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The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs) grafts on cognition deficit in
chemically and age-induced Alzheimer’s models of rats. In the first experiments aged animals (30 months) were tested in Morris
water maze (MWM) and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided
into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500 × 103/μL)
and PBS (phosphate buffer saline). In the second experiment, Ibotenic acid (Ibo) was injected bilaterally into the nucleus basalis
magnocellularis (NBM) of young rats (3 months) and animals were tested in MWM. Then, animals with memory impairment
received the following treatments: MSCs (500×103/μL) and PBS. Two months after the treatments, cognitive recovery was assessed
by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability
and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in
treating cognitive decline associated with aging and NBM lesions.

1. Introduction

Alzheimer’s disease (AD) has been called the disease of the
century with significant clinical and socioeconomic impacts.
Epidemiological studies point out that AD affects 5% of the
population over 65 [1], and, parallel with increasing lifespan,
the incidence of disease will rise dramatically. Clinically AD is
characterized by a progressive learning capacity impairment
and memory loss, especially memories of recent events [2–
4]. One of the major pathological outcomes of both aging
and Alzheimer’s disease is loss of neurons and function in the
basal forebrain [5–7] especially NBM, the main cholinergic
input to the neocortex [8–10]. It is obvious that classical
pathological hallmarks of AD are plaques and tangles, which
both are exceptionally rare in animals, particularly in small
laboratory rodents. In animal populations, as in humans,
age-associated cognitive decline correlates with the degen-
eration of basal forebrain nuclei [1, 10]. Experimentally
excitotoxic lesion of the NBM induces memory impairment
in several tasks [11–13] and it is considered as a suitable

approach to study cognitive deficit and dementia in animals
[1, 12].

The current drug therapies for AD treatment are hin-
dered due to poor efficacy and side effects [14, 15]. Adult
neural tissues have limited sources of stem cells, which makes
neurogenesis in the brain less likely. Stem cells transplanta-
tion seems to be a promising strategy for treatment of several
central nervous system (CNS) degenerative diseases such
as AD, amyotrophic lateral sclerosis (ALS), and Parkinson’s
disease [16, 17].

Bone marrow stem cells are an example of self-renewing
multipotential cells with the developmental capacity to give
rise to certain cell types [18, 19]. These cells seem to be
able to differentiate into hepatocytes [20], skeletal muscle
[21], cardiomyocytes [22], and neural cells [23–25] in vitro.
Studies showed that implanted mesenchymal cells at the site
of injury are able to survive and integrate in the host brain
[1, 23, 26]. In this context Lee and coworkers [27] used
human umbilical cord blood mesenchymal stem cells in AD
mice and demonstrated cognitive rescue with restoration of
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learning and memory function. Also Nivet and coworkers
[28] showed that human olfactory mesenchymal stem cells
are able to restore learning and memory in hippocampus
lesion model.

The ultimate goal for cell therapy in AD is functionality.
Few studies have examined cognitive function with conflict-
ing results: improvement [29, 30] and no change [31, 32].
Regarding the fact that using autologous cell transplanta-
tion circumvents ethical and immunological problems, the
present study was aimed to evaluate the therapeutic effects of
MSCs in restoring cognitive function in two different models
of AD in rats.

2. Materials and Methods

2.1. Animals. All of the animals used in these experiments
were housed in Cellular and Molecular Research Center ani-
mal facility. Animals were housed with free access to food and
water in a 12 h light/dark cycle and constant temperature of
22◦C. They were kept 4-5 in a cage. All procedures concern-
ing animal care were in accordance with Guilan University
of Medical Sciences Ethical Committee Article.

Experiment 1. Forty aged (30 months) and 10 young (3
months) male Wistar rats were used in this experiment. The
mean weights were 500 ± 50 for old and 200 ± 20 g for
young. Animals received four trials per day for 4 consecutive
days in the Morris water maze (MWM) [33], using a 20 min
intertrial interval. A probe trial during which the platform
was removed was carried out on the fifth day. Rats above the
mean average of latency designated as impaired were divided
into grafted (n = 10) and nongrafted control groups (n =
10). Animals were placed in a computerized stereotaxic appa-
ratus (Neurostar, Germany) and cannulated at CA1 region
(at coordinates AP: −3 mm, L: ±2 mm from bregma and V:
−2.8 mm from the skull surface) [34]. Performance of aged
grafted animals was compared with aged nongrafted and
young control groups.

Experiment 2 (NBM Lesion). Forty male Wistar rats (3
months old, weighing 200 ± 20 g) were used in this part
of study. To establish cognitive deficit, we infused Ibo into
the NBM. On the day of surgery, the animals were anes-
thetized with ketamine/xylazine (50 mg/kg, i.p.) and placed
in stereotaxic apparatus. The incisor bar was set at−1.14 mm
posterior and ±2.46 mm lateral to the bregma and 7.9 below
the top of the skull to reach the nucleus basalis magnocellu-
laris [12], then guide cannula was implanted bilaterally for
further infusions. Another cannula for stem cell transfusion
was implanted in the CA1 at coordinates mentioned in
Experiment 1. Rats received bilateral infusions of 0.5 μL of
Ibo (10 μg/μL) using a 5 μL Hamilton syringe. After 14 days,
rats were tested in MWM in order to test learning ability.
Animals that showed memory impairment were distributed
into two groups: Ibo+MSCs (n = 10) and Ibo+PBS (n = 10).

2.2. Bone Marrow Stem Cells Isolation. Rat bone marrow was
obtained by aspiration from tibia. This study was approved
by the Institutional Ethical Committee of Guilan University

of Medical Sciences. Bone marrow was collected and cen-
trifuged with ficoll for 10 min at 1500 xg; the white blood
cells buffy coat was recovered and plated in 75 cm flasks con-
taining with Dulbecco’s Modified Eagle’s Medium (DMEM)
and 10% fetal bovine serum (FBS). Cells were then incubated
at 37◦C in humidified atmosphere containing 95% air and
5% CO2. On reaching confluence, the adherent cells were
detached by 0.05% trypsin and 0.02% ethylenediaminete-
traacetic acid (EDTA) for 5–10 min at 37◦C, harvested
and washed with DMEM, and resuspended in medium
containing 10% FBS. After the first passage, the morpho-
logically homogeneous population of MSC was analyzed for
the expression of cell surface molecules using flow cytometry
procedures for CD105, CD90, and CD44+. The ability of
MSCs to differentiate to adipogenic lineages was assayed
using adipogenic media (acid ascorbic 50 μg/mL, dexameta-
zon 100 nM, indometacin 5 μg/mL, and insulin 5 μg/mL).
Viability of cells was determined by Trypan blue dye exclu-
sion test. Briefly, cells were incubated with Trypan blue dye
for 1 min. Blue positive and white negative cells was counted
in ten 20× fields, and the percent of viable cells was
calculated.

Both grafted groups received infusion of 1 μL (500 ×
103/μL) cells from passage 2, and controls received the same
volume of PBS into the CA1 of the hippocampus. The syringe
was allowed to remain in place for 5 min after the injection
to allow diffusion into the surrounding tissue.

2.3. Behavioral Tests. Two months after transplantation,
rats performed relearning task (the place of platform was
different from the previous experiment) in Morris water
maze. The Morris water maze consisted of a black pool
(148 cm diameter) filled with water (26 ± 2◦C). A circular
black platform was submerged 2 cm below the water surface,
in the middle of the target quadrant. The behavior of the
rats in the pool could be tracked with a camera connected
to Ethovision system (Ethovision XT 7, Noldus inc., The
Netherlands) allowing us to measure swim speed, distance,
and latency to find the platform. Rats were trained with a
protocol of four trials per day, with an interval of 20 min,
for 4 consecutive days. A probe trial was administered on
the fifth day, when each subject was placed into the water
diagonally opposite the target quadrant and allowed 90
seconds to search the water, from which the platform had
been removed.

2.4. Statistical Analysis. The data is expressed as means ±
SEM. Group differences in the escape latency of probe task in
the Morris water maze were analyzed using one-way analysis
of variance (ANOVA) followed by Tukey’s post hoc test.
ANOVA repeated measure for multiple group comparison
was used to analyze group differences of the data collected
during the training days.

3. Results

3.1. Stem Cells Characterization. Mesenchymal stem cells
were successfully cultured and expanded. A morphologically
homogeneous population of fibroblast-like cells (Figure 1)
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Figure 1: Inverted microscope photomicrograph shows morpho-
logical characteristic of MSCs (spindle shape) derived from rat bone
marrow in passage 3. Scale bar: 20 μm.

with more than 90% confluence was seen after 14 days. Cells
after the first passage grew exponentially, requiring weekly
passages. Flow cytometric analysis was used to assess the
purity of MSC cultures, which appeared uniformly positive
for CD44, CD105, and CD90 (Figure 2).

4. Behavioral Tests

4.1. Age-Induced Memory Impairment. During the training
sessions in the MWM, unimpaired, impaired + PBS, and
impaired + MSCs groups showed significant trial effects in
learning procedure (F2, 445 = 5.138, P < 0.0001) (Figure 3).
Since none of the groups differed in swimming speed (22.3±
0.8 versus 23 ± 1.9 cm/s; P > 0.05), the latency to find
platform was used as an indicator of learning performance.
There was no interaction between the trials and the groups
(F2, 445 = 1.273, P = 0.273). Impaired + MSCs rats learned
to find the platform more rapidly than impaired + PBS
(F2, 25 = 36.799, P < 0.001, n = 9, Figure 3). One rat from
the cell transplanted group died after one month due to brain
infection.

There was significant difference in probe latency between
impaired + MSCs and impaired + PBS animals (11.5 ± 0.88
versus 33.4 ± 8.48 s, P = 0.006, Figures 4 and 7). Although
the impaired + MSCs group showed improvement in latency
to target quadrant, they did not reach the young group score
(11.5± 0.88 versus 4± 0.45 s).

4.2. Ibo-Induced Memory Impairment. Acquisition of the
Morris water maze task in Ibo-lesioned groups is demon-
strated in Figure 5. During the experiment, the latency to
escape diminished over time in lesioned and sham operated
groups (F2,445 = 26.310, P < 0.001). There was no
interaction between the group and the trials (F2,445 =
1.349, P = 0.212). Ibotenic acid severely impaired the latency
to platform in the probe test compared to sham group (37±
1.5 versus 3.8 ± 0.6 s P < 0.0001). Ibotenic acid had no sig-
nificant effect on speed of swimming (20±0.82 versus 21.8±
1.5 cm/s). Two months after grafting the MSCs, rats learned
to find the platform quickly. As expected, the rats showed less

time needed to find the platform (F = 64.689, P < 0.0001).
Tukey’s post hoc test showed that the Ibo+MSCs significantly
reduced the latency to find the platform compared with
Ibo + PBS group (14± 2.4 versus, 34± 3.4 s, Figure 6). Total
time spent in the target quadrant also significantly increased
in Ibo + MSCs compared with Ibo + PBS (28.6 ± 2.4 versus
12.8± 2.08 s, P < 0.0001).

The results showed that stem cell treatment attenuated
Ibo-induced learning and memory impairment in the Morris
water maze test.

5. Discussion

The purpose of this study was to evaluate the therapeu-
tic effects of transplanting MSCs in memory impairment
induced by aging and excitotoxic lesion of NBM. The aged
animals used in our experiment showed sever impairment in
spatial learning, attention, and memory. According to pre-
vious findings, cognition deficit in these animals correlates
with the degenerative decline of basal forebrain nuclei [8, 9].
It seems that using aged animals is appropriate to evaluate
memory function.

In the second part of our study, the infusion of Ibo into
the NBM produced significant disruption of the working
memory, which is in agreement with other studies indicating
association of this nucleus with working memory [35–37].
Cholinergic neurons of NBM projecting to the hippocampus
play major role in cognitive performance such as attention,
learning, and memory. It has been shown that infusion of
Ibo decreases cholinergic activities in the hippocampus and
frontal cortex [38] via hyperstimulation of the N-methyl-D-
aspartate receptor [39, 40].

Our data from both animal models shows that there is a
significant improvement in learning and memory following
MSCs transplantation. These results confirm the ultimate
objective of stem cells transplantation, which is achievement
of cognitive functional recovery. Since Ibo leads to specific
loss of somata of various neuron types without affecting on
other surrounding cells, such as glia and endothelial cells or
even neural axons [39, 40], our data indicates that trans-
planted stem cells probably differentiated to neurons in hip-
pocampus. It has been known that this area is a very sensitive
region of the brain that plays a pivotal role in encoding,
consolidating, and retrieving learning and memory [41].
Improvement of learning and memory in our study is in
agreement with previous studies using other sources of stem
cells including neural [42–44], olfactory [28], and umbilical
cord blood stem cells [27]. Nivet et al. [28] indicated that
transplanted olfactory MSCs not only stimulate endogenous
neurogenesis but also restore synaptic transmission and
enhance long-term potentiation. A study conducted by Lee
et al. [27] demonstrated that human umbilical cord blood
mesenchymal stem cells transplantation reduces glial activa-
tion, oxidative stress, and apoptosis in AD mouse brain and
consequently improves memory and learning.

Although the present study does not aim to study the
mechanisms underlying memory improvement, several
mechanisms could possibly contribute to the improvement
in learning and memory after stem cell transplantation in our
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Figure 2: Continued.
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Figure 2: Flow cytometry analysis of CD 105, CD 90, and CD 44 in rat MSCs. Results represent three independent experiments.
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Figure 3: Comparisons of the acquisition performance on the Morris water maze task among the three groups. The results are the mean
swimming time traveled per trial toward the platform. The mean values of the 16 trials for 4 days for each group are shown. Repeated
measures of ANOVA for the swimming time among the groups were followed by Tukey’s test. ∗P < 0.05 and ∗∗P < 0.01 as compared with
the corresponding data from the impaired +PBS group. Performance was assessed two months after the treatments.

experiments. One is the capability of these cells to add to the
pool of functioning neurons [24, 45–48] and integrating with
neighboring cells [1, 23, 26]. This mechanism needs to be
supported in the future studies by electrophysiological inte-
gration of the stem cells into the host circuitry. We initiated

behavioral tests two months after transplantation, which
provides enough time for mesenchymal stem cells to
develop synapses and electrophysiological response based on
observations in previous studies in other neurodegenerative
diseases and in vitro studies [45, 48]. Second possibility is
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Figure 5: Comparisons of the acquisition performance on the Morris water maze task among the three groups of the Ibo-lesioned rats. The
results are the mean latency time traveled per trial. The mean values of the 16 trials for 4 days for each group are shown. Repeated measures of
ANOVA for the swimming time among the groups. ∗P < 0.05 and ∗∗P < 0.01 as compared with the corresponding data from the Ibo + PBS
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Figure 6: Comparisons of the retention performance on the Morris water maze task among the three groups of the rats. The results are the
mean percentage of latency time to the platform in the probe test. The mean values of the four trials for each group are shown. Mean of
swimming time among the groups was analyzed using one-way ANOVA and post hoc Tukey’s test. ∗P < 0.05 and ∗∗P < 0.01 as compared
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(a)

(b)

Figure 7: Example of computer tracking from probe trial (90 s
duration). (a): “aged-impaired + PBS”; (b): “aged-impaired +
MSCs”. The rat of “aged-impaired” swims in a concentric pattern.

that stem cells may provide therapeutic utility by enhancing
the survival and activity of the existing neurons [46, 49]. Wu
et al. [17] in their review article stated that neural stem cells
release diffusible factors that may improve the survival of
aged and degenerating neurons in human brains [17].

Mesenchymal stem cells are very attractive in view of a
possible cell therapy approach in neurodegenerative diseases
because of their great plasticity. Recently, MSCs therapy has
been shifted to be used in some clinical trial models like
ALS [48, 49]. A phase I clinical trial conducted by Mazzini
confirmed that MSCs transplantation into the spinal cord of
ALS patients is safe and that MSCs might have a clinical use
for future ALS cell-based clinical trials [48].

In conclusion, MSC grafts reverse progressive cognitive
decline associated with aging and Ibo lesion in animal
models.

From a clinical point of view, considering low risk of
tumourigenesis [48, 50, 51] and less ethical issues with bone
marrow mesenchymal stem cells, these cells represent as
a valuable candidate source for transplantation therapy in
Alzheimer’s disease.
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