ischemia
to the RGC and its axons. While the question has been raised of whether reduced ocular
blood flow may, in fact, be a consequence of elevated intraocular pressure in glaucoma,
rather a cause [25], investigators argue that evidence direct us to reduced ocular blood flow
as a cause for these reasons: Firstly, effects of reduced ocular blood flow is often more pro-
nounced in those with normal tension glaucoma rather than high-tension glaucoma, such as
optic disc haemorrhages [26,27]. Secondly, reduced ocular blood flow is often not confined
to the eye alone but often seen beyond the eye [28]. Finally, reduced blood flow precedes
glaucomatous disease in at least some patients [29]. There are also many clinical indications
of this being the underlying pathophysiology, both within the eye and systemically. Op-
tic disc haemorrhages are one of the hallmarks of glaucoma, especially poorly-controlled
glaucoma [26,30]. Increased risk of venous thrombosis [31,32]; and vasoconstriction of the
retina [33] are also more frequently seen in patients with glaucoma. Systemically, there is an
association between cardiovascular disease and the development of glaucoma. Specific risk
factors include systemic hypertension [34,35] or hypotension [36–38], a previous haemody-
namic crisis [39,40], diabetes [41,42], and increased blood viscosity [43]. Migraines [44,45],
Raynaud’s phenomenon [46,47], and other conditions related to vasospasm have also been
identified as risk factors for the development of normal tension glaucoma [44,47,48]. In this
review, we will focus on the role of NOX-dependent oxidative stress in the eye. However,
it is well known that NOX-dependent oxidative stress is implicated in cardiovascular dis-
eases [48]. Impaired endothelial cell function has been described in glaucoma patients [49],
as well as increased blood plasma and aqueous humour levels of endothelin-1 [50–52],
although this finding is not specific to glaucoma patients alone [53].

The exact underlying cause of impaired ocular blood flow still unknown, and a
detailed analysis is beyond the scope of this article. However, three potential causes have
been suggested: (1) increased resistance to flow such as with arteriosclerosis; (2) reduced
perfusion pressure, such as seen in systemic hypotension or primary vasospastic syndrome;
(3) increased blood viscosity. The dependence of the ONH on end-arteries to deliver its
vascular supply likely predisposes this risk. While we do not yet have a treatment that
directly targets reduced ocular blood flow to treat glaucoma, the lowering of intraocular
pressure, which is the only currently available treatment strategy, may in part work by
increasing blood flow [25].

2.4. Immunological Theory of Glaucoma

As with all cell types, homeostasis and survival of RGCs depend on a well-functioning
immune system. As glaucoma is frequently considered a neurodegenerative disease, it is
perhaps not surprising that processes associated with impairment of the immune system
seen in other central nervous system (CNS) diseases are also identified in glaucoma [54].
The idea that glaucoma is associated with impaired immunity was first raised by Wax in
1998 when he described antibodies against endogenous antigens such as heat shock proteins
(HSP) in the serum of glaucoma patients [55]. HSPs are important for cellular defence and
are upregulated during pathophysiological conditions. Since then, activity associated with
both innate and adaptive immunity has been described in glaucoma [56–58].

Microglial cells are specialised macrophages of the CNS. They are in the frontline
of active immune defence and act as scavengers to clear the debris of dead or dying
neurons. However, they can also have a destructive role and can harm the cells by releasing
cytokines such as tumour necrosis factor (TNFα) and may play a role in the initiation
of RGC death [59]. Microglia have been shown to be activated by elevated intraocular
pressure in experimental models of glaucoma [60].

Monocytes have been reported to mediate axonal damage in mouse models of glau-
coma and inhibition of this activity have been demonstrated to have a protective effect [61].
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This is likely to be associated with activation of a leukocyte transendothelial migration
pathway which allows proinflammatory cytokines to enter the ONH. Howell et al. [62]
subsequently demonstrated that localised radiation of the ONH could be neuroprotective
by reducing the activation of optic nerve microglia.

3. Oxidative Stress in Glaucoma

Oxidative stress in its simplest form refers to the imbalance of free radicals and
antioxidants in the body that can result in tissue damage. Reactive oxygen species (ROS)
are a major source of oxidative stress, and they include free radicals such as superoxide
anion (O2

−), hydroxyl radical, lipid radical and nitric oxide (NO). Uncontrolled production
of ROS can lead to cell damage, necrosis or apoptosis via oxidation of macromolecules such
as proteins [63,64], lipids [65], nuclear DNA [66], or mitochondrial DNA [67]. Oxidative
stress is recognised to be an important mechanism of cell death in neurodegenerative
diseases, including glaucoma [68]. While there are numerous enzyme systems that produce
ROS in mammalian cells, four enzyme systems predominate; these include NADPH
oxidase [69], xanthine oxidase [70], uncoupled NO synthase [71], and the mitochondrial
electron transport chain [72].

Our understanding of the role of oxidative stress generated by the mitochondrial
electron transport chain is more profound than the other enzymatic systems because in
recent years considerable research has been conducted on the bioenergetic processes of RGC
axons [73–75], whereas little is known about oxidative stress related to NO synthase and
xanthine oxidase in glaucoma. The oxygen consumption of RGCs is immensely high: each
RGC consumes 4.68 × 108 ATP molecules/s to prevent complete loss of vision [74]. This is
about 5-fold greater than the requirement of mammalian photoreceptors in darkness and
similar to the requirement of unmyelinated hippocampal axons (mossy fibres) to maintain
action potentials. This high energy expenditure is largely consumed by the generating of
action potentials and re-establishing the resting membrane potential [76]. RGCs are able to
maintain this considerable energy demand due to the abundance of mitochondria present
throughout the cell soma, axon and dendrites. Mitochondria concentration is highest at the
lamina cribrosa, and this is consistent with their role in protecting RGCs from damage by
ensuring adequate ATP supply, as the lamina cribrosa is a site vulnerable to damage [77].
Mitochondria also play an important role in maintaining synaptic integrity [78].

4. NADPH Oxidase and Oxidative Stress

In addition to mitochondria, NADPH oxidase, also known as the masters of the ROS
producing enzymes [79], may also play an important role in the generation of ROS and
oxidative stress in glaucoma. There is also evidence that mitochondrial dysfunction can
activate NADPH oxidase. For instance, superoxide derived from mitochondria has been
shown to induce activation of NOX2 in human lymphoblasts [80]. NADPH oxidase has
been identified as one of the major sources of oxidative stress in retinal eye diseases such as
ischaemic retinopathy and aged-related macular degeneration [81]. NOX-derived reactive
oxygen species (ROS) regulate many cellular processes including proliferation, migration
and differentiation [82]. There are seven NADPH oxidase (catalytic subunit NOX [69])
isoforms: NOX1-5 and DUOX1-2. The NOX1, NOX2, NOX4 and NOX5 (NOX5 is only
expressed in humans) are widely expressed in vascular and non-vascular cells, and they
primarily produce ROS, making them unique from other redox enzymes. These isoforms
have been extensively explored in cardiovascular disease, inflammation and fibrosis [81,83]
and the role of NADPH oxidase in ocular diseases is still under extensive investigation.
Among these isoforms, NOX1, NOX2, NOX4 are the most studied in eye pathology. NOX1
and NOX2 differ from NOX4 in the mode of activation and type of ROS produced [84].
All three isoforms have a membrane anchoring subunit p22PHOX, but the activation
of both NOX1 and NOX2 requires association with their cytosolic subunits and NOX4 is
constitutively active [85]. NOX1 and NOX2 generate superoxide and NOX4 mainly produce
hydrogen superoxide [85] because the latter has an extracytosolic loop that facilitates the
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spontaneous dismutation of superoxide into hydrogen peroxide [86] (Figure 1). It has been
known that the enzymatic activity of NOX can be induced by stimuli. For example, hypoxia
has been shown to induce NOX1 expression and ROS production under low glucose
condition to cause apoptosis in retinal ganglion cells (RGC) [87]. Proinflammatory cytokine
TNFα has also been shown to cause NOX2-dependent ROS production in microglia [88] and
TNFα has indeed been detected in aqueous humour of glaucoma patients [89]. HSP that is
induced in glaucomatous eye [90] has also been found to regulate the enzymatic activity of
NOX1 and NOX2 [91]. Accordingly, all of these stimuli are relevant to glaucoma pathology.
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with p67PHOX, p47PHOX, p40PHOX and Rac. The catalytic domain (NOX) allows the transport of electrons (e−) from
cytosolic NADPH to generate O2−. In contrast, NOX4 (not shown here) only has p22PHOX. NOX4 is constitutively active
and primarily produces hydrogen peroxide.

Recently advanced glycation end products (AGEs) that are formed as a result of
glycation of proteins and lipids have also been implicated in the pathology of age-related
eye diseases such as glaucoma [92,93]. Indeed, restoring the function of AGEs detoxifying
enzyme glyoxalase (GLO) has been shown to prevent diabetic retinopathy injury [94].
While AGEs are sources of oxidative stress, the generated oxidant products have been
known to promote the formation of AGEs, thus providing a positive feedback mechanism
to enhance oxidative stress [92]. Apart from AGEs, NADPH oxidase-derived ROS have
also shown to accelerate the synthesis of AGEs. Although it is not the focus of the present
review, a correlation in the context of oxidative stress has been proposed among AGEs,
NADPH oxidase and mitochondria [95].

5. Expression of NADPH Oxidase and Glaucoma Pathology

Several animal models of glaucoma have been used to characterise the expression
of NADPH oxidase in the pathogenesis of glaucoma. The animal models utilise different
techniques to mimic various pathological processes in glaucoma, such as retinal ischemia
and reperfusion, ocular hypertension, and optic nerve crush injury, to mimic pathological
features of glaucoma [96]. Some features, including microglial activation and neuronal
injury in the retina, and neuronal cell death due to apoptosis of RGC in glaucoma, can lead
to vision impairment [97]. Here we describe the relationship between NOX expression and
pathological features in the animal models of glaucoma.

5.1. Retinal Ischemia and Reperfusion

By applying a transient period of ischemia to the retina to induce neuronal cell injury in
mice, Yokota et al. characterised the relationship of NOX expression in neuronal cell death
and glial cell activation in ischaemic/reperfused retinas [98]. While the mRNA of NOX1,
NOX2, NOX3, NOX4 and NOX cytosolic subunits p22PHOX and p47PHOX is detected
in the non-ischaemic mouse retinas, only gene expression of both NOX2 and p22PHOX is
induced after ischemia and reperfusion [98]. Furthermore, Yokota et al. [98] used NOX2-
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deficient mice to verify that NOX2-dependent ROS generation is localised to the inner
retina, and NOX2 deletion can prevent both the apoptosis of neurons in the RGC layer and
activation of glia after ischemia and reperfusion. In contrast, Dvoriantchikova et al. [87]
showed that ischemia and reperfusion enhanced the immunostaining of both NOX1 and its
regulatory subunit NOXO1 in the RGC layer without affecting NOX2, NOX4 and p47PHOX
in mice. The variations in the time of ischemia and reperfusion or detection methods may
account for the discrepancies between the two studies. Although both studies subjected the
retinas to forty to sixty minutes of ischemia, the reperfusion duration was different [87,98].
It should be noted that Yokota et al. [98] used Western blotting to analyse the overall
expression of NOX2 in the retinas and showed that NOX2 induction commences at three
hours and peaks at six and twelve hours after ischemia and reperfusion [98]. On the other
hand, Dvoriantchikova et al. used immunofluorescence to determine the tissue distribution
of NOX expression in retinal sections from mice following three hours of retinal ischemia
and reperfusion [87]. The two study outcomes also reflect the distinct activation of NOX
isoforms in different layers of the retina upon ischemic challenge, for example, NOX1 is
mainly induced in the RGC layer where it contributes to the death of RGC [87] and NOX2
is distributed throughout the inner retina [98] where it promotes glial cell activation as well
as RGC apoptosis. Hence inhibiting NOX activation may prevent neuronal cell damages
resulting from the ischaemic insult that occurs in acute glaucoma.

5.2. Ocular Hypertension

Ocular hypertension in animals is induced by either applying laser photocoagulation
to the trabecular meshwork or cauterizing the episcleral vein [96]. NOX2 has been found
to co-localise with activated microglia in the ONHs from mice after laser photocoagulation
of the trabecular meshwork [73]. It is proposed that the ROS produced from the microglial
NOX2 cause a disruption to the axonal transport in these mice following laser photoco-
agulation to the trabecular meshwork [73]. In a model of unilateral ocular hypertension
induced by episcleral vein cauterization, ocular hypertension causes activation of both
astrocytes and microglia in retinas, and this is accompanied by an induction of NOX2
mRNA [99], supporting a role of NOX2 in retinal inflammation. Although the expression
of NOX2 is assessed in the two models of ocular hypertension, the interaction between
NOX2 and microglial activation has not been investigated [73,99]. Interestingly, NOX2 in
microglia is thought to promote the polarization of microglia to the M1-like phenotype in
mice brain after traumatic brain injury because the deletion of NOX2 gene reduces M1-like
activation but induces the activation of M2-like phenotype in the injured brain [100]. M1-
like phenotype is known to be involved in inflammatory response while M2-like microglia
facilitates tissue repair by suppressing injury-induced inflammation and re-establishing
tissue homeostasis [101]. The demonstration of NOX2 in polarizing microglia to M1-
phenotype after brain injury reflects a major role of NOX2 in neuroinflammation. Moreover,
NOX2-dependent ROS signalling can promote leukocyte transendothelial migration [102],
a process that is known to allow proinflammatory cytokines to enter the ONH during
inflammation. Apart from the degeneration of RGC, neuroinflammation also contributes
to the progression of glaucoma [89]. Hence, these data provide some insights into how
NOX2 may facilitate the initiation and propagation of inflammation. Because microglial
activation can induce or amplify the damages to RGC in glaucoma [103], it will be of great
interest to elucidate whether NOX2 also affects the polarisation of microglia or leukocyte
transendothelial migration in animal models of glaucoma. Apart from its association with
activated microglia, NOX2 expression has also been found in retinal arterioles of mice
with ocular hypertension [104]. The mRNA level of NOX2 but not NOX1 is upregulated in
retinas with ocular hypertension, and it is thought that NOX2-dependent ROS production
is involved in the reduced endothelium-dependent relaxation of retinal blood vessels in
the presence of ocular hypertension [104]. In a comparable microvascular network to the
eye such as the cerebrum, NOX2 is also involved in the angiotensin II-induced endothelial
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dysfunction [105], and angiotensin II is known to cause hypertension [106]. The findings
thus highlight the role of NOX2 in endothelial dysfunction induced by hypertension.

5.3. Optic Nerve Injury

Optic nerve crush is another experimental approach that induces neuronal cell damage
in the retina [107]. Mice with optic nerve crush injury demonstrated RGC death as well
as increases in mRNA expression of NOX1, NOX2 and NOX4 in the retina [108]. In situ
detection of ROS also confirmed that the retinal ganglion layer is the primary site of ROS
production in these mice [108]. Since ROS are short-lived, RGC layer presumably harbours
the identified ROS generating enzymes NOX1, NOX2 and NOX4, which promote RGC
death through ROS production after optic nerve crush injury [108]. In a rat model of
nonarteritic anterior ischemic optic neuropathy where the optic nerve was injured with
laser, it was thought that NOX2 induction is involved in the microglial activation in the
anterior optic nerve [109].

Accumulating findings from animal models of glaucoma revealed that NOX induction
is involved in the progression of glaucoma (Table 1); however, the expression profile of
NOX in human eyes is very scarce, and this is largely due to very limited tissue sources.
The demonstration of NOX2 and NOX4 induction in alkali-burnt eye sections from a pa-
tient is one of the few investigations that characterises NOX expression in human corneal
specimen [110]. Another assessment of NOX in clinical samples comes from the profiling
of NOX4 protein expression in different grades of excised ocular tumours and, NOX4 ex-
pression is found to be correlated to higher grade retinoblastoma and massive choroidal
invasion [111]. The profiling of NOX expression in clinical samples from glaucoma patients
is yet to be explored.

Table 1. Summary of NOX expression in animal models of glaucoma.

Animal Model
Tissue Basal
Expression

of NOX

Tissue NOX
Induction

upon Injury

Localisation
of NOX

Site of ROS
Production

NOX Association
to Retinal Injury

Retinal ischemia
and reperfusion

(6 h) [98]

mRNA: NOX1,
NOX2, NOX3,

NOX4, p22PHOX
and p47PHOX

in retinas

mRNA: NOX2 and
p22PHOX
in retinas

Not performed Inner retina

Apoptosis of
retinal ganglion

cells
Glial cell activation

Retinal ischemia
and reperfusion

(3 h) [87]

Protein: NOX1,
NOX2, NOX4,
NOXO1 and

p47PHOX
in retinas

Protein: NOX1 and
NOXO1 in retinas

Retinal
ganglion cells Inner retina

No evaluation of
cell injury in the

eye section

Optic nerve
crush [108]

mRNA: NOX1,
NOX2, NOX4

in retinas

mRNA: NOX1,
NOX2, NOX4

in retinas
Not performed Retinal

ganglion layer

Reduction in the
survival of retinal

ganglion cells

Photocoagulation
of trabecular

meshwork [73]

NOX2 mRNA and
protein in optic

nerve head

NOX2 mRNA and
protein in optic

nerve head

Microglia in optic
nerve head Optic nerve head

Microglial
activation in optic

nerve head

Cauterization of
episcleral vein [99]

NOX2 mRNA
in retinas

NOX2 mRNA
in retinas Not performed Not measured

Microglial
activation
in retinas

Cauterization of
episcleral
vein [104]

NOX1 mRNA
NOX2 mRNA and
protein in retinas

NOX2 mRNA and
protein in retinas

Retinal ganglion
layer

Retinal arterioles

Retinal ganglion
layer

Retinal arterioles

Impaired
endothelial

function

Laser-induced
injury on optic

nerve [109]

NOX2 protein in
optic nerve

NOX2 protein in
optic nerve Not performed Not measured

Microglial
activation in the

optic nerve
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6. Targeting Oxidative Stress for Glaucoma
6.1. Antioxidant Therapy

Several clinical studies have used different outcome measures to assess the protective
effects of antioxidants in glaucoma patients. Falsini et al. [112] evaluated the effect of
antioxidant epigallocatechin-gallate (EGCG) on the retinal function of ten patients with
open-angle glaucoma using pattern electroretinogram (PERG), and the study showed that
oral EGCG supplement given over three months slightly improved the patients’ inner
retinal function. Since PERG measurements correlate with the activity of RGC, it is thought
that short-term EGCG treatment delays the regression of glaucoma-induced damages on
RGC to improve inner retinal function [112]. It has also been known that glaucomatous
eyes have impaired ocular blood flow [113] that would progressively lead to an ischaemic
environment which can compromise the physiology of the retina. Recently, open-angle
glaucoma patients receiving a month of mixed antioxidants, including vitamins C, E, B6 and
B12 and herb remedy like Gingko Biloba, show better ocular blood flow parameters, such as
increases in supero- and infero-temporal retinal capillary mean blood flow and decreases
in retinal vessel resistance when compared to placebo [113]. In contrast, a separate cohort
of fifty-four patients taking oral antioxidant supplement, mainly consisting of vitamins A,
B, C, E, lutein and essential minerals such as zinc and selenium, showed no differences in
visual acuity and thickness of both peripapillary retinal nerve fibre and macular ganglion
cell complex when compared to placebo [114]. Because the three studies used different
antioxidant formulations and performed different outcome measures, it is difficult to
rationalise the discrepancies. Nevertheless, there is still a lack of large clinical trial to draw
any solid conclusion on the neuroprotective effect of antioxidant therapy in glaucoma.
As such, a study has recently commenced and planned to recruit 612 patients to compare
the neuroprotective effect of an ophthalmic solution of antioxidants Coenzyme q10 and
vitamin E to placebo with a follow-up of three years [115]. The study outcome will clarify if
antioxidants can slow down glaucoma progression based on the examination of a patient’s
visual field.

6.2. Pharmacological Inhibition of NADPH Oxidase

While antioxidants are being trialled in glaucoma patients, preclinical research in
animals has also been performed to assess if targeting the source of ROS production
is an alternative approach for controlling oxidative stress. This concept comes as some
earlier antioxidant trials have produced dissatisfactory outcomes when assessing the
progression of vascular diseases [116]. Based on a literature review on the clinical trials
of vitamins between 1981 and 2005, it is thought that some antioxidant vitamins like
vitamin E, when administered alone, produces adverse effects by acting as a prooxidant
and soaking up the endogenous pool of antioxidants in the already vulnerable oxidative
stress environment [116,117]. Consequently, later trials tend to use a combination of
antioxidant vitamins to avoid the harmful effects of vitamin monotherapy. Furthermore,
high doses of antioxidants are often required to neutralise such a high level of ROS in
diseased conditions [116]. As such, targeting the source appears to be more effective.

Pharmacological inhibition is one of the approaches that is commonly used to block
the contribution of NADPH oxidase and has been widely explored in an animal model
of vascular diseases [118] and more recently in retinal pathological conditions such as
ischaemic retinopathy and retinal inflammation [119,120]. There are however very limited
studies on the pharmacological intervention of NOX in animal models of glaucoma and
the beneficial effects of NOX inhibition have only been demonstrated with a non-selective
NADPH oxidase inhibitor apocynin and NOX2 deficient mice [98]. As such, it is important
to assess the protective effect of NOX inhibitor in an animal model of glaucoma. A panel of
NOX inhibitors such as GKT137831, GSK2795039 and GLX7013114 have been developed
to selectively target the various isoforms of NOX as different NOX subtypes tend to be
involved in various pathological conditions in the vascular systems [121], for example,
NOX2 in inflammation and NOX4 in fibrosis. In eye pathologies, a dual inhibitor of NOX1
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and NOX4, GKT137831 has been assessed for its protective effects in animal models of
ischaemic retinopathy and retinal inflammation and retinal endothelial cells under con-
ditions simulating diabetes [120–123]. GKT137831 is developed by GenKyoTex and has
been assessed in a variety of animal models, including kidney diseases and liver fibro-
sis [118,124] prior to the evaluation in eye diseases. GKT137831 (also known as setanaxib)
is currently in a clinical trial for diabetes and kidney diseases [124]. Of all the developed
NOX inhibitors, setanaxib is the first of its kind to be recognised and categorised into
the newly World Health Organisation (WHO) approved stem naxib, or NADPH oxidase
inhibitors [124].

Like setanaxib, GSK2795039 is a small molecule developed for NOX2 [122] and ap-
pears to stand for its claim when it is recently challenged for its selectivity using in vitro
NOX evaluation assays [121]. The potency of GSK2795039 has been shown in animal
models of inflammation such as Freund’s adjuvant-induced inflammation in the paw
and acute pancreatitis [122], and cell cultures of inflammatory cells like neutrophils [125]
and monocytes [126]. Recently, GSK2795039 has also demonstrated benefits in neuronal
injury [127]. A single dose of GSK2795039 given prior to induction of traumatic brain
injury in mice improves neurological deficit scores and prevents the breakdown of the
blood brain area at twenty-four hours after injury [127]. GSK2795039 treatment has been
found to suppress NOX2-dependent ROS generation in the neurons cultured from the
GSK2795039-treated injured cerebral cortex, thereby preventing cell survival and promoting
cell growth [127], suggesting that the beneficial effects relate to NOX2 inhibition. Glucox
Biotech has developed a series of highly specific NOX4 inhibitors such as GLX351322 [128]
and GLX7013114 [129], and the latter has shown anti-NOX4 activity in preventing the
transition of lens cells into a phenotype that actively produces scar proteins following
stimulation with TGFβ1 [129]. Interestingly, a single intravitreal injection of GLX7013114
suppressed the accumulation of microglia and glial cell activation in the retinas from rats
with AMPA-induced retinal excitotoxicity [130], highlighting the neuroprotective effect of
GLX7013114.

7. Future Horizons

In addition to having direct effects on RGCs and the retina in glaucoma, there is
early evidence that NADPH oxidase may be implicated in the pathophysiology of glau-
coma through other anatomical pathways (Figure 2). Alterations in extracellular matrix
remodelling at the trabecular meshwork resulting in elevated intraocular pressure can
contribute to glaucoma development [131]. Transforming growth factor (TGFβ) has been
characterised as an important contributing factor to glaucoma pathophysiology. For ex-
ample, TGFβ has been demonstrated to cause cell apoptosis in cell cultures and promote
collagen synthesis in the trabecular meshwork; it also elevated intraocular pressure in a
perfused organ culture model using human donor anterior segments [131,132]. Importantly,
elevated concentrations of TGFβ have been detected in aqueous humour from patients
with glaucoma [131], implicating its role in glaucoma. Interestingly NADPH oxidase has
been identified as a potential source of ROS generation at the trabecular meshwork under
chronic stress [133]. Some preliminary works have been recently performed in human
trabecular meshwork cells to assess the relationship between TGFβ fibrotic responses and
NOX expression [134,135]. TGFβ1 is found to stimulate the gene expression of NOX4 and
fibrosis markers such as collagen and α-smooth muscle actin [134] while TGFβ2 selectively
induces NOX4 expression without affecting NOX1–NOX3 and NOX5 [135]. Our group
has also previously shown that TGFβ1 activates NOX4 to promote collagen synthesis in
Tenon’s fibroblasts [136], which are major contributors to fibrosis in pathological wound
healing [137]. These findings support NOX4’s involvement in fibrotic responses, but further
research is required to dissect out the role of NOX4 and other NOX isoforms in regulating
extracellular matrix turnover in the trabecular meshwork.
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Vascular dysregulation in the eye is another pathological feature of glaucoma, and the
underlying mechanism is still unclear. This phenomenon may be partly attributable to the
impaired autoregulation and endothelial dysfunction under the influence of high intraocu-
lar pressure and appears to be involved in oxidative stress [79]. While further investigation
is required to delineate the relationship between oxidative stress and impaired endothelial
function in ocular hypertension, a vascular reactivity study conducted in hypertensive
patients may shed some lights [138]. Accordingly, the impaired endothelium-dependent re-
laxation of the coronary artery in hypertensive patients is due to a reduction of bioavailable
vasodilator NO [138]. It should be noted that when ROS such as superoxide (O2

−) is pro-
duced in close proximity to NO, the two labile ROS can react to produce the more damaging
peroxynitrite (ONOO−) [139] if endogenous antioxidants like superoxide dismutase are
compromised—as such, controlling oxidative stress in glaucoma may restore the local pool
of NO and preserve endothelial function. Therefore, the implication of NOX-dependent
oxidative stress in hypertension-induced endothelial dysfunction should be investigated
further in an in vivo setting. The feasibility of delivering vessel constricting/dilating agent
to the retina would present a challenge even though a variety of techniques such as laser
Doppler flowmetry and optical coherence tomography are available for assessing live
retinal activity including blood flow in the eye [140].

The profiling of NOX expression in samples from patients with glaucoma presents a
challenge to the research field due to tissue availability. This problem may be overcome
with the advent of next generation sequencing technology such as RNA-seq. The main
advantage of RNA-seq is its capability of producing a variety of information such as gene
isoforms, alternative splice sites and allele-specific expression from a small sample of
cDNA [141]. Indeed RNA-seq has already been applied in ophthalmology research [142]
and RNA-seq has discovered important genes that are crucial to the development of eye
diseases including retinitis pigmentosa [143,144], glaucoma and keratoconus [145]. Indeed
Donato et al. [146] recently used RNA-seq and discovered that damaged mitochondrial
DNA plays a significant role in retinal degeneration.
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8. Conclusions

While oxidative stress is increasingly recognised to play an important role in the patho-
genesis of glaucoma, the research spotlight has been on mitochondrial dysfunction as the
main source of this oxidative stress. This review has provided experimental evidence that
NADPH oxidase is an emerging source of oxidative stress in glaucoma, and its induction
plays a role in the progression of glaucoma. Targeting NADPH oxidase appears to be a
viable strategy to control neuroinflammation and delay or prevent the degeneration of
RGCs, but further research is required to understand its interaction with other enzymatic
sources, such as the mitochondria. We have discussed the expression NADPH oxidase
in different models of glaucoma, highlighted the potential role of antioxidant therapy
targeting NADPH oxidase and other enzymatic pathways in glaucoma, and identified
prospective areas of research interest implicating NADPH oxidase in glaucoma.

Despite the recent advances made in glaucoma treatment, the only proven therapeutic
target is still through the lowering of intraocular pressure to slow the loss of RGCs and their
axons. Antioxidant therapy targeting NADPH oxidase presents a favourable alternative
treatment for glaucoma patients through the neuroprotection of retinal ganglion cells
and their axons, in addition to pressure lowering medication. Whilst the majority of this
research is still in preclinical phases, it offers an exciting new field of research in glaucoma.
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AGEs Advanced glycation end products
CNS central nervous system
EGCG epigallocatechin-gallate
GLO Glyoxalase
HSP heat shock protein
NO nitric oxide
NOX NADPH oxidase
O2

− superoxide
ONH optic nerve head
ONOO− peroxynitrite
PERG pattern electroretinogram
RGC retinal ganglion cell
TGFβ transforming growth factor β
TNFα tumour necrosis factor α
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