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Abstract: 
Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and 
challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional 
annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology 
prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein 
prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid 
sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on 
TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of 
their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of 
transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane 
helices prediction on MATLAB platform and it could also be useful for drug discovery strategy.  
 
 
Availability: Matlab script is available upon request to bioinfonavneet@gmail.com, vinaysingh@bhu.ac.in 
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Background: 
Accurate predictive success of transmembrane proteins by 
applying hidden markov model [HMM] is frequently used in 
biological research. This is fully machine learning approach in 
which genome structure and proteins topology prediction are 
the fascinating and most demanding subject in bioinformatics. 
The body of a HMM is closely compatible to the biological 
entities which is being simulated by the model. Looking the 
feasibility of HMM by going through the recent research 
articles, is totally statistical approach that compiled by the set of 
states which have potentially able to emit symbols on the basis 
of probability [1, 6]. These states are estimated by model 
parameters. Model parameters consist of three probabilities i.e. 

initial probability, transition probability and emission 
probability.  
 
In the context of accurate prediction method of transmembrane 
topology many workers had obtained results with more than 
five helices were predicted at a significantly lower accuracy 
than proteins with five or fewer and in addition the estimation 
of the standard procedure to resolve the prior work and 
presented novel trends that may impact the analysis of entire 
proteomes [2]. Furthermore, some workers were addressed a 
method to reduce the number of false positives, i.e., proteins 
falsely predicted with membrane helices [3]. Previously the 
workers had worked on the effectiveness of model 
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regularization, dynamic model modification and optimization 
strategies of model and validated through experimentally [4]. 
Several workers were developed five different prediction 
method, these are TMMOD [14], PHD, HMMTOP, MEMSAT, 
and TOPPRED for comparatively better result in 
transmembrane topology prediction [5, 18]. Although the 
prediction of transmembrane helices can be analyzed with good 
enough score plot but this idea was not successful for other 
helices. Recently the hydrophobic property of transmembrane 
helices was used for the prediction [6]. But after some time one 
feature was taken into account i.e. abundance of positive charge 
residues [7, 15]. Due to better incorporation of helix length, 
compositional bias and grammar constraints, HMM is suitable 
for the prediction of transmembrane helices. Helical membrane 
proteins are specified a “grammar”, in which cytoplasmic and 
non-cytoplasmic loops have occurred alternate fashion. 
Therefore this feature provides the efficient information, even 
performs better result in prediction [8, 14]. TMHMM approach 
is applied here because these days mostly membrane protein is 
predicted through this method and result is more accurate. For 
better understanding of model we applied here MATLAB. 
MATLAB is widely used to visualize and analyze the biological 
data. MATLAB provides a bioinfo tool box in which various 
bioinformatics tools are available for technical computing and 
scripting. This language is a high-level matrix/array language 
with control flow statements, functions, data structures, 
input/output, and object-oriented programming features [9]. It 
was experienced that MATLAB shows better feasibility with 
HMM rather than other bio-statistical packages. 
 
In this work we present our model performance, based on 
hidden markov model, by taking approach from previous 
research on TMHMM [10]. We have reviewed the previous 
TMHMM model architecture which has specialized modeling of 
different regions of membrane proteins like inner, middle and 
outer region [8]. These regions are collectively divided by 7 
locations. The states are connected to each other and transitions 
may be possible between adjacent states. Best possible 
transition of a state recruits on the basis of high transition 
probability value, known as transition probability and further 
20 amino acids are emitted by probability distribution of each 
state.  
 
Methodology: 
Dataset  
We have downloaded two types of dataset from the TMHMM 
website in which second dataset has 160 transmembrane 
sequences. Most protein pattern of these dataset was 
determined by experimentally. The dataset is labeled by three 
main locations, these are transmembrane helix (m), inside (i) 
and outside loops (o) on the basis of the existence of deferent 
amino acids pattern within a transmembrane region. 10-fold 
cross validation was applied for the validation of model [8, 10]. 
 
Method 
In this work, we have introduced the probabilistic framework of 
the HMM for transmembrane helix prediction. Well known 
architecture of TMHMM was considered and three main 
locations in dataset were further divided into seven different 
super states as shown in TMHMM model architecture. Figure 1 
Conversion from three to seven super states was decided on the 
basis of position and length of strings location. In the context of 

outer region of transmembrane topology, five residues length of 
cap cytoplasmic was used to fix the boundary between helix 
and loop region. These seven super states were also labeled. For 
outer loop, either it was short (S) or long (O) region of non-
cytoplasmic, was considered the length of 20 residues and 
similarly the loop (L) of cytoplasmic side was counted as 20 
residues. The cap non-cytoplasmic (N) was considered the 
length of 5 residues (Figure 2). The length of helix core (M) 
region was, determined previously, and considered 25 residues. 
(Figure 3) The seventh super state, rest part of the 
transmembrane architecture was treated as 1 or may be more 
than 1. Same text of the state was considered same region. Each 
super state has an associated probability distribution over the 
20 amino acids characterizing the variability and pattern of 
amino acids in the region. Here the every single position of a 
super state was considered as individual state of the model. 
 

Figure 1: Architecture of TMHMM consists of 7 boxes and each 
box indicates the particular region. Same text box treats as same 
region. Here we have denoted each box by symbols to its 
corresponding region. Each box may be one or more states in 
HMM with same parameters. 
 

 
Figure 2: Expended structure of globular, loop and helix cap 
cytoplasmic region. Possible transitions between the states are 
shown. Therefore we have considered maximum 10 states for 
loop on the basis of length of amino acid and same maximum 5 
states as for helix cap region. 
 

 
Figure 3: Here representation the detail structure of helix core 
and all possible transitions between 25 states. 
In this work we have considered the number of states of a 
region on the basis of number of amino acid positions [8]. For 
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similar reasons, a loop’s first and last 10 residues are explicitly 
modeled, and the each residue corresponds to an individual 
state in the model. All other residues in the middle of a loop are 
collectively represented by one “globular” state, which has a 
transition back to itself thus can repeat as many times as the 
loop length dictates. But in the case of loop apart of other here 
we have considered all loop regions for 20 residues including 
long and short loop. Short and long loops were separated here 
on the basis of the prediction of adjacent regions by possible 
state transitions.  Since long loops outside the membrane 
appear to have divergent properties than short loops, two 
separate chains of states are introduced, as expressed in figure1. 
The transmembrane helix model was constructed exactly like 
TMHMM [8], by two cap regions of 5 residues each, including a 
core region of length 25 residues. Therefore the total length for 
membrane helices was 35 residues, if we were considered the 
length including cap regions, covering the real size range 
observed for transmembrane domains. The state diagram for 
the overall transmembrane topology collectively was 
considered minimum 96 states by converting these 7 super 
states on the basis of length corresponding to its transitions. The 
entire states model is thus 20+5+25+5+20+20+1 = 96. Therefore 
the IP (Initial probability), STP (State transition probability) and 
REP (Residue emission probability) matrices were 96x1, 96x96 
and 96x20 respectively. Each state should be emitted single 
amino acids. 
 
HMM Training and Scoring 
In the first stage the aim is to fix the boundaries of 
transmembrane helices. Previously many worker were 
suggested for boundary correction [8] in labeled dataset, like M, 
I and O. ‘M’ represents membrane region, ‘I’ is for inside region 
(cytoplasmic) and ‘O’ means outer region (non-cytoplasmic). 
Therefore we were compiled the MATLAB script for converting 
these 3 labeled dataset sequences to 7 labeled sequences on the 
basis of TMHMM model architecture (Figure 1). New model 
estimation was done using the relabeled sequences. In Second 
step for estimating the HMM model parameters, posterior 
probability method were applied. Each state of the model has 
been predicted by forward-backward algorithm, called as 
posterior probability method. Previously the scoring method 
described in the article was implemented using N-best 
algorithm [16], was also very effective but here it was found 
that the posterior probability method is more convenient and 
compatible for the estimation. This HMM model parameter is 
estimated in 7 super states and the training was performed by 
estimating the maximum likelihood. As usual we have also 
applied the traditional method (posterior probability) for 
estimating the HMM and its transmembrane model parameter 
θ. Here the joint probability of a set of sequence P (x1,…….,xn) 
being emitted the symbol using a particular state of path [ 1, 8] 
P (x1,x2,……., xn/ θ). 
 
The parameter θ contains all the STP (State Transition 
Probability), REP (Residue Emission Probability) and IP (Initial 
probability) matrices.  Probability of a residue for a particular 
state has been evaluated by posterior probability method [8, 1]. 
Baum-Welch algorithm is standard method for maximum 
likelihood estimation of HMMs, in which posterior probabilities 
were performed by utilizing both forward and backward 
algorithms. These algorithms were used to compile the STP and 
REP matrices. The program was set to 15 iteration time to 

converse the values. Initial probability was arbitrary taken for 
the initializing the parameter θ calculation. Here we were used 
dataset sequences for the model estimation and training. The 
procedure used for training a model was the same regardless of 
the scoring method used and in most aspects identical to the 
procedure used by Krogh et al. (2001) [8]. Here, both training 
and scoring was done using the original data set of 160, which 
we have divided it into subset of 16x10. 
 
Validation 
Since 160 dataset have been reported. For ten cross fold 
validation we were divided 160 sequences set into 10 subset. 
Created 10x16 data and put newly estimated HMM parameter 
on this 10 subset. In the result, MATLAB calculated the scores 
for each sequences of every subset. We have found the score for 
each sequences of all subset. Test set were evaluated by original 
test structure taken from dataset [8]. 
 
Discussion: 
Labeled 160 sequences were recruited, measuring the accuracy 
of model whose topology and locations of transmembrane 
helices are correctly predicted by TMHMM. The score of each 
sequence was calculated by posterior probability method of 
HMM for each sequence of 160 dataset. The 16x10 score plot is 
showing in Figure 4. Legend of figure shows the 160 stars of 
different sequences. Each subset of 16 sets of amino acid 
sequences possesses 10 sequences. Plot was represented the 
scores of 16x10 data. Position of a star indicates the score of a 
sequence and the aggregate prediction was calculated by 
following equation on MATLAB. We were obtained 
approximately 74% accuracy on average. The higher score value 
is observed at 98.6. In addition, the 63 times have observed the 
score values above 80.  
 
Aggregate prediction = mean (sum (score, 2)/16) 
 
This HMM-based method embodies many conceptual and 
methodological aspects of previous methods. The main realities 
are that the model architecture closely to the transmembrane 
pattern and that everything is done in the probabilistic 
framework of HMMs, so we do not have to develop a 
specialised dynamic programming algorithm or posterior 
probability method. Our model prediction is helpful for better 
understanding of existing model.    
 

 
Figure 4: Prediction Score plot for each 10 sequence of 16 set. 
Dataset sequences were helpful for the validation of model and 
we have treated them as a unified set in order to find general 
principles. 
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Conclusion:  
All transmembrane sequences for validation of model were 
accessed from TMHMM site indicating that they are all 
recruited to the transmembrane helices. Specific transmembrane 
topology prediction is helpful for protein functional annotation. 
Along with other documented programming languages, 
MATLAB was also taken into consideration because the 
MATLAB performed better compatibility with biological 
entities. Therefore the hidden markov model could perform 
crucial role in transmembrane helices prediction on MATLAB 
platform and it could also be useful for drug discovery strategy. 
Since there are many various statistical approaches are using by 
several workers in biological sciences but HMM is well known 
for higher accuracy result in the area of protein topology 
prediction. Meanwhile there should be more work yet to be 
explored for higher result accuracy and low level of 
redundancy for transmembrane proteins prediction. 
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