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and Ying Xing1*
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Lung adenocarcinoma (LUAD) is a remarkably heterogeneous and aggressive

disease with dismal prognosis of patients. The identification of promising

prognostic biomarkers might enable effective diagnosis and treatment of

LUAD. Aberrant activation of epithelial-mesenchymal transition (EMT) is

required for LUAD initiation, progression and metastasis. With the purpose of

identifying a robust EMT-related gene signature (E-signature) to monitor the

survival outcomes of LUAD patients. In The Cancer Genome Atlas (TCGA)

database, least absolute shrinkage and selection operator (LASSO) analysis and

cox regression analysis were conducted to acquire prognostic and EMT-

related genes. A 4 EMT-related and prognostic gene signature, comprising

dickkopf-like protein 1 (DKK1), lysyl oxidase-like 2 (LOXL2), matrix Gla protein

(MGP) and slit guidance ligand 3 (SLIT3), was identified. By the usage of datum

derived from TCGA database and Western blotting analysis, compared with

adjacent tissue samples, DKK1 and LOXL2 protein expression in LUAD tissue

samples were significantly higher, whereas the trend of MGP and SLIT3

expression were opposite. Concurrent with upregulation of epithelial markers

and downregulation of mesenchymal markers, knockdown of DKK1 and LOXL2

impeded the migration and invasion of LUAD cells. Simultaneously, MGP and

SLIT3 silencing promoted metastasis and induce EMT of LUAD cells. In the

TCGA-LUAD set, receiver operating characteristic (ROC) analysis indicated that

our risk model based on the identified E-signature was superior to those

reported in literatures. Additionally, the E-signature carried robust prognostic

significance. The validity of prediction in the E-signature was validated by the

three independent datasets obtained from Gene Expression Omnibus (GEO)

database. The probabilistic nomogram including the E-signature, pathological

T stage and N stage was constructed and the nomogram demonstrated

satisfactory discrimination and calibration. In LUAD patients, the E-signature

risk score was associated with T stage, N stage, M stage and TNM stage. GSEA
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(gene set enrichment analysis) analysis indicated that the E-signature might be

linked to the pathways including GLYCOLYSIS, MYC TARGETS, DNA REPAIR and

so on. In conclusion, our study explored an innovative EMT based prognostic

signature that might serve as a potential target for personalized and

precision medicine.
KEYWORDS
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Introduction

Lung adenocarcinoma (LUAD), as the predominant

histological type of lung cancer, has biological characteristics

of strong aggressiveness and heterogeneity (1–3). In spite of

optimized treatment methods including surgery, chemotherapy,

radiotherapy, immunotherapy and targeted therapy, prognosis

of LUAD patients remains dismal, because of cancer progression

(4, 5). Collectively, it is imperative to distinguish populations at a

high-risk of LUAD for early intervention and improving clinical

outcome. At present, the combination of clinicopathological

features and TNM staging system is the consensus criterion

for determining treatment options and predicting relapse of

LUAD, however this criterion restrains the provision of optimal

clinical care to patients (6). Hence, identifying reliable

biomarkers for optimizing the prognosis of LUAD is

urgently needed.

Metastases are the primary cause of LUAD-associated

mortality (7, 8). Migratory tumor cells escape from the

primary site, remodel the basement membrane to engage with

peritumoural stroma, undergo intravasation, endure shear stress

in circulation and adapt to the tumor microenvironment of

distant metastasis (9, 10). In total, the metastatic process

generally involves three distinct phases: dissemination,

dormancy and colonization (11). Epithelial mesenchymal

transition (EMT) of cancer cells is a fundamental event during

the multistep process participated in cancer metastasis (12, 13).

Moreover, EMT activation confers on tumor cells to acquire

plasticity with more aggressive phenotype, which exerts a

decisive function on the malignant cancer progression (14, 15).

Accumulating evidence has revealed that EMT process was

closely implicated in tumorigenicity, angiogenesis and drug

resistance (16–18). EMT results in a series of changes during

epithelial tumor cells transforming into mesenchymal cells,

including loss of tight junctions, cell polarity, cytoskeletal

reorganization, and increase of cell viability (19). EMT is

controlled or induced by a number of factors such as exosomal
02
circRNAs, varied transcripts (Twist, Snail, ZEB1, et al.),

microRNAs (miR212, mir200 family, et al.) and cellular

oncogenic pathways (EGFR signaling pathway, et al.) (20–22).

There is a significant link between the aberrant expression of

genes related with EMT and poor clinical outcomes in LUAD

patients (13, 23).

Since the advent of next generation sequencing, research on

bioinformatic analysis has flourished (24; 25). For instance, The

Cancer Genome Atlas (TCGA) database and Gene Expression

Omnibus (GEO) database, such public databases are desirable to

access transcriptomic information, that advances the efficient

methods to select gene signatures (26–28). Numerous studies

have attempted to construct the risk model to get biological

characteristics or prognostic appraisal in malignant tumors,

which had potential clinical impact (29–31). Interestingly,

EMT-related gene signature (E-signature) could reveal the

prognostic consequences in various types of cancer (32–34).

Nevertheless, the existence of heterogeneity in samples among

diversified studies on various tumours resulting in different risk

models (35). Recently, some researchers reported the prognostic

significance of E-signature, however they did not validate the

biological functions of EMT-related genes with in vitro

experiments in LUAD and their studies remains rudimentary

to some extent (36–38).

In the current study, candidate genes involved in EMT

process were identified based on TCGA-LUAD training

dataset and validated using cell-based assays in vitro and

clinical tissue samples. Then, the E-signature which can

accurately predict the prognosis of LUAD patients was

developed by us. Meanwhile, the nomogram affirmed the

feasibility in clinical application of the E-signature. Subgroup

analysis suggested that E-Signature could be conducive to

identify patients with adverse events at high risk. The E-

signature is closely related to multiple pathways associated

with cancer progression, as well. In conclusion, the E-signature

could be used as an inspiring molecular indicator for evaluation

of clinical prognosis in LUAD patients.
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Materials and methods

Data capturing and processing

Entire design attached to our research was presented in

Figure 1. TCGA website (http://portal.gdc.cancer.gov) were used

to obtain raw microarray data and matched clinical of LUAD

patients. Expression profiles were processed with robust multiarray

average (RMA) algorithm (29). Differential expression analysis was

performed by “limma” package. GEO database(https://www.ncbi.

nlm.nih.gov/geo/) (Table 1) were used as independent external

verification sets, including GSE30219, GSE37745, GSE50081 and

GSE8894 (https://www.ncbi.nlm.nih.gov/geo/) (Table 1). Besides,

we retrieved “HALLMARK EPITHELIAL MESENCHYMAL

TRANSITION” gene list encompassing 200 genes in the MsigDB

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
LASSO Cox regression analysis

To yield the independent prognostic EMT factor, univariate

analysis and multivariate analysis were showed with P< 0.05 as a
Frontiers in Oncology 03
threshold. least absolute shrinkage and selection operator

(LASSO) analysis was capable for reducing the dimension

(39). 80% TCGA samples after preprocessing were randomized

to the training dataset. our prognostic model preserved the

advantage of subset shrinkage and maintained a high accuracy

rate based on the penalty parameter l (40). Risk score was

calculated from expression of related gene and associated

coefficient. Analytical formula for risk score assessment was

derived on the basis of the EMT related gene signature = on
i=1

ðcoef i � Expri), in this formula, Expri represents gene

expression of patient, and coefi represents the multivariate

regression coefficient.
Survival analysis

According to median risk scores, all LUAD samples were

divided into two groups, involving in high-risk and low-risk

groups in different cohorts. Kaplan Meier (KM) curves were

plotted to compare the prognostic difference (41). The area

under the curve (AUC) which performed from receiver

operating characteristic (ROC) curve analysis for overall
TABLE 1 Various clinicopathological characteristics of patients with LUAD in TCGA training cohort and GEO datasets.

Characteristics TCGA Set (n = 490) GSE30219 (n = 83) GSE37745 (n = 105) GSE50081 (n = 128) GSE8894 (n = 63)

Age(years) ≤60 153 43 45 19 30

>60 327 40 60 109 31

Survival status Alive 312 40 29 76 –

Dead 178 43 76 52 –

Recurrence No 284 56 – 88 30

Yes 206 27 – 37 29

Gender Female 262 18 60 53 34

Male 228 65 45 65 –

pT stage T1 163 69 – 43 –

T2 263 12 – 83 –

T3 43 2 – 2 –

T4 18 0 – 0 –

pN stage N0 317 80 – 94 –

N1 92 3 – 34 –

N2 68 0 – 0 –

N3/NX 12 0 – 0 –

pM stage M0 324 83 – 128 –

M1/MX 162 0 – 0 –

Tumor stage Stage I 263 – 70 92 –

Stage II 115 – 19 36 –

Stage III 79 – 12 0 –

Stage IV 25 – 4 0 –

Smoking No 68 – – 23 –

Yes 408 – – 92 –

EGFR Wild type 186 – – – –

Mutant 79 – – – –
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survival (OS) was employed to designate the predictive

efficiency (42).
Establishment and validation of
the nomogram

The significant variables from the multivariate models were

introduced to draw the graphical nomogram by utilizing “rms”

and “nomogramEx” packages (43). The calibration curves for

probability of OS showed that match condition between

prediction by nomogram and actual observation (44). Decision

curve analysis (DCA) was utilized to evaluate the ability of the

predictive model in view of clinical applicability (44).
Gene set variation analysis (GSVA)

Single-sample gene set enrichment analysis (ssGSEA) scores

were gained by “ClusterProfiler” and “GSVA” R package to

recognize the correlation between risk scores and enriched

biological processes (45). The results with a cut-off criterion of

P value< 0.05 were statistical significance.
Collection of LUAD tissues and
cell culture

Under the premise that ethical clearance and approval have

been obtained, 5 pairs of fresh tumor samples and matched

normal tumor-adjacent samples were dissected from 5 LUAD

patients who underwent lobectomy but did not receive

radiotherapy and chemotherapy at Harbin Medical University

Cancer Hospital between May 2021 and June 2021.

Human LUAD cell lines (A549 and NCI-H1299) were

cultured with RPMI-1640 including 10% fetal bovine serum

(FBS) and 1% penicillin/streptomycin, and the culture

environment needed to be maintained at 37°C and containing

5% carbon dioxide.
Small interfering RNA transfection

SiRNAs of dickkopf-like protein 1 (DKK1), lysyl oxidase-like

2 (LOXL2), matrix Gla protein (MGP) and slit guidance ligand 3

(SLIT3) were made by Hanyinbt (Shanghai, China), in addition,

these target sequences were presented as: DKK1#1, 5’-

GCUUCACACUUGUCAGAGAtt-3’; DKK1#2, 5’-GGCU

CUCAUGGACUAGAAAtt-3’; LOXL2#1, 5’-CAUACAAU

ACCAAAGUGUAtt-3 ’ ; LOXL2#2, 5 ’-GGGUGGAGG

UGUACUAUGAt t - 3 ’ ; MGP#1 , 5 ’ -CCCUACUGC
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UGCUACACAATT-3 ’ ; MGP#2, 5 ’-GAUAAGUAAUG

AAAGUGCATT-3’; SLIT3#1, 5’-CGCGAUUUGGAGAU

CCUUAtt-3’; SLIT3#2, 5’-GUACAAAGAGCCAGGAAUATT-

3’. All corresponding negative control siRNA sequences were

completed by Hanyinbt Company.

When the density of A549 and H1299 cells reached 60-70%

in 6-well dishes, the transfection mixture was prepared by fully

mixing 120mL riboFECT™CP Buffer, 12mL riboFECT™CP

Reagent and 5mL siRNA, and incubated at room temperature

for 15min. Finally, 3mL RPMI-1640 containing 10% FBS was

added into the 6-well dishes. Follow-up experiments were

carried out after ensuring the efficiency of knockout.
Western blotting

Lysate of tissues or cells was centrifuged for 15 min (4°C,

14000rpm) and we measured protein concentrations using the

BCA protein analysis kit. Electrophoretic separation and electro-

transfer of protein samples with the comparable quality,

membrane blocking and incubate overnight (primary

antibody, 4°C). PVDF membranes containing proteins are

incubated with secondary antibodies for 1 hour at room

temperature. The bands on membrane were exposed by CL

Xposure film (Thermo Fisher Scientific). Specific antibodies

included: DKK1 (21112-1-AP, Proteintech Group Inc.,

Wuhan, China), LOXL2 (AB179810, Abcam), MGP (10734-1-

AP, Proteintech Group Inc., Wuhan, China), SLIT3 (DF9909,

Affinity Biosciences, Jiangsu, China), E-Cadherin (20874-1-AP,

Proteintech Group Inc., Wuhan, China), N-Cadherin (22018-1-

AP, Proteintech Group Inc., Wuhan, China), Vimentin (10366-

1-AP, Proteintech Group Inc., Wuhan, China), b-actin (AF7018,

Affinity Biosciences, Jiangsu, China).
Detection of cancer cell migration
and invasion

Use the tip of a 10 mL pipette to form a scratch on a six-well

plate covered with LUAD cells. By comparing the rate of wound

healing and taking pictures under the microscope, the cell

migration rate was finally counted. Transwell assay was

conducted with the Corning Inc. transwell chamber. The

invasion experiment required the participation of the matrigel

matrix involved. Cell suspension arranged in the upper chamber

contained 2x104 cells, besides, ingredient of the lower chamber

was 600mL RPMI-1640 complemented with 10% FBS. The

fixation of methanol and staining of 0.1% crystal violet for

observing the migration and invasion efficiency after 24h or

48h, respectively. Fields were randomly selected in each

membrane for capturing.
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Statistical methods

Data processing was focused on GraphPad Prism 8.0.2

software. Typicality of data in the study could be reflected

with at least three independent experiments completed.

Continuous data conforming to a normal distribution were

analyzed by Student’s t-test, and subgroup differences were

counted using the c2 test. All results are expressed as mean ±

SEM (* P< 0.05, ** P< 0.01, *** P< 0.001).
Results

The identification and validation with in
vitro experiments of 4 prognostic EMT-
related genes comprising the E-signature

The 200 genes linked to EMT were acquired from the

“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI

TION” gene list in the MsigDB. Univariate Cox analyses

systematically deduced 68 genes significantly relevant to

prognosis based on TCGA-LUAD training cohort. To exploit

an optimal model for testing risk, the LASSO analysis was used

in its broadest sense to summary the results of each

dimensionality reduction and count the occurrence frequency

and standard deviation distribution of each probe. Standard

deviation (SD) calculations may comprehensively describe the

distribution characteristics of data, which is generally

understood to measure the deviation degree (46). Four EMT-

related genes, including dickkopf-like protein 1 (DKK1), lysyl

oxidase-like 2 (LOXL2), matrix Gla protein (MGP) and slit

guidance ligand 3 (SLIT3), were comprehensively screened

depending on the following criteria (Figure 2A). SD of

candidate mRNAs was greater than the median and frequency

was well over 500 (Figure 2A). Patients with high DKK1 and

LOXL2 expression had the shorter overall survival (OS)

according to a Kaplan-Meier analysis, whereas ones with high

expression of MGP or SLIT3 had longer OS (Figure 2B). Based

on TCGA-LUAD transcriptome data, differential expression

analysis showed that with the comparison of normal samples,

DKK1 and LOXL2 expression were significantly increased in

tumor tissues, whereas MGP and SLIT3 were markedly

overexpressed in non-tumoral tissues (Figure 2C). The same

results were achieved from the collected clinical tissue samples

by western blotting (Figure 2D).

The functions and roles of these four genes in LUAD

metastasis and EMT remain to be clarified (47–50). We used

cell-based assays in vitro to examine the effect of these four genes

on EMT and metastasis, respectively. In A549 and H1299 cells,

Gene-specific siRNAs were used with three independent siRNAs
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for knockdown of each gene. Successful knockdown of these four

genes was validated by Western blotting in A549 (Figure 3A)

and NCI-H1299 cell lines (Figure S1A). Moreover, as illustrated

in Figure 3A and Figure S1A, knockdown of DKK1 or si-LOXL2

enhanced the expression of E-cadherin and inhibited the

mesenchymal markers’ expression, including N-cadherin and

Vimentin. MGP or SLIT3 knockdown led to downregulation of

epithelium-derived markers and upregulation of mesenchymal

markers (Figure 3A; Figure S1A). Furthermore, wound healing

and Transwell assays revealed silencing of DKK1 and LOXL2

suppressed the ability of migration and invasion in LUAD cells,

but silencing of MGP and SLIT3 had the opposite effect

(Figures 3B, C; Figures S1B, C). Our experimental data

indicated that the four EMT-related genes could regulate

metastasis and EMT program.
Construction of the prognostic E-
signature in LUAD

Based on multivariate Cox regression analysis, the

independent prognostic signature still composed of four EMT

genes was generated. Scoring formula as follows: Risk Score =

0.308×expDKK1+0.299×expLOXL2-0.084×expMGP-0.165×expSLIT3

(Figure 4A). The statistical correlation between risk model and 4

genes expression was assessed by the Pearson correlation metric

(Figure 4B). Risk score was converted into Z-score, taking 0

served as the optimal boundary value to divide the samples into

two groups, in which z score of the high-risk subgroup was

greater than 0, and the rest belonged to the low-risk subgroup.

The permutation of risk scores, survival status and four genes

expression levels were displayed (Figure 4C). These results

demonstrated that the risk E-signature was a deleterious

indicator of prognosis.

Furthermore, based on TCGA training dataset, the

prognostic accuracy of E-signature was appraised by time-

dependent ROC analysis, the AUC was 0.73 (1-year), 0.7 (2-

year) and 0.69 (3-year), respectively (Figure 4D). Referring to the

training set, in comparison with the high-risk group, the low-risk

group revealed a significantly longer OS (Figure 4D). The ROC

and KM curve also revealed that our model exhibited good

sensitivity and specificity in predicting TCGA-LUAD recurrence

free survival (RFS, Figure 4E). Compared with recently

published lung cancer prognostic models in the literatures

(Figure 4F) including Zhu (51), Ma (52), Zhang (53) and

Zhang M (54), our E-signature had better specificity by ROC

curve analysis especially at 1-year (Figure 4F). Similarly, the E-

signature predicted OS better than either the known signatures

alone, with a better cal ibrat ion and class ificat ion

accuracy (Figure 4G).
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External validation of the
prognostic E-signature

For further emphasizing the robustness of the constructed

signature, GSE30219, GSE37745 and GSE50081 external

validation sets were used for ROC analysis and KM analysis.

In line with the training set, E-signature had strong predictive

accuracy (GSE30219 [1-year: 0.74; 2-year: 0.69; 3-year: 0.73];

GSE37745 [1-year: 0.65; 2-year: 0.66; 3-year: 0.6]; GSE50081 [1-

year: 0.72; 2-year: 0.68; 3-year: 0.68]) and patients in the group
Frontiers in Oncology 06
with high-risk showed a predominant association with

frustrating OS (Figure S2A). Next, we opt GSE30219,

GSE50081 and GSE8894 datasets and executed the identical

methods to validate the prognostic potential of E-signature in

RFS. Likewise, the E-signature maintained ideal sensitivity and

specificity as a prognostic indicator (GSE30219 [1-year: 0.87; 2-

year: 0.76; 3-year: 0.80]; GSE50081 [1-year: 0.67; 2-year: 0.68; 3-

year: 0.68]; GSE8894 [1-year: 0.71; 2-year: 0.68; 3-year: 0.68])

and high-risk patients had significantly worse RFS relative to the

group at low risk (Figure S2B).
FIGURE 1

The flow chart in our study.
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Establishment of a nomogram based on
the E-signature

clinicopathological characteristics, such as T stage, N stage,

M stage, TNM stage, age, gender, and smoking history, and risk

score were incorporated as covariates into univariate and

multivariate Cox regression analyses. Risk score, T stage and

N stage were demonstrated the independent prognostic factors

by forest plot for OS (Figures 5A).

The nomogram could intuitively and effectively display the

influence of the risk model on the prognostic outcome (55). A
Frontiers in Oncology 07
multi-scale nomogramwas constructed on account of independent

prognostic factors, which effectively predicted 1-year, 2-year and 3-

year OS probabilities of LUAD patients. The scores corresponding

to the parameters were calculated to obtain the total points. Thus,

high total score was significantly correlated to worse outcome

(Figure 5B). Furthermore, calibration curve implied well

performance of the nomogram at predicting survival capacity in

LUAD patients (Figure 5C). ROC curve analysis and Decision

Curve Analysis (DCA) showed that, compared with other

independent variables, the nomogram model classifier had the

distinctly superior accuracy and net benefit rate (Figures 5D, E).
A

B

D

C

FIGURE 2

The identification 4 prognostic EMT-related genes comprising the E-signature. (A) The standard deviation distribution of all mRNAs. In the left
panel, location corresponding to the red columns were standard deviation (SD) of genes with frequency greater than 500, where SD was used
as the abscissa and the vertical axis represented the number of genes. The right panel showed that the gene frequency distribution chart
obtained by LASSO analysis. The green baseline meant that frequency was equal to 500, the part exceeded the green line was genes with
frequency greater than 500. (B) KM curves showed the overall survival (OS) of patients grouped according to expression patterns of 4
prognostic EMT-related genes comprising the E-signature in TCGA-LUAD datasets. (C) Differential expression analysis of DKK1, LOXL2, MGP and
SLIT3 originated from TCGA-LUAD dataset. (D) The expression of 4 genes in fresh LUAD tumor samples (T) and adjacent normal-frozen tissues
(N) detected by Western blot (*P< 0.05, **P< 0.01, ***P< 0.001).
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Correlation between the prognostic
model and clinicopathologic features

To further clarify the clinical implication of the EMT

signature, we tested the relationship between risk score and

clinicopathologic variables by the Chi-square test. LUAD

patients were classified into different subgroups under diverse

clinical properties, including T stage, N stage, M stage, tumor

stage, gender, age, smoking history, status of EGFR. Notably,

there was a gradual upward trend in the proportion of high-risk

score patients with increase of malignant grade of pathological T

stage, pathological N stage, pathological M stage and tumor

stage. Regrettably, other clinicopathological characteristics

showed no obvious difference in the distribution (Figure 6A).

Subsequently, the risk model was also applied to each subgroup

for KM survival analysis. We observed that subgroup with high-

risk presented dramatically worse OS, suggesting that our

specific signature had a precise predictive value (Figure 6B).
Frontiers in Oncology 08
Functional annotation and enrichment
analysis of the E-signature

The association between risk score and EMT biomarkers was

assessed based on the TCGA database (Figure 7A). In order to

further observe biological functions of the risk model, ssGSEA

method was applied to derive scores of multifarious molecular

pathways. The heatmap of hierarchical cluster analysis showed

E-signature was enriched in “EPITHELIAL MESENCHYMAL

TRANSITION” and other carcinogenic pathways, while

metabolic-related pathways such as” HEME METABOLISM”

and “BILE ACID METABOLISM” were inversely regulated by

our signature (Figure 7B). Moreover, the correlation map

visualized the KEGG pathways extracted by correlation

coefficient > 0.3 statistically significant associated with the E-

signature (Figure 7C). Taken together, the constructed specific

s ignature played a compel l ing role in promot ing

tumor development.
A

B

C

FIGURE 3

The validation experiments of 4 prognostic EMT-related genes comprising the E-signature in vitro. (A) Western blotting confirmed that silencing
4 genes respectively caused alterations of EMT‐related protein expression in H1299 cells. (B) The effect of silencing four genes on H1299 cell
migration confirmed by wound-healing assays. (C) Transferability and invasiveness of H1299 cells were evaluated. *P < 0.05; **P < 0.01; ***P <
0.001. Data wereobtained from three independent experiments.
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FIGURE 4

The prognostic robustness and clinical usefulness of the E-signature in the internal training set. (A) Evaluating the impact of 4 EMT-related
genes on OS by means of forest plot. (B) Relatedness plot reported Pearson correlation values of each comparison. The bar color indicated
Pearson corr. Values below the map calculated between risk score and genes in the matrix. (C) The risk score, survival time and status of each
sample in TCGA-LUAD cohorts. The heatmap listed expression status of each gene involved in the signature. (D, E) The time-dependent
receiver operating characteristic (ROC) curves for the 1-, 2- and 3-year OS (D) and relapse free survival (RFS) prediction (E) by the E-signature.
Significant survival difference between high- and low-threshold group. (F) A comparison with previously reported E-signature models by KM
survival analysis and ROC curve. (G) The E-signature had the highest concordance index (C-index) as opposed to other reported models, which
proved that it could accurately predict prognosis.
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Discussion

LUAD is the accepted common classification of lung cancer,

accompanied by high prevalence and fatality (2, 56). In cancer

patients, metastasis is primary cause of shorten survival and high

mortality, and often has already occurred at the time of diagnosis

(57, 58). During the procedure of the classical invasion-metastasis

cascade, transformation from tumor epithelial cells to

mesenchymal cells with the invasion and migration capacity

(59). Subsequently, mesenchymal cells locally invade the

surrounding matrix and extracellular matrix (ECM), transport

and stay in distant organ tissues, eventually extravasate and

proliferate to form metastasis (60). The induction and ultimate

success of this process depends on EMT and its key regulators

(59). Regulation of EMT markers expression, for instance, N-

cadherin, Vimentin and E-cadherin, ultimately affects tumor

progression, metastasis and drug resistance (61, 62). To date,

considerable studies have shown that the marked association of
Frontiers in Oncology 10
sophisticated regulation of EMT with poor prognosis of lung

cancer patients (63, 64). To break down this barrier in clinical

settings, molecular biological characteristics should be adequately

considered, and circulating tumor markers, TNM staging and

other indicators are not accurate enough in predicting the survival

of LUAD patients (65, 66). Similarly, single-gene biomarkers are

unable to achieve a satisfying prediction result (67). Therefore, a

multigene panel might be a promising and reliable method for

precision and individualized treatment of LUAD patients.

With rapid advancements in high-throughput sequencing,

abundant studies have used data from large communal

databases, for example, TCGA and GEO databases, to construct

the prognostic signatures for identification of patient risk

stratification, guidance of treatment regimens, precise prognostic

assessment, and improvement of clinical efficacy (68, 69). Previous

studies have reported risk-prediction models based on EMT in

LUAD (37, 38). Although the conventional analytical methods

used were similar, the genes required for construction of the
A B

D EC

FIGURE 5

The prognostic nomogram and decision curve analysis (DCA) of the risk score based on E-signature. (A) The forest plot showed that the
signature was independent from other risk factors for prognostic prediction. (B) Nomogram predicted risk of secondary progression. Each
variable axis, containing T stage, N stage and risk score, corresponded to the characteristic attribute score of single sample. The final score was
summarized on the total score axis and the likelihood of 1-, 2-, and 3 years OS is determined on the survival axis. (C) The nomogram yielded an
accurate predictive capability that was extremely close to actual survival was presented by the calibration plots. X-axis represented the predicted
value of survival probability and y-axis represented actual survival possibility. (D) ROC curves represented that the E-signature ranked first
among all the parameters. (E) DCA curves graphically verified the E-signature brought more net benefit of survival than other clinical indexes.
Solid lines indicated net benefit of the predictive model within the threshold probabilities range. The black and grey line respectively represented
the hypothesis that none or all patients would experience.
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A

B

FIGURE 6

Correlation between the current prognostic E-signature and clinicopathologic attributes. (A) The distribution of samples with different risk
scores classified by clinicopathologic traits, including T stage, N stage, M stage, tumour stage, gender, age, smoking history and EGFR mutation.
*P < 0.05. (B) KM analysis of each subgroup was stratified by the E-signature to visualize the prognostic value of clinical parameters
classification.
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signatures were fundamentally different, mainly due to the

different databases and screening processes. In terms of

bioinformatics analysis, our study not only plotted KM curves,

ROC curves and nomogram to improve the accuracy and

specificity of prognosis prediction, but also generated calibration

curves for the nomogram to further prove effective clinical utility

of E-signature. Secondly, the DCA (decision curve) was drawn for
Frontiers in Oncology 12
clarifying clinical feasibility of the risk model and prognostic

significance of our signature was emphasized by comparing

with known prognostic models (51–53). In addition, compared

with the previously reported EMT models, we conducted in vitro

experiments in-depth to verify a dramatically correlation between

our signature and EMT procedure. Collectively, the specific E-

signature we developed could predict the cancer process more
A

B

C

FIGURE 7

Functional enrichment analysis based on the current prognostic model. (A) The correlation between risk score and EMT biomarkers.
(B) Hierarchical clustering analysis was used for heatmap plotting, showing KEGG pathways correlated with the model and coefficients were
greater than 0.3. (C) The correlation map confirmed the high-risk group retained the oncogenic pathways. The risk score increased successively
from left to right, where the enriched pathways and risk score were used as the abscissa.
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comprehensively and accurately, with more stable and robust

predictive performance and superior clinical practice (37, 38).

In this study, the E-signature was found to be composed of

DKK1, LOXL2, MGP and SLIT3. It is reported that DKK1 (a

secreted protein) contains the cysteine-rich domain and is a

member of the family of Dickkopf, (70). DKK1 has emerged as

an indispensable regulatory factor in multiple cancers and

commonly existed as an inhibitor of the Wnt pathway (71–73).

Nevertheless, DKK1 acting as a tumor promoter, which played a

critical role in the cancer progression (74–76). LOXL2 belonging to

the LOX family, has the typical function of catalyzing the cross-link

of elastin and collagen in the ECM and has attracted much

attention in cancer biology (48). Plenty of studies have revealed

that LOXL2 participated in tumor progression, metastasis, poor

prognosis and chemoradiotherapy resistance in varied cancers, e.g.,

lung cancer, breast cancer, pancreatic cancer and colorectal cancer

(77–80). MGP, an extracellular matrix protein, whose well-defined

function is still unknown, and currently acts as a double-edged

sword in cancers (49, 81–84). Upregulation of MGP promoted

cancer proliferation, migration and invasion, that was linked with

unfavorable prognosis (49, 81–83). Whereas, MGP reversed

chemotherapy resistance and received favorable survival

outcomes in estrogen receptor positive breast cancer (84). SLIT3,

a secreted protein, is widely distributed in normal tissues and

mainly participates in the Slit/Robo pathway (85). SLIT3 has rarely

been reported in human cancers, which could inhibit the

progression of thyroid cancer (86).
Conclusion

In summary, we developed and validated a trustworthy and

powerful signature, which could serve as an independent and

promising biomarker to optimize prognosis and surveillance

protocols for individual LUAD patients.
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