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Abstract
Background: The pluripotency and self-renewal capabilities, which define the "stemness" state, of
mouse embryonic stem (ES) cells, are usually investigated by functional assays or quantitative
measurements of the expression levels of known ES cell markers. Strong correlations between
these expression levels and functional assays, particularly at the early stage of cell differentiation,
have usually not been observed. An effective molecular diagnostic to properly identify the
differentiation state of mouse ES cells, prior to further experimentation, is needed.

Results: A novel molecular pattern recognition procedure has been developed to diagnose the
differentiation state of ES cells. This is based on mRNA transcript levels of genes differentially
expressed between ES cells and their differentiating progeny. Large publicly available ES cell data
sets from various platforms were used to develop and test the diagnostic model. Signature patterns
consisting of five gene expression levels achieved high accuracy at determining the cell state
(sensitivity and specificity > 97%).

Conclusion: The effective ES cell state diagnostic scheme described here can be implemented
easily to assist researchers in identifying the differentiation state of their cultures. It also provides
a step towards standardization of experiments relying on cells being in the stem cell or
differentiating state.

Background
Embryonic stem (ES) cells, which are derived from the
inner cell mass (ICM) of the blastocyst stage of an
embryo, are characterized by their ability to self-renew
and to produce progeny that can give rise to the three
germ layers (ectoderm, mesoderm and endoderm) [1].
Growth and sustenance of these cells in vitro requires the
presence of mouse embryonic fibroblast (MEF) cells as
feeder layers [2]. These supportive feeder layers consist of

connective tissue cells that form the matrix upon which ES
cells grow. Recently, feeder-free systems have also been
developed to culture ES cells [3,4]. Assuming that cells are
cultured on correct medium with sufficient amounts of
secreted factors, such as the cytokine leukemia inhibitory
factor (LIF), several key transcription factors work
together to activate or inhibit target genes to maintain ES
cells in a proliferative, non-differentiating state. For exam-
ple, transcription factors such as Nanog [5,6], Oct-4 [7,8],
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Sox2 [9,10], and Sall4 [11,12] have helped scientists elu-
cidate how embryonic stem cells replicate without differ-
entiating.

To attempt to identify the full set of genes involved in
maintaining the stem cell state ("stemness"), high-
throughput technologies like microarrays [13], chromatin
immuno-precipitation [6] and MPSS [14] have been used
to compare gene expression profiles between ES cells and
differentiating cells. These techniques allow the detection
of differentially expressed genes, even at low transcript
levels, but with varying levels of sensitivity. However,
these studies can be compromised if the ES cell sample
contains a mixture of cells with depleted populations
remaining in the stem cell state. This may lead to many
markers, especially those expressed at low levels, not
being detected [15]. Alternatively, the differentiated cell
sample may have reached a lineage specific differentiation
stage where many of the genes expressed are specific to the
developmental process (early organogenesis) and not rel-
evant to the initiation of differentiation. Determining the
time point for genome-wide comparative analyses of
these cell populations is critical to derive a consistent set
of "stemness" genes.

Functional assays (e.g. chimeric mice, embryoid body
generation, colony forming potential) or quantitative RT-
PCR measurements on known ES cell gene markers are
commonly used to determine the timeline for the loss of
pluripotency [16]. However, the relationship between
gene expression and loss of pluripotency is complex [17].
Two ES cell markers (SSEA-1, Oct-4) have been found to
show no unequivocal temporal correlation between the
expression of the genes and the loss of pluripotency [18].
The differentiation potential and self-renewal capability
of the ES cell colonies decreased rapidly during the initial
40 hours after LIF removal, yet the expression level of ES
cell markers remained relatively unaltered for up to 80
hours [18]. In another study, six ES cell markers (Oct-4,
Rex1, Gbx2, Nanog, FoxD3 and Sox2) were found to
decrease in expression level at variable time points and
rates [13]. Glover et al. [19] used a meta-analysis to iden-
tify a small set of genes that show consistent changes in
expression upon cell differentiation, giving a unique ES
cell signature. However, they also showed that the total of
genes in a signature depended on the protocol used. These
studies suggest that studies of single ES cell markers with
functional assays are not sufficient to define what is
required to maintain the stem cell state. Several factors
need to be balanced in a particular way for ES cells to
remain in a self-renewing state. If this balance shifts, ES
cells may begin to differentiate [20].

Here, we devised a novel molecular pattern recognition
procedure for the diagnosis of the ES cell state, based on

the expression patterns of a group of genes. Genes that are
differentially expressed between ES cells and differentiat-
ing cells were identified from large publicly available ES
cell data sets. A diagnostic signature pattern consisting of
five biomarkers was developed and assessed using a cross-
validation strategy to give high sensitivity and specificity.
These biomarkers, which are also expressed at low levels
in the feeder layers of mouse embryonic fibroblast (MEF)
cells, can be used to determine experimentally the differ-
entiation state of ES cell cultures. Therefore they can also
provide a step towards standardization of ES cell studies
by identifying definitively their closest embryological
equivalents. This development is a step in the direction
that reduces the possibility of signal contamination from
the feeder layer of MEF cells. Use of a subset of differen-
tially expressed genes, which encode secreted or trans-
membrane proteins, may allow development of a non-
destructive proteomic assay to determine the state of an ES
cell culture.

Results
Identifying genes that correlate with maintenance or loss 
of pluripotency in ES cells
114 genes were found to meet the conditions (described
in the Methods section) to be considered differentially
expressed between embryonic stem cells and their differ-
entiating progenies after LIF removal and so form Gstemness
(see Additional files 1 and 2). These genes and their prod-
ucts should be necessary for the maintenance of, or need
to be repressed in, cells in a proliferative, non-differentiat-
ing ES cell state. Genes that mark developmental stages in
the embryo, including Gbx2, Pitx2, Eomes, Amot, Dab2,
Sox2, Fgf4, Nanog, Sall4, Fgf5, Timp1, Kdr, Cyp26a1,
Dppa2 and Dppa4 were among this set, which is consist-
ent with earlier studies [10,11]. Moreover, many of these
differentially expressed genes have been previously found
to be directly controlled by either Nanog [6], Sox2 [6] or
polycombs [21].

The differentially expressed set of genes was assigned to
functional categories, several of which were statistically
overrepresented (p value < 0.005) in the gene set (Figure
2). Development-related genes, such as S100a6, Nrp1,
Serpine1, Gbx2, and Pitx2 account for the largest portion
(40%) of genes in Gstemness. This was followed by genes for
regulatory molecules, such as transcription factors for
nucleobase, nucleoside, and nucleotide metabolism for
rapid cellular proliferation, and by genes for proteins
involved in intracellular signaling, cell surface receptors
and ligands (30% of genes). In addition, genes associated
with cell differentiation, embryonic development, organ
morphogenesis, and the TGF-β signaling pathway were
also found to be significantly overrepresented in Gstemness.
A comprehensive list of constituent genes in each overrep-
resented annotation term is provided as Additional file 3.
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A large proportion of Gstemness genes (52%) was classified
as soluble intracellular proteins. Membrane proteins (type

I/II and multi-pass) and soluble secreted proteins consti-
tuted only 21% and 18% of the entire set respectively.

Ontology classificationFigure 2
Ontology classification. Functional distribution (a) and subcellular location (b) for the set of genes that were differentially 
expressed between ES cells and differentiating cells.
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These latter two sets of genes form a group of genes whose
protein products might be used as non-destructive mark-
ers of the differentiation state of embryonic stem cells.

Diagnostic signature patterns using mRNA transcript 
expression levels
The Affymetrix data sets were used to determine diagnos-
tic models intended to achieve high accuracy predictions
of the stem cell state of the samples. For each n (2 to 20),
30,000 n-biomarker models were randomly selected from
Gstemness. Diagnostic signature patterns for these models
were derived and evaluated based on 500 random divi-
sions of the complete Affymetrix array set (47 microar-
rays) into training and test samples. Each test set consisted
of 14 ES cell samples and 19 differentiating cell samples
that were not used in the training process. To determine
the minimum set of biomarkers that could achieve a high
level of accuracy, the average performance of each n-
biomarker diagnostic model on the 500 test data sets was
plotted (Figure 3). Accuracy improved rapidly with the
number of biomarkers included in the model up to 7, and
reached a plateau when n exceeded 10. Because of the var-
ying quality and predictive powers of individual biomar-
kers towards loss of pluripotency and initiation of
differentiation, incorporating additional biomarkers into
a diagnostic model may not increase the predictive power
of that model. Some 5-biomarker diagnostic models that
achieved higher prediction accuracy than 6-biomarker
diagnostic models are shown in Additional file 4.

Among the four classes of stemness biomarkers used for
constructing diagnostic models (Figure 3), those biomar-
ker models that were built using selections of 2 to 20
genes from the class of 21 secreted proteins achieved the
highest sensitivity with the least number of biomarkers.
Certain biomarkers in that class, which are strongly
related to developmental events or the maintenance of
stem cells (e.g.: Igfbp4 [22], Bgn [23], fgf4 [24], fgf5 [25]),
may increase the accuracy. However, the effectiveness of
some of these models may be lower when used in other
test situations as these models had lower specificity at
higher values of n. This is probably due to the feeder layers
of MEF cells also expressing 11 of these 21 biomarkers at
high levels (see Additional file 1).

Even though some diagnostic models are able to achieve
100% accuracy in terms of their sensitivity and specificity,
their predictive power in general may be questionable due
to the expression of some of these genes by the feeder lay-
ers of MEF cells. Excluding these models, there were three
5-biomarker diagnostic models that achieved the highest
prediction accuracy (Table 2). Using these models, ≥ 97%
sensitivity and 100% specificity was achieved. This indi-
cates that as few as five biomarkers may be sufficient to

diagnose unknown test samples with high prediction
accuracy.

These three optimum diagnostic models consisted of six
stemness biomarkers, two of which, transcription elonga-
tion factor A (Tcea3) and stathmin-like 2 (Stmn2), are
over-expressed in ES cells. The remaining four biomarkers,
paired-like homeodomain transcription factor 2 (Pitx2),
immunoglobulin superfamily, member 4A (Igsf4a),
receptor (calcitonin) activity modifying protein 2
(Ramp2) and TEA domain family member 2 (Tead2),
have reduced expression levels in ES cells but progres-
sively increase their expression levels with differentiation.
The results of diagnostic tests of the stem cell state of sam-
ples in the test data set, using these three 5-biomarker
models, are summarized in Table 2.

Figure 4 shows the dot projection of each sample's expres-
sion levels for the 5-biomarkers of optimum model 1 on
its signature patterns. The dot projections of expression
levels on these two signature patterns are used to deter-
mine whether a sample is more closely related to differen-
tiating cells or ES cells. Ideally, the magnitude of these
projections should differ significantly from each other
when the test sample is derived from a homogeneous cell
population, with one projection being close to 1 and the
other close to 0. However, due to the relative lack of syn-
chrony during cell transition, most of the culture samples
are usually derived from cell colonies that contain hetero-
geneous populations of differentiated, persistently
pluripotent, and transiently pluripotent cell types [26,27].
In this case, the dot projections will deviate from the ideal
case, and their values will provide information about the
overall differentiation state for the majority of cells within
the sample. Most of the test samples used here were found
to be derived from relatively mixed populations of cell
types.

Random permutation tests to evaluate the probability for
obtaining the optimum diagnostic models by chance
showed that only 9 of 1,000 randomised diagnostic mod-
els achieved ≥ 90% specificity and sensitivity, indicating
that the probability of obtaining by chance a diagnostic
model with the accuracy of the optimum model is less
than 0.009.

Discussion
Determining biological significance of genes in the 
diagnostic signature patterns
By using studies of gene expression in embryonic stem
cells and cells which have begun to differentiate, a panel
of genes has been identified as biomarkers of the differ-
ence between the two states. These biomarkers could be
used as a simple test of the differentiation state of a cell
culture. A total of six biomarkers (Stmn2, Tcea3, Pitx2,
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Igsf4a, Ramp2, Tead2) were found to be most effective for
this purpose. These genes were among the 10 genes that
showed the most statistically significant differential
expression between ES cells and differentiating cells.

Of these genes, stathmin-like 2 (Stmn2) was demon-
strated to be a direct target of β-catenin/TCF-mediated
transcription in hepatoma cells [28]. β-catenin/TCF is fre-
quently activated during embryogenesis [29], consistent
with its elevated expression in ES cell culture observed in
the signature pattern. In addition, the stathmin family
members were previously known to inhibit microtubule

polymerization through their microtubule-destabilizing
activity [30], and might inhibit cell differentiation which
is known to involve a complete reorganization of the
microtubule network [31].

Transcription elongation factor A (SII), 3 (Tcea3) encodes
a protein that promotes read-through of transcriptional
blocks by stimulating the nascent RNA cleavage activity of
RNA polymerase II [32]. Tcea3 has also been identified as
having ICM-specific expression [33]. Tcea3-/- mice dem-
onstrated this gene to be indispensable for the self-
renewal capability of hematopoietic stem cells [34].

Prediction accuracyFigure 3
Prediction accuracy. Box plots of the accuracy (sensitivity or specificity) of the prediction of the differentiation state of 
embryonic stem cells using "n" (2 to 20) mRNA transcript levels as diagnostic signature patterns. The box has lines at the lower 
quartile (25th), median (50th), and upper (75th) quartile values. The whiskers are lines extending 1.5 × (inter-quartile ranges) 
from each end of the box with outliers ('+') marked. The box plot shows the average prediction accuracy (based on 500 ran-
dom divisions of the sample set into training and test sub-sets) for the 30,000 diagnostic models created for each "n". The diag-
nostic models were built using Gstemness (size = 114), Gsecreted proteins (size = 21), Gmembrane proteins (size = 25) and Gextracellular 
proteins (size = 46) separately. Extracellular proteins include secreted and membrane proteins.
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The paired-like homeodomain transcription factor 2
(Pitx2) encodes a gene implicated in the establishment of
left-right-handed asymmetry in mouse embryogenesis. It
also regulates both morphogenesis and gene expression in
developing extraocular muscles [35]. Together with other
factors, it induces formation of many epithelial-derived
organs, including bone [36], heart muscle [37] and
hematopoietic [38] development. It would be expected
that this gene will only be activated when ES cells begin
differentiation, as reflected by the low expression level for
this gene in ES cells.

The immunoglobulin superfamily, member 4A (Igsf4a)
was first isolated as one of the genes preferentially
expressed during neuronal differentiation of mouse
embryonal carcinoma cells [39] and was later isolated in
the mouse developing nervous system and epithelium of
various organs [40]. Although its role as a mast-cell adhe-
sion molecule for attachment to fibroblast cells has been
clearly elucidated [41], little is known about its function
during ES cell differentiation. Unlike the three biomarkers
mentioned before, Igsf4a does not have a previously iden-
tified association with ES cell biology. However, its tran-
script level is consistently differentially expressed between
ES cells and their differentiating progeny (p value ≈ 0).

Receptor activity modifying protein 2 (Ramp2) encodes a
type I transmembrane protein modulator that, when in
complex with calcitonin receptor-like receptor (CRLR),
determines the ligand specificity of the CRLR on the cell
surface. Together, they are known to play a key role in
vasodilation and angiogenesis via the extracellular bind-
ing of adrenomedullin, which acts as a multifunctional
peptide hormone [42]. Usually, the mRNA levels of CRLR
and RAMP2 correlate strongly with adrenomedullin avail-

ability. Its expression level is low in ES cells and high
when the cells start to differentiate.

Tead2, among all TEA domain family genes, is uniquely
expressed in mouse embryos during the first week of early
mammalian development [43]. This gene, which encodes
a site-specific DNA binding protein, was previously con-
firmed to be expressed in several types of stem cells
including embryonic stem cells [44]. Together with its
transcriptional co-activator, YAP65, it can activate the
expression of genes that serve different functions during
cell differentiation and development. In agreement with
previous results, the expression level for Tead2 in differen-
tiating cells is almost 3-fold higher than its level in ES
cells.

We have shown that the signature patterns derived here
from a subset of the available training samples have high
prediction accuracy when used on the remaining samples
from which they were not derived. As these signature pat-
terns were derived from ES cells differentiating following
removal of LIF, the signature patterns might be affected if
different differentiation conditions were used (e.g.: dime-
thyl sulfoxide (DMSO), retinoic acid (RA), ascorbic acid).
Improvements in the prediction accuracy of the biomar-
ker signature patterns by testing and refining them on a
larger set of highly enriched cell lines will be possible in
the future. Sampling bias might have affected the deriva-
tion of the patterns by treating ES cells and their differen-
tiating counterparts as groups. The differentiation of ES
cells includes the formation of distinct pluripotent cell
populations that are characterized by their temporal
expression of biomarkers [17] and this delineation could
not be made here. Assignments provided by the original
authors, which treated all pluripotent cell samples as a

Table 2: Optimum model details and test results. Expression levels in ES and differentiating (Diff) cells are used to make the signature 
pattern for the model. A 1 indicates that a gene is used in a model, 0 that it is not.

Expression in Models

Gene Symbol Entrez ID ES Diff 1 2 3 all Gene Name

Stmn2 20257 405.51 159.89 1 1 1 1 stathmin-like 2
Tcea3 21401 175.47 67.29 1 1 1 1 transcription elongation factor A (SII), 3
Igsf4a 54725 63.81 158.42 1 1 0 1 immunoglobulin superfamily, member 4A
Pitx2 18741 87.00 348.96 1 1 1 1 paired-like homeodomain transcription factor 2
Ramp2 54409 93.57 247.39 1 0 1 1 receptor (calcitonin) activity modifying protein 2
Tead2 21677 218.96 617.77 0 1 1 1 TEA domain family member 2

Model Sensitivity (%) Model Specificity (%)

Data Set 1 2 3 All 1 2 3 All

Affymetrix data sets (n = 47) 95.0 95.0 95.0 95.0 100.0 100.0 100.0 100.0
MPSS tpm count (n = 4) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NIA/Whitehead-Jaenisch cDNA arrays (n = 16) 100.0 100.0 100.0 100.0 NA NA NA NA
Whole data set 97.4 97.4 97.4 97.4 100.0 100.0 100.0 100.0
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single discrete cellular entity of ES cells, were used. Simi-
larly, the derivatives from ES cells, from 2–14 days, were
treated as one group of differentiating cells.

Recently, Glover et al. [19] used a meta-analysis to inves-
tigate ES cell signature changes in three mouse ES cell
lines. They discovered 88 genes with absolute changes in
expression level that correlate well with decreasing fre-
quency of ES cell pluripotency. Further validation, using
Q-RT-PCR, of 22 of these genes led to a set of seven genes
that showed rapid and consistent temporal down-regula-
tion in expression across ES cell lines and differentiation
protocols. In contrast to their method, which identifies ES
cell signature change based on individual gene expression
changes and bootstrap confidence values, this study eval-
uates ES cell signature changes based on a panel of
biomarkers. Here the coordinated expression levels of a
panel of both up- and down-regulated biomarkers were
considered to jointly provide a signature pattern for diag-
nosis. In addition, instead of providing a set of parameter
thresholds to be used in the definition of the ES cell signa-
ture change, several pairs of signature patterns consisting
of five biomarkers (Table 2) were provided as a basis of
comparison.

The diagnostic test developed here was applied to the
dataset (E-MEXP-412) of Glover et al. [19]. Three differen-
tiation conditions, (+LIF; +LIF+RA, and -LIF+DMSO),
were used by those authors to study ES cell differentiation.

The projection of biomarker expression levels in these
three conditions onto the 5-biomarker (Stmn2, Tcea3,
Igsf4a, Pitx2 and Ramp2) signature patterns derived here
indicates that the signatures performed well under the first
two conditions. This is consistent with Glover et al.'s find-
ing that exposure to RA has the most rapid effect on ES cell
differentiation. The response of ES cell differentiation to
the third condition (-LIF+DMSO), however, was less
prominent than that observed for RA. The projection of
the signature patterns resulted in a differentiation status of
cell population that is more ES cell-like (see Additional
file 5). There are two possible reasons why the signature
patterns did not detect the differentiated status of the
DMSO-treated cells. First, DMSO may induce slower gene
expression kinetics leading to the loss of cell pluripotency
when compared with LIF removal and RA treatment [19].
Second, the signature patterns derived from ES cell differ-
entiation following LIF removal may not be optimized to
detect DMSO-induced cell differentiation. DMSO treat-
ment induced expression of genes is associated with mes-
odermal differentiation [19] and was less rapid and
homogeneous in differentiation to skeletal myoblasts
than RA-induced ES cell differentiation to neuronal cells
[45]. However, as there were only two biological repli-
cates used by Glover et al. [19] for each differentiation
protocol these results may be questionable.

Going beyond mRNA, using secreted proteins from 
Gstemness as diagnostic signature patterns
There is great interest in diagnosing the differentiation
state of ES cells without the destruction of the cells. Three
possible approaches to distinguish ES cells as they differ-
entiate could be by using unique combinations of
biomarkers that are either secreted extracellularly (Gse-

creted), or are membrane bound proteins (Gmembrane) with
extracellular domains (Type I/II and multipass membrane
proteins). Their relative protein abundance could be
assessed using techniques such as fluorescent-tagged sig-
nalling molecules or monoclonal antibodies that selec-
tively adhere to these proteins. In total, 21 genes from
Gstemness are classified as soluble secreted proteins. Half of
these are highly expressed in the mouse embryonic fibrob-
last cells used as feeder layers and therefore not useful as
extracellular biomarkers. Signature patterns based on
secreted proteins predict the cell state in the Affymetrix
data sets accurately (sensitivity = 100%; specificity =
96.3%), however, they fail in other platforms (sensitivity-

cDNA < 40%) even when more biomarkers are included
(see Additional file 6).

A second approach, using only membrane bound biomar-
kers Gmembrane as signature patterns, was also applied.
Twenty of the 25 genes of this type in Gstemness had low
transcript levels in mouse embryonic fibroblast cells. Sev-
eral n-biomarker diagnostic models (6 ≤ n ≤ 7) using these

Sample classificationFigure 4
Sample classification. Projections of the biomarker 
expression levels in all ES cell and differentiating cell samples 
on the two diagnostic signature patterns of optimum model 1 
are shown. One signature pattern correlates to the embry-
onic stem cell state and the other to the differentiating cell 
state.
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genes (e.g.: Ramp2, Trap1a, Cldn7, Gpc3, Mest, Slc29a1)
were able to achieve high prediction accuracy across the
three expression analysis platforms (specificity ~96.4%;
sensitivity ~97.4%). A third approach used a combined
set of secreted and membrane proteins (30 genes). Like-
wise, several n-biomarker diagnostic models (5 ≤ n ≤ 7)
using these genes (e.g.: Fgf8, Spink3, Trap1a, Ptpns1,
Mest, Car14) were able to achieve high prediction accu-
racy across the three expression analysis platforms. This
overall prediction accuracy is comparable to that achieved
by the optimum mRNA diagnostic model reported previ-
ously (see Additional file 7). However, due to the complex
relationship between mRNA transcript levels and protein
abundance, further experiments on these membrane
bound biomarkers should be conducted to asses their use-
fulness towards detection of the differentiation status of
ES cells.

Conclusion
In this study, we demonstrated that the differentiation
states of ES cells following LIF removal can be stratified
efficiently using a set of diagnostic signature patterns con-
sisting of only 5 "stemness" biomarkers. In contrast to
other classification methods, this simple scheme derives
diagnostic signature patterns that can be applied across
different array platforms. It can be implemented in the
laboratory to provide a convenient adjunct to conven-
tional functional assays for determining the overall differ-
entiation state of an ES cell colony following LIF removal.

Methods
16 ES cell gene expression data sets from various laborato-
ries were downloaded from the Gene Expresion Omnibus
(GEO) [46] and ArrayExpress [47] or other sources, as
noted (see Table 1). These data sets were created using sev-
eral different technologies (Affymetrix Inc., NIA, Solexa
and Lynx Therapeutics Inc.). Altogether, 39, 28 and 14
microarrays were available for embryonic stem cells, dif-
ferentiating embryonic stem cells at various time points
after LIF removal (≤ 14 days), and mouse embryonic
fibroblast (MEF) cells, respectively.

Data pre-processing and identification of differentially 
expressed biomarkers (Gstemness)
Gene probes that were common to all Affymetrix data sets
were first identified based on the manufacturers' annota-
tions. The probes from cDNA and MPSS studies were later
mapped to Affymetrix probes using common gene names.
This gave approximately 10,000 well-characterized mouse
genes that were used for further analysis. Raw CEL files,
were normalised at the PM and MM probe level, by global
scaling. Gene expression levels were obtained using the Li-
Wong model-based gene expression indices using dChip
software [48]. All arrays were used to develop the model,
and a smoothing spline normalization method was
applied. Expression values below 10 were set to 10.

The ES cell and differentiating cell arrays generated from
Affymetrix platforms were separated into two pools to

Table 1: Details of the data sets used in this study.

No. of arrays

Mouse cell lines ES Diff MEF Time points 
for Diff

Chip type Induction/mESC phenotype Ref. Acc no.

J1 ES Cells 3 3 0 5 days Affy MOE430 LIF removal/-
V6.5 (P18) ES Cells 3 15 0 6,12,18,24,36,48 

hours,4,7,9,14 
days

Affy MOE430 LIF removal/RT-PCR [51] GSE3231

R1 ES Cells 3 0 0 NA Affy U74Av2 LIF removal/- [52] GSE2375
W9.5 ES Cells 2 6 0 1,2,3,4,5,6 days Affy U74Av2 LIF removal/RT-PCR [13] E-MEXP-304
CCE ES Cells 2 0 0 NA Affy U74Av2 LIF removal/- [53] Info1

C57B1/6 ES Cells 2 0 0 NA Affy U74Av2 LIF removal/- [44] [54]
E14 ES Cells 2 0 2 NA Affy U74Av2 LIF removal/- [15] [55]
R1 ES Cells 3 3 0 18,72 hours Affy U74Av2 LIF removal/RT-PCR & Functional assays [18] [56]
DR4 Cells 0 0 3 NA Affy MOE430 - [51] GSE3232
NIH-3T3 Cells 0 0 4 NA Affy U74Av2 - [57] GSE2192
Primary MEFs from wild-type 
C57Bl/6 13.5 day embryos

0 0 2 NA Affy MOE430 - [58] GSE2684

T1/2 fibroblasts Cells 0 0 3 NA Affy MOE430 - [51] GSE3236
E14 ES Cells 3 1 0 4 days MPSS data sets – two sources LIF removal/- [51] GSE1581; [59]
CCE ES cells 10 0 0 NA Whitehead-Jaenisch mouse 

operon 32k v4.1
LIF removal/- [51] E-MEXP-501

R1 ES Cells 3 0 0 NA NIA Agilent Mouse 44K 
Microarray v2.1

LIF removal/- [52] E-MNIA-66

R1 ES Cells 3 0 0 NA NIA mouse 22k Ver1 LIF removal/- [13] E-MNIA-73

Array totals 39 28 14

Info1: through personal communication;
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determine expression differences between them. MEF cell
arrays were excluded from this analysis. Genes were con-
sidered to be differentially expressed between the two
samples (denoted Gstemness) if they fulfilled the three fol-
lowing criteria:

1) the gene was called absent in all arrays of one sample
type, but present or marginal in all arrays of the other
type; or

2) the 90% lower confidence bound (LCB) of the fold
change between the two sample types is above 2; and

3) the statistical significance of the detected fold change
was ≤ 0.005 [48].

Genes that were determined to be differentially expressed
between the two states were assigned to general functional
categories using Gene Ontology (GO) terms [49]. A

hypergeometric distribution test was used to assess
whether a given functional annotation was over-repre-
sented in the set of differentially expressed genes. Subcel-
lular localization details of the differentially expressed
genes were extracted from the curated LOCATE database
of the subcellular localizations of the mouse proteome
[50]. Based on this information, Gstemness was separated
into 5 sub-classes (soluble non-secreted proteins; type I
membrane proteins; type II membrane proteins, multi-
pass membrane proteins; and secreted extracellular pro-
teins). Among them, the latter four were referred to as
extracellular proteins.

Diagnostic signature patterns for ES cells and their 
differentiating counterparts
Biomarker diagnostic models were built by taking the
average expression level for a gene or biomarker in ES cell
samples and in differentiating cell samples. For each cell
type, an n-biomarker model is constructed from the aver-

Work flowFigure 1
Work flow. The proposed mRNA molecular diagnostic strategy used to stratify the differentiation state of mouse embryonic 
stem cells. (DE = differentially expressed).
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aged expression levels of "n" biomarkers or genes. These
form an n-dimensional "signature" vector for each cell
type which is then normalized to unit length. Only the
Affymetrix chip data (20 ES cell samples and 27 differen-
tiating cell samples) were used for this process. For cross
validation purposes, average expression levels were taken
from a randomly selected 30% of the total samples for
each cell type (i.e. 6 and 8 samples from ES cell and differ-
entiating cell groups, respectively, were used as the train-
ing set) and the remaining samples were used as the test
set. The last step was repeated 500 times to avoid biased
diagnostic signature patterns (see Error rate estimation for
n-biomarker diagnostic models below).

Determination of differentiation cell state based on 
diagnostic signature patterns
Samples from the test or other data set are assessed, using
an n-biomarker diagnostic model, for their stem cell state
by constructing a normalised vector of the expression lev-
els of the n-biomarker genes in the sample to be tested.
The scalar projections of this test vector with the two sig-
nature vectors (one for each cell type as defined above) are
calculated and the test sample is defined as belonging to
the class or cell type to which it has the larger projection.
The schematic illustration of the diagnostic procedure is
shown in Figure 1.

Error rate estimation for n-biomarker diagnostic models
To obtain an unbiased estimation of the error rate associ-
ated with the training samples selected, 500 random selec-
tions of 30% of the samples within each cell type were
used to build n-biomarker diagnostic models. The accu-
racy of the n-biomarker diagnostic model was assessed
using the test data set based on its sensitivity (true predic-
tions of ES cell state/number of test ES cell samples) and
specificity (true predictions of "not ES cell" state/number
of test "not ES cell" samples). An average error rate for the
n-biomarker diagnostic model could then be calculated.

Given the size of Gstemness (114 genes), the number of n-
biomarker diagnostic models that could be built is intrac-
tably large. The number of possible 6-gene models is
O(1010). In this study, 30,000 diagnostic models, ran-
domly selected for each n (ranging from 2 to 20), were
assessed. Optimum n-biomarker diagnostic models were
selected based on the following criteria:

1) the highest sensitivity and specificity;

2) the expression levels of all n biomarkers in the model
are low in MEF.

To investigate whether these models could arise by
chance, 1000 random permutations of the cell samples
were made to give randomized expression vectors for the

biomarkers in each model, and the procedure above was
used to estimate prediction accuracy of the randomized
diagnostic. The probability that the accuracy of rand-
omized diagnostic models exceeds 90% in both sensitivity
and specificity was computed.
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nificantly differentially expressed between ES cells and differentiating 
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Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-210-S1.xls]

Additional file 2
Gene expression profiles. The expression levels of the set of 114 differen-
tially expressed genes (Gstemness) in mouse embryonic fibroblast cells, 
embryonic stem cells and their differentiating counterparts are shown. 
Genes were clustered based on the correlation of their expression profiles 
as implemented in dChip. Cell samples are represented in columns; genes 
in rows. The known regulators (Nanog, Oct-4 and polycombs) are indi-
cated. The level of gene expression is colour-coded from blue (low) to red 
(high).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-210-S2.jpeg]

Additional file 3
Overrepresented annotation for stemness genes. The differentially 
expressed set of genes was assigned to functional categories, several of 
which were statistically overrepresented (p value < 0.005) in the gene set. 
This file provides a comprehensive list of constituent genes in each over-
represented annotation term.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-210-S3.xls]

Additional file 4
Optimum diagnostic models. The 5-gene optimum diagnostic models 
found in this study. Because of the varying quality and predictive powers 
of individual biomarkers towards loss of pluripotency and initiation of dif-
ferentiation, incorporating additional biomarkers into a diagnostic model 
may not increase the predictive power of that model. Some 5-biomarker 
diagnostic models can achieve higher prediction accuracy than 6-biomar-
ker diagnostic models as show in this table.
Click here for file
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